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Abstract

Two D-A type cruciform luminophore§B-CTPAEB and DFB-CTPAEB were
designed and prepared. The two compounds exhihit@due intramolecular
charge-transfer (ICT) and solid-state fluorescelneleavior. The results show that
both compounds exhibit AIEE behavior and high setmte luminescence
efficiency (up to 0.693 and 0.442, respectively)orbbver, FB-CTPAEB and
DFB-CTPAEB show remarkable mechanofluorochromic (MFC) propsrtOnce
the as-prepared samples were subjected to grindirey,emission of the two
cruciform luminophores was red shifted by 52 nm &6dm, correspondingly, their
fluorescence colors changed from yellow and reddistnge to red, respectively.
The fluorescence emission changes induced by ggndian be restored by
solvent-fuming and regenerated by grinding. PXRBIgsis revealed that the MFC
behavior of FB-CTPAEB and DFB-CTPAEB came from the transformation

between crystalline and amorphous states uponrettstimuli. Meanwhile, the



extension in molecular conjugation caused by piaagon of molecular
conformation and subsequent planar intramolecdiarge transfer (PICT) process
were responsible for the red-shifts in the PL gect
Keywords:  cruciform; triphenylamine; intramolecular  chargensfer;
aggregation-induced enhanced emission; mechanothoomism
1. Introduction

Mechanofluorochromic (MFC) materials are a classsshart” materials that
change their solid-state emission color in respdéosxternal force stimuli (such as
grinding, pressing, shearing, deformation, etc]) ls the switchable emissions
could be easily obtained by destroying their reatioose structure arrangement
under the external stimulusmstead of altering the chemical structures, these
materials have attracted wide attention due ta gheiential applications in optical
data storage devices [2], mechano-sensors [3],risgdoks [4], optoelectronic
devices [5] and other fields. To date, many MFC enals, such as
3,6-bis(aryl)-1,4-diketo-pyrrolo[3,4}pyrroles (DPPs) [6], tetraphenylethene [1f,7],
oligo(p-phenylene vinylene) [8], 9,10-divinylanthracend, [8iphenylacrylonitrile
[5¢,7e,10] and organoboron complexes [11,12], hasen developed. However,
MFC materials that exhibit high solid-state lumicesce efficiency and an obvious
color contrast are still rare, partly because marganic luminescent dyes usually
suffer from aggregation caused quenching (ACQ),[¥8]ich leads to poor solid
state emission, and then it is disadvantageoush& dbservation of MFC

phenomenon. In 2001, Tang et al. reported on aroitapt class of landmark



materials with anti-ACQ effects, namely aggregaiimiuced emission (AIE)
materials [14], which are nonluminescent in theitéilsolutions, but become highly
emissive in the aggregate states. In the next yRark's group reported on
aggregation-induced enhanced emission (AIEE) nad$efiLl5], and then in 2010,
this group published the cyano-distyrylbenzenewvdd¢ine that exhibited both AIE
activity and MFC behavior [16], which made peo#alize that there was a certain
relationship between AIE and MFC properties of thminophore. Thus, great
attention has been paid to the design and syntlésiew AIE- or AIEE-MFC
luminophores, and a number of AIE or AIEE fluoropg®with MFC behavior have
been reported in Chi's laboratory and by other gso(i7,17]. However, the
development of organic AIE- or AIEE-MFC materialsat possess high contrast
mechanofluorochromism, excellent reversibility, dmgh solid-state fluorescence
efficiency is still strikingly desirable. In additn, MFC phenomena and mechanisms
are still debated, and there is still no clear gaingesign strategy to design AIE- or
AIEE-MFC materials at present. It is difficult toeglict in advance whether a new
AIE fluorescent chromophore has MFC performanceeré&fore, it is important to
develop new MFC dyes for an in-depth understandiriye underlying mechanism
of AIE- or AIEE-MFC behavior at the molecular levelnd establish the
structure—property relationships of these compounds

As an important kind of fluorescent chromophoresciform fluorophores have
gained an increasing interest because of theirugniopolecular structures and

fascinating optical properties [18]. Recently, songeuciform fluorophores



exhibiting both obvious AIE character and high cast MFC properties have been
reported by our group [19]. In the current work, ave designed and synthesized
another structural type of cruciform moleculeB-CTPAEB and DFB-CTPAEB
(Scheme 1). In these two molecules, two differemdsawith different functions
intersected at a central benzene core: in the middf one arm s
electron-withdrawing dicyanovinylbenzene segmend, at both ends of this arm is
electron-donating triphenylamine unit. Thus, theatglly separated frontier
molecular orbitals (FMOSs) in species could be meali Meanwhile, in the other arm
there are two benzene rings, on which the substituean effectively regulate the
electronic structure of the whole molecule. Ondkiger hand, the space congestion
caused by four large substituents on the centmatdree ring forces them distort
from the ring plane, which would depress the mdkcelosen—n packing and
enhance solid luminescence efficiency. As expect€é®-CTPAEB and
DFB-CTPAEB possess significant AIEE characteristics with highlid state
efficiency of 0.693 and 0.442, respectively. Thgstalline to amorphous phase
transition of the two luminophores by grinding résd in excellent MFC
performance and well distinguishable color contraghh emission peak shifts of 52

nm and 46 nm was obtained, respectively.

FB-CTPAEB DFB-CTPAEB

Scheme 1The molecular structures BB-CTPAEB andDFB-CTPAEB.



2. Experimental section
2.1. Materials and Measurements

General. ThéH (400 MHz) and**C NMR (100 MHz) spectra were obtained
with a Bruker-Avance Il spectrometer with CRClas the solvent and
tetramethylsilane (TMS) as the internal standardhe Thigh-resolution mass
spectrometry (HRMS) was carried out with a MALDI-FOGMS Performance
instrument (Shimadzu, Japan). C, H, and N elemamialyses were performed with
a Perkin-Elmer 240C elemental analyzer. The UV-alisorption spectrum was
recorded on a Shimadzu UV-2550 spectrophotometanréscent measurements
were obtained on a Cary Eclipse Fluorescence Sypdwitometer. The absolute
fluorescence quantum yields for the as-preparetissohere measured on an
Edinburgh FLS920 steady state spectrometer usingitagrating sphere. Powder
X-ray diffraction (XRD) was performed on a Brukem8DFocus Powder X-ray
diffraction instrument. Dynamic light scattering ) measurements were
performed on the BI-200SM Laser Light Scatteringt8sn (Brookhaven). Density
functional theory (DFT) calculations were performes FB-CTPAEB and
DFB-CTPAEB at the B3LYP/6-31G(d) level using the Gaussian Opkgram
package.

Preparation of the samples for AIEE study. A steokution of luminogen in
THF with a concentration of 1.0 x 0\l was prepared. An aliquot (0.1 mL) of the
stock solution was transferred to a 10 mL volurcefiask. After the appropriate

amount of THF was added, distilled water was adsled/lly under sonication to



give 1.0 x 1¢ M solution with different fractions of water. T measurement of
the resultant solutions was performed immediately.

Preparation of the samples for mechanofluorochmamgudy. The ground
powders were prepared by grinding the initial pomsdeith a pestle and mortar.
The fumed samples were obtained by fuming the gtquowders with DCM for 2
min.

Materials. Ethanol was distilled under normal puessover sodium under
nitrogen before use. The other chemicals were @sedeceived without further
purification.

2.2. Synthesis
4,4"-bis(trifluoromethyl)-[1,1":4',1"-terphenyl]- 2',5'-dicarbaldehyde (3a)

2,5-Dibromoterephthalaldehydg (4.00 g, 13.70 mmol)2a (7.30 g, 38.44
mmol), NaCO;s (8.00 g, 75.48 mmol) and Pd(PPh(150 mg, 0.130 mmol) were
added into tolueneA® (300 mL, v/iv = 3/2). Then the mixture was hedtedeflux
and stirred for 48 h undarnitrogen atmosphere. After cooling to room terapee,
the organic layer was separated, the aqueous leyeacted with DCM, the
combined organic layer dried over anhydrousS@. Upon evaporating off the
solvent, the crude product was subjected to patific by column chromatography
(silica gel; petroleum ether/DCM, v/v = 2/1), affiang a light yellow solid (5.15 g).
Yield 89%.H NMR (400 MHz, CDC}) § 10.08 (s, 2H), 8.14 (s, 2H), 7.83 (=
8.0 Hz, 4H), 7.60 (dJ = 7.6 Hz, 4H) (Fig. S5)**C NMR (100 MHz, CDGCJ) §

190.49, 143.57, 139.91, 136.57, 130.64, 130.58,3030.25.84, 125.81 (Fig. S6);



HRMS (MALDI-TOF) m/z: [M]" Calcd for GoH1.F¢02 422.0741; Found 422.3416
(Fig. S7). Anal. Calcd (%) for £H1Fs02: C 62.57, H 2.86; Found: C 62.63, H
2.78.

3,3",5,5"-tetrakis(trifluoromethyl)-[1,1:4",1"- terphenyl]-2',5'-dicarbaldehyde
(3b)

By following the synthetic procedure f@a, 3b was synthesized by using
2,5-Dibromoterephthalaldehyde(4.00 g, 13.70 mmol2b (9.91 g, 38.44 mmol),
NaCO;s (8.00 g, 75.48 mmol) and Pd(P#h(150 mg, 0.130 mmol) as the reagents.
The crude product was purified by column chromaphgy (silica gel,
DCM/petroleum ether, v/v = 1/1), affording a yell®olid (6.36 g). Yield 83%H
NMR (400 MHz, CDC}) § 10.08 (s, 2H), 8.16 (s, 2H), 8.08 (s, 2H), 7.924(3)
(Fig. S$8);**C NMR (100 MHz, CDCJ) 5 189.27, 142.30, 138.35, 136.58, 132.74,
132.41, 131.73, 129.73, 129.70, 124.23, 122.98,.521(Fig. S9); HRMS
(MALDI-TOF) m/z: [M]" Calcd for G4H10F120, 558.3158; Found 558.3179 (Fig.
S10). Anal. Calcd (%) for £H10F120,: C 51.63, H 1.81; Found: C 51.70, H 1.89.
(22,2'2)-3,3'-(4,4"-bis(trifluoromethyl)-[1,1":4', 1"-terphenyl]-2',5'-diyl)bis(2-(4
-(diphenylamino)phenyl)acrylonitrile) (FB-CTPAEB)

Compound3a (0.74 g, 1.75 mmol) and 2-(4-(diphenylamino)phgagétonitrile
(1.25 g, 4.40 mmol) were added into dry ethanolrf&), and then CkDNa (0.25 g,
4.63 mmol) was added quickly. The mixture was psedtiwith stirring for 6 h under
a nitrogen atmosphere. After cooling to room terapee, the resulting precipitate

was collected by filtration, and dried under vacudine crude product was purified



by column chromatography (silica gel, DCM/petroleather, v/v = 1/1), affording
a bright orange red solid (1.46 g). Yield 87%4.NMR (400 MHz, CDCJ) & 8.24 (s,
2H), 7.78 (d,J = 8.0 Hz, 4H), 7.67 (d) = 8 Hz, 4H), 7.42 (dJ = 8.8 Hz, 4H),
7.36-7.30 (m, 10H), 7.15-7.10 (m, 12H), 7.06 {ds 8.8 Hz, 4H) (Fig. S11)*°C
NMR (100 MHz, CDCJ) 6 149.42, 146.80, 142.52, 140.38, 136.85, 133.60,743
130.57, 130.35, 130.24, 129.55, 126.98, 126.18,6825125.65, 125.40, 124.16,
122.70, 121.83, 117.92, 114.67 (Fig. S12); HRMS (WATOF) m/z: [M+H]"
Calcd for GoHaFsN4 955.3235; Found 955.1653 (Fig. S13 and S14). Analcd
(%) for GsoHaoFeN4: C 77.98, H 4.22, N 5.87; Found: C 77.91, H 4N.&,.94.
(22,2'2)-3,3'-(3,3",5,5"-tetrakis(trifluoromethyl )-[1,1":4',1"-terphenyl]-2',5'-di
ylbis(2-(4-(diphenylamino)phenyl)acrylonitrile) (DFB-CTPAEB)

By following the synthetic procedure fé&tB-CTPAEB, DFB-CTPAEB was
synthesized by using 3b (1.00 g, 1.79 mmol),
2-(4-(diphenylamino)phenyl)acetonitrile (1.27 g48 mmol) and CkONa (0.26 ¢
4.81 mmol) as the reagents. The crude product wasfiggd by column
chromatography (silica gel, DCM/petroleum ether %/ 3/2), affording a bright
orange red solid (1.68 g). Yield 86%4 NMR (400 MHz, CDC}) & 8.29 (s, 2H),
8.02 (s, 6H), 7.41 (d] = 8.8Hz, 4H), 7.34-7.28 (m, 10H), 7.16-7.11 (mH),27.05
(d, J = 8.4Hz, 4H) (Fig. S15)**C NMR (100 MHz, CDG)) & 149.70, 146.75,
140.79, 139.15, 135.14, 133.94, 132.77, 132.44,103231.77, 130.75, 130.04,
129.54, 126.99, 125.79, 125.42, 124.42, 124.21,202222.17, 122.14, 121.78,

121.71, 118.99, 117.60, 116.27 (Fig. S16); HRMS (BATOF) m/z: [M]* Calcd



for CssHasF12N4 1090.2905; Found 1090.5599 (Fig. S17 and S18)I. Asdcd. (%)
for CgqHagF12N4: C 70.46, H 3.51, N 5.14; Found: C 70.51, H 3M44,.21.
3. Result and discussion
3.1. Synthesis of FB-CTPAEB and DFB-CTPAEB

The preparations of the cruciform luminophoredsB-CTPAEB and
DFB-CTPAEB are summarized in Scheme 1. Suzuki-Miyaura cogplof
2,5-dibromoterephthalaldehydewith the aromatic boric acida or 2b was carried
out in the mixed solvent of toluene andHby using Pd(PR)y as a catalyst in high
yields of 89% and 83%, respectively. Then a subseigstandard Knoevenagel
condensation catalyzed by sodium methoxide produbed target compounds
FB-CTPAEB and DFB-CTPAEB with good yields of 87% and 86%, by treating
the intermediate compoun@8a or 3b with 2-(4-(diphenylamino)phenyl)acetonitrile,
respectively. BothFB-CTPAEB and DFB-CTPAEB have good solubility in
organic solvents such as chloroform, DCM, THF, leerezand toluene, but show
poor solubility in alcohols and aliphatic hydrocanbsolvents, such as cyclohexane,
n-hexane, methanol and ethanol. The structures| dhalintermediates and target
molecules were fully characterized by differentctpescopic methods, includirté
and™*C NMR spectroscopy and MALDI-TOF high resolutionsaapectrometry, as

well as C, H, N elemental analysis.
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Scheme ZSynthetic routes d¥B-CTPAEB andDFB-CTPAEB.

3.2. UV-vis absorption and fluorescent emission spectra in solutions

Due to the existence of typical electron-donatingphenylamine and
electron-accepting cyano group8-CTPAEB andDFB-CTPAEB become typical
D-A molecules, and it offers ready ICT processhase two molecules [18d,19a].
Since photophysical properties of the D—A conjugaite solutions are strongly
dependent on the solvent polarity, we thus examthedabsorption and emission
properties of both compounds in varying solventead ahe corresponding
photophysical data were collected in Table S1 addAS shown in Fig. 1a, each
compounds displayed two intense absorption bans, ane that located at
approximatelyl < 360 nm was attributed to thes* transition delocalized along
the n-electronic system, while the other absorption bearthing from 380 nm to
550 nm with a high molar extinction coefficient {1a™* cm*) was assigned to the
intramolecular charge transfer (ICT) transitionnfrelectron rich triphenylamine
units to the dicyanovinylbenzene segments, it can donfirmed by the
solvent-dependent absorption spectra, which blifeedhslightly with increasing

solvent polarity. For example, the ICT bandg=8-CTPAEB and DFB-CTPAEB



emerged at 450 nm and 461 nm in cyclohexane, areddfiifted to 435 nm and 436
nm in DMF, respectively (Table S1 and S2). The &bplkenomenon might be due
to the less conjugation degree of the compoundgteesfrom a larger dihedral
angle in more polar solvents [11d, 20].

The emission spectra 6B-CTPAEB and DFB-CTPAEB in different solvents
showed obvious positive solvatochromicity properifeig. 1¢ and d, Table S1 and
S2). In nonpolar cyclohexane, the two compoundddcemit green and yellow
lights located at 540 nm and 556 nm, respectiaiyg, the emission bands gave the
vibrational structures, which is the LE (locally c#ed) ones [21]. With the
increasing solvent polarity, the emission bands BB-CTPAEB and
DFB-CTPAEB red-shifted significantly. For example, they esdttboth red lights
centered at 624 nm and 642 nm in the moderatelgr piIdiF, respectively, and in
highly polar DMF, the lights that the two compouratsitted were extremely weak
with the emission wavelengths of 658 nm and 667 fire above results are
consistent with the strong ICT character of thevesall relaxed emissive state. The
solvatochromic behaviors ofB-CTPAEB and DFB-CTPAEB can be further
guantitatively described by the Lippert—-Mataga eéque[22]. The Stokes shifta\)
of the two compounds in varying solvents were dated and listed in Table S1
and S2.From the plots ofAv — Af (Fig. S1), we could find that the slopes of the
fitting line for FB-CTPAEB andDFB-CTPAEB were as high as 12546 and 14772,
exhibiting significant solvatochromism effect. Iddition, in the same solvent, the

maximum ICT absorption and emission wavelength&BfCTPAEB is smaller



than that ofDFB-CTPAEB, indicating the ICT degrees of the two compounts i
the excited state increased in a sequen¢BeC TPAEB < DFB-CTPAEB [19,23].
The fluorescence quantum yield®:Y of FB-CTPAEB and DFB-CTPAEB in
different solvents are also determined by usingigei sulfate ¢; = 0.546, 0.5 mol
L H,SQ,) as the standard (Table S1 and S2). Thef the two compounds in
solution decreases from 0.328 and 0.270 (cyclohsxan 0.131 and 0.104
(chloroform) and less than 0.001 (DMF), respecyivalhich is consistent with a
positive solvatokinetic effect [11dEB-CTPAEB and DFB-CTPAEB show weak
fluorescence in highly polar solvents due to thst faterconversion from the
emissive LE state to the low emissive ICT stateydacer, they exhibit much

stronger emission in nonpolar solvents due toiptstt ICT transitions.
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Fig. 1 Normalized UV-vis absorption spectra &B-CTPAEB (a) and
DFB-CTPAEB (b), and normalized PL spectraeB-CTPAEB (c, Aex = 450 nm)
andDFB-CTPAEB (d, Aex = 465 nm) in different solvents (1.0 x 1ol LY.



To reveal the influence of the geometric and etettr structures of
FB-CTPAEB andDFB-CTPAEB on their photophysical properties, we performed
density functional theory (DFT) calculations on th&o cruciforms with the
Gaussian 09W program using the DFT/B3LYP/6-31G(dyethod. Fig. 2 shows
the optimized molecular configuration and the etattistribution of the HOMOs
and LUMOs forFB-CTPAEB andDFB-CTPAEB. Obviously, the overall electron
density of theHOMOs of FB-CTPAEB and DFB-CTPAEB is mainly localized on
the electron-donating triphenylamine frameworks,erglas the overall electron
density of LOMOs of the two compounds is distrilslten the electron-accepting
dicyanovinylbenzene fragments. Generally, suchtelecdistribution imparts the
dye molecules with an intrinsic ICT property, whislconsistent with the measured
photophysical data. Furthermore, the above themaetalculation results illustrate
thatFB-CTPAEB andDFB-CTPAEB adopt a twisted spatial conformation at their
optimized lowest energy states. FB-CTPAEB, both the dihedral angles between
two vinyl planes and the central benzene are °300d both dihedral angles
between two side benzene rings and the central ame45.8 In the case of
DFB-CTPAEB, the corresponding dihedral angles are 3arfl 46.7, respectively.
The reason for such large twist angles is thatctioevding in the central benzene
ring forces the surrounding substituents to didrorn the ring plane. The specially
twisted conformation of the two cruciforms woulddeto effective depression of
molecular closer— packing and enhancement of emission quantum yialdlse

solid state, which may endow the two compounds witB characteristics and



MFC behavior.
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Fig. 2 The calculated HOMO and LUMO density mapd aptimized molecular
geometry ofFFB-CTPAEB andDFB-CTPAEB at the B3LYP/6-31G(d) level.

3.3. Aggregation-induced enhanced emission (AlEE)

Keeping in mind the reports and our design strategy constructing molecular
framework with large twisted conformation may cdmite to interesting AIEE
behavior, we explored the AIEE properties&-CTPAEB andDFB-CTPAEB by
measuring their absorption and PL spectra in ditobetures of water—THF with
different water fractions f(, the volume percentage of water in THF-water
mixtures). The absorption spectra BB-CTPAEB and DFB-CTPAEB in the
THF/water mixtures are depicted in Fig. 3, whicbwsh that the spectral profiles of

the two compounds are significantly changed whewas above 50%, the whole



absorption spectra start to increase, indicatirg fdtrmation of nano-aggregates.
The aggregated particles obtained are charactebgedynamic light scattering
(DLS) and shows the existence of nano-aggregatéseasmain constituent in the
solvent mixtures with high water contents (Fig. &%l S3). The emergence of the
increase in absorbance and levelling-off tail ia thsible region of the absorption
spectra originates from the light scattering, oreMiffect, of the nanoaggregate
suspensions in the solvent mixtures, which effetyivdecreased the light
transmission in the mixture [19a]. As shown in Fi4. FB-CTPAEB and
DFB-CTPAEB show switched emission in THF—water mixture soksi with f,
which directly elucidates the AIEE process. In puk¥, the weak reddish orange
and red emission for the two compounds with,x at 625 nm and 643 nm,
respectively, was observed. However, thkjis only 0.062 and 0.027. When the
proper amount of water is added into THF solutibe, PL intensities are gradually
guenched and the emission peaks show red-shltis.is because the addition of
water significantly increases the polarity of thexed solventwhich induces the
guenching of fluorescence and the red-shifts ofetméssion band of the two D-A
type compounddMeanwhile, wherf,, is over 50%, the emission peaks of the two
luminogens are recovered and the PL intensitiest dta increase rapidly,
respectively, at which solvating powers of the migs are so poor that the
luminogen molecules tend to aggregate, inside wlhieh encapsulated the two
luminogen molecules locate in a nonpolar environmemd the ICT process is

limited, thus the fluorescence is recovered. Wiigns increased to 95%, the



emission of solutions further blue-shifts to 603 and 618 nm, whose intensities
increase by ca. 3.5-fold and 5.5-fold relative hose of in pure THF solutions,
respectively, the bright orange and reddish ordigpg emitting for FB-CTPAEB
and DFB-CTPAEB is observed for the aggregates. The changes imablose
fluorescence spectra could be attributed to the EAKifect derived from the
formation of molecular aggregates when adding waiehe solution. The AIEE
nature ofFB-CTPAEB andDFB-CTPAEB can also be further confirmed by the
vivid contrast fluorescent images of the solventtores from 0% to 95% (insets of
Fig. 4b and d). To quantitatively evaluate the AlEfect of FB-CTPAEB and
DFB-CTPAEB, the fluorescence quantum yields of the luminogersolution (s s)
and as prepared soliddf,,) states are determined. Th®raps values for
FB-CTPAEB and DFB-CTPAEB (0.693 and 0.442) were much higher thin
(0.062 and 0.027), further suggesting the AIEE binaof the two compounds.
Thus, we could get the AIEE factorsaee = ®rapd®Prs) of FB-CTPAEB and

DFB-CTPAEB as 11.3 and 16.4, respectively.
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THF/water mixtures with differerf,.
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Fig. 4 PL spectra dfB-CTPAEB ((a), 2ex = 450 nm) andFB-CTPAEB ((C), Aex
=470 nm) in THF/water mixtures with differefgt Plot of I/l versus water fraction
of FB-CTPAEB (b) and DFB-CTPAEB (d), where | andl represent the PL
intensities in a THF/water mixture with a specifjcand in pure THF, respectively.
The insets of b and d depict the fluorescence imagieFB-CTPAEB and
DFB-CTPAEB with various water fractions (from 0% to 90%, eation

wavelength: 365 nm), respectively.

3.5. Mechanofluorochromic (MFC) properties

Generally, the fluorophores that possess the Adufe, ICT characteristics, and
twisted spatial conformation may show mechanochcolmminescence [12,19].
Herein, FB-CTPAEB and DFB-CTPAEB are greatly anticipated to be
mechanochromic active. Thus, the mechanochromicpepties of the two
compounds are studied. As shown in Fig. 5¢ anchd,as-prepared samples of
FB-CTPAEB and DFB-CTPAEB could emit intense yellow and reddish orange

light under UV irradiation, and both their emittimglors changed into red when



they are ground in a mortar or on a quartz sulestogtt using a pestléndicating
obvious mechanochromic behavior of the two fluomek. PL spectra are used to
monitor such a color transformation under grindstighuli. As dispicted in Fig. 5a
and b, the emission of the as-prepaf@CTPAEB andDFB-CTPAEB samples
was located at 574 nm and 593 nm, and red-shiéteg26 nm and 639 nm in the
ground powders, respectively. It means that thedgng treatment induces spectral
red-shifts of 52 nm and 46 nm for the two compounds excellent
mechanochromic material usually exhibits good reté changes in color and
emission. To check theversibility of the mechanochromic phenomenon olese
for the powders ofFB-CTPAEB and DFB-CTPAEB, we treat their ground
samples byuming with DCM vapor. The red emitting ground paawsl of the two
fluorophores could be transferred into yellow aeddish orange emitting solids,
respectively, similar to the as-prepared solid&erauming with DCM for 2 min.
Meanwhile, their corresponding maximum emission el@ngths return to 578 nm
and 598 nm, respectively. The obtained resultcatdithe good reversibility of the
mechanochromic fluorescence f6B-CTPAEB and DFB-CTPAEB. Moreover,
the grinding-fuming fluorochromic process could lepeated many times without
any fatigue, suggesting the excellent reversibilitythe switching processes (Fig.

s4).
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Fig. 5 (a) Normalized fluorescent spectraF¥-CTPAEB (a) andDFB-CTPAEB

(b) in different solid-states: as-prepared, grigdiand fuming Xex = 390 nm).
Photographs oFB-CTPAEB (c) andDFB-CTPAEB (d) in different solid states
under UV light (365 nm).

Generally, the emission behavior of solid emittdepended on the molecular
packings. Thus, to gain further insight into the Mphenomenon, the powder X-ray
diffraction (PXRD) patterns fofFB-CTPAEB andDFB-CTPAEB in different solid
states are measured. As shown in Fig. 6, it isrdlea the as-prepared solids of
FB-CTPAEB andDFB-CTPAEB exhibit many sharp and intense diffraction peaks,
indicative of the crystalline forms. By sharp cast; the corresponding ground
powders show very weak, broad, diffused or no aiffion peaks, indicating most of
the ordered structures are disrupted, and the diised molecular packing or
amorphous samples are obtained. Moreover, whendumign DCM vapor, sharp
diffractions, similar to those of the as-preparelids, emerge again, because of the
transformation from an amorphous state back toystalline state. Therefore, the
mechanochromism oFB-CTPAEB and DFB-CTPAEB originates from the

transformations between the ordered crystallineaandrphous states. It is a general



mechanism for many other mechanochromic compouvidszover, we believe that

the large red-shifts oFB-CTPAEB and DFB-CTPAEB after the external force

applied to the as-prepared samples might come fhenconformational change and

rotate to a position more parallel to the coplamader external pressure, leading to

extended conjugation and subsequent planar intesmalalr charge transfer (PICT)

[18d], which can be confirmed by the UV-vis absmmptspectra of as-prepared and

ground samples (Fig. 7). The as-prepared samplesFRICTPAEB and

DFB-CTPAEB exhibit strong absorption peaks at 444 nm and dBf after

grinding, they red-shift to 449 nm and 450 nm, dating the extension of

n-conjugation after grinding [5c].
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Fig. 6 PXRD patterns oFB-CTPAEB (a) andDFB-CTPAEB (b) in different

solid-states: as-prepared, grinding and fuming.
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FB-CTPAEB (a) andDFB-CTPAEB (b), respectively.



4. Conclusion

In summary, we have demonstrated the moleculargdessynthesis, and
properties of two twisted donor—acceptor crucifduminophoresFB-CTPAEB
andDFB-CTPAEB, and studied the impact of molecular structur@lootophysical
properties from the perspective of electronic ataics effects.FB-CTPAEB and
DFB-CTPAEB possess highly distorted spatial conformation sigaificant ICT
process from  electron-rich  triphenylamine unit to lec&on-poor
dicyanovinylbenzene fragment. The two cruciform iliophores show typical
AIEE behavior with high solid state efficiency of603 and 0.442, respectively.
Moreover,FB-CTPAEB andDFB-CTPAEB exhibit high contrast MFC properties
with good reversibility. Under external force stiimwboth yellow and reddish
orange emitting as-prepared powders of the twordiploores could be transferred
into red emitting solids. The increase in molecu@njugation caused by
planarization of molecular conformation and subsetjlPICT process lead to the
red-shifts in the PL spectra from 574 nm and 593 ton%26 nm and 639 nm,
respectively. All these excellent properties make tcompounds promising
stimuli-responsive, smart, luminescent materiatsni@chanical sensors, rewritable
record media, security protection and light-emgitdevice applications.
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Table S1 Photophysical data 6B-CTPAEB in different solvents.

solvent Af Aandnm /M cmi®) AenfNM | Avedomt o

cyclohexane ~0 307 (54300), 450 (53600) 540 3704 0.257
toluene 0.014 302 (50400), 452 (49800) 571 4611 0.162
chloroform 0.149 303 (53600), 450 (48600) 602 5611 0.131
ethyl acetate |  0.201| 300 (51800), 436 (45300) 618 6755 0.070
THF 0.210 301 (52100), 441 (45900) 624 6650 0.062
DCM 0.218 | 300 (53100), 442 (47300) 628 6701 0.082
DMF 0.275 300 (50000), 435 (40900 658 7791 0.002

#AVst = VabsVem ®The fluorescence quantum yield was measured using quinine sulfate as a

standard @; =0.546 in 0.5 mol [* H,SOy).

Table S2 Photophysical data @FB-CTPAEB in different solvents.

solvent Af Aandnm /M cmi®) AenfNM | Avedomt o
cyclohexane ~0 | 304 (46100), 461 (48800) 556 3706 0.219
toluene 0.014 298 (45600), 460 (44500) 591 4819 0.128
chloroform 0.149 301 (48000), 458 (42500) 616 5600 0.104
ethyl acetate |  0.201| 302 (51600), 443 (45200) 636 6850 | 0.031
THF 0.210 | 301 (49000), 444 (42600) 642 6946 0.027
DCM 0.218 | 297 (58200), 447 (50300) 642 6795 0.035
DMF 0.275 300 (50200), 436 (41900 667 7943 0.001

#AVst = VabsVermn ®The fluorescence quantum yield was measured using quinine sulfate as a

standard @; =0.546 in 0.5 mol ' H,SOy).
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Fig. S3DLS data oDFB-CTPAEB (1.0x10° mol L) in THF/water {,= 95%).
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Fig. S4Maximum fluorescent emission 6B-CTPAEB (a) andDFB-CTPAEB (b)
upon repeating treated by grinding and fuming \iitBM.
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Fig. S5'"H NMR (400 MHz) spectrum da.



190.493
143.569
130.905
136.565

76,995

77313
=

76877

[ T T T T T T

200 150
ppm (t1)

Fig. S6°C NMR

T T T T T T T T

100

(100 MHz) spectrum &a.

Data: 1-W36-no matrix-ref-neg0001.J13][c] 3 Jan 2019 17:31 Cal: tof 3 Jan 2019 17:29
Shimadzu Biotech Axima Performance 2.9.3.20110624: Mode Reflectron_HiRes_neg, Power: 55, Blanked, P.Ext. @ 500 (bin 48)
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Fig. STMALDI/TOF MS spectrum of3a
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Fig. S9°C NMR (100 MHz) spectrum @b.



Data: 1-W35-no matrix-ref-neg0002.J11[c] 4 Jan 2019 9:18 Cal: tof 4 Jan 2019 9:14
Shimadzu Biotech Axima Performance 2.9.3.20110624: Mode Reflectron_HiRes_neg, Power: 58, Blanked, P.Ext. @ 500 (bin 48)
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Fig. SIOMALDI/TOF MS spectrum of3h.
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Fig. S11'"H NMR (400 MHz) spectrum dfB-CTPAEB.
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Fig. S12*°C NMR (100 MHz) spectrum dfB-CTPAEB.

Data: 1-W23-no matrix-ref-pos0001.J5[c] 3 Jan 2019 16:42 Cal: tof 3 Jan 2019 16:37
Shimadzu Biotech Axima Performance 2.9.3.20110624: Mode Reflectron_HiRes, Power: 50, Blanked, P.Ext. @ 1000 (bin 57)

%dnt. 25 mV[sum=225 mV] Profiles 1-9 Smooth Gauss 2 -Baseline 6
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Fig. S13MALDI/TOF MS spectrum oFB-CTPAEB.




Data: 1-W23-no matrix-ref-pos0001.J5[c] 3 Jan 2019 16:42 Cal: tof 3 Jan 2019 16:37
Shimadzu Biotech Axima Performance 2.9.3.20110624: Mode Reflectron_HiRes, Power: 50, Blanked, P.Ext. @ 1000 (bin 57)
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: 955.1653
100

956.1987

957.2081

101 9582311

—_— PR N L /) TR STt ST

o8 99 90 951 952 953 94 955 956 957 958 950 960 96l 962 963 964 965 966
niz

.

Fig. S14MALDI/TOF MS spectrum oFB-CTPAEB.
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Fig. S15"H NMR (400 MHz) spectrum ddFB-CTPAEB.
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Fig. S16°C NMR (100 MHz) spectrum ddPFB-CTPAEB.
Data: 1-W21-no matrix-ref-pos0001.J3[c] 3 Jan 2019 17:15 Cal: tof 3 Jan 2019 16:48
Shimadzu Biotech Axima Performance 2.9.3.20110624: Mode Reflectron_HiRes, Pover: 68, Blanked, P.Ext. @ 1100 (bin 60)
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Fig. S17MALDI/TOF MS spectrum oDFB-CTPAEB.



Data: 1-W21-no matrix-ref-pos0001.J3[c] 3 Jan 2019 17:15 Cal: tof 3 Jan 2019 16:48
Shimadzu Biotech Axima Performance 2.9.3.20110624: Mode Reflectron_HiRes, Pover: 68, Blanked, P.Ext. @ 1100 (bin 60)
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Fig. S1I8MALDI/TOF MS spectrum oDFB-CTPAEB.




Highlights for

Reversible solid-state mechanochromic luminescenagiginated from
aggregation-induced enhanced emission-active  Donokeceptor

cruciform luminophores containing triphenylamine

Ying Wang, Dandan Cheng, Hongke Zhou, Xingliang,LiMonghui Wang, Aixia
Han, Chao Zhang

1. Two twisted donor—acceptarconjugated cruciform luminophores showing unique
ICT properties were prepared.

2. The two cruciform luminophores displayed aggtiegainduced emission
characteristics and high solid state efficiency.

3. They possessed high contrast mechanofluorochrobghavior with good

reversibility.



