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Novel Green-Yellow-Orange-Red Light

Emitting Donorf-Acceptor Type Dyes Based
on 1,3-Indandione and Dimedone moieties

llze Maling"", Valdis Kampard Baiba Turovsk&’, Sergey Belyakdi

aRiga Technical University, Institute of Applied Chemistry, Paula Valdena Str. 3, Riga, LV-1048,
Latvia
PL_atvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia

Abstract

Ten novel luminescent dyes containing 1,3-indaneliar dimedone as
electron acceptors, amino derivatives (dimethylamaiphenylamino, julolidine and
dibiphenylamino) as electron donor units and d#ferlength olefinic linkers (1-
hydroxyallylidene or 1-hydroxypenta-2,4-dien-1-@ite) are reported in this study.
Newly synthesized compound structures are proveh Wiray analysisH-, *°C-
NMR spectroscopy and elemental analysis. The UV-¥Issorption, emission,
solvatochromism, solvatofluorochromism, redox prape, as well as thermal
stabilities and quantum chemical calculations aésth dyes were systematically
investigated to outline relation between structamnel properties. These dyes exhibit
moderate thermal decomposition temperatures abo0® 2C, insignificant
solvatochromism and positive, significant solvaiofochromism, large Stokes shifts
and green, yellow, orange and red light emissiai wuantum yields in range from
0.03-0.93 in non-polar solvents and in thin films.

Quantum-chemical calculations (DFT) shows, that dyles exhibit small
HOMO/LUMO gaps from 2.77 to 3.22 eV, which is inregment with experimental

data.

*corresponding author
E-mail adress: malina.ilzel@gmail.com (I.Malina)
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Keywords: DitA dyes; 2-cinnamoyl-1,3-indandione, 2-cinnamoylddone,
fluorescent dyes, amino donors, positive solvatwtiahromism.

1. Introduction

Among many types of fluorescent organic material@mpounds withte
conjugated system between electron donor (D) aectreh acceptor (A) have been
intensively investigated and found applicationss@veral fields, including medicine
for fluorescent markers [1], photovoltaic technaésgfor dye-sensitized solar cells [2]
and optoelectronic devices for example, in orgéiglt emitting diodes (OLEDS) [3-
6], which can be utilized in full-color flat-panélisplays for mobile phones and
television. The main advantage for compounds wHIER structure is the variety of
donor, acceptor ant-bridge groups, which allows to adjust the fluosrgcmaterial
desirable properties, for example emission coltie Tommonly investigated B-A
compounds consist oN,N-dialkyl, N,N-diphenyl substituted anilines [3-9]\-
substituted carbazoles [8] as D parts and dicyatioyleme pyran [3,6,10],
dicyanomethylene furan [11], pyridine [8,12] andhbethiadiazole [13] as electron A
groups. As for thetbridge, it is possible to use olefinic linkers,cBuas vinyl or
butadienyl fragments [8,10] or different cyclic Kers as thiophene bridge [14].
However, there are not a sufficient data in therditure about comprehension of
organic compound structure-luminescence propertiatio@ship, which would
facilitate new suitable material derivation. Soredges deals with the comparison of
different donor [3,4,9], acceptor [14] group wrlinker length [14,15] effect on
luminescence properties, however continuous worlriderstand structure-property
relationships is necessary.

2-Acyl-3-diketones, for example, 2-acetyl-1,3-indandione  02-

acetyldimedone containing three electron withdrawéarbonyl groups are excellent
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starting materials for DeA luminophores. These compounds easily react dolal
condensation reactions with electrophiles, thusnfog compounds with extending
conjugation system. The most interesting are tlaeelyl{3-diketone condensation
with aromatic aldehydes, which results in 2-cinnghf®diketone compounds, but
only a few studies deal with the investigationtddit physical and chemical properties
[16-21]. Continuing our previous research work alamrivatives of 2-cinnamoyl-1,3-
indandione O-methyl ethers [22], we investigate Heminophores on the basis of
two well-known cyclicp-diketones - 1,3-indandione and dimedone. Thesepaoc
units are linked to various amino donord;N-dimethyl (N(Me}) andN,N-diphenyl
(N(Ph)), N,N-dibiphenyl (N(BPhy) and julolidine through different length of olefin
linkers, such as 1-hydroxyallylidene or 1-hydroxyfae2,4-dien-1-ylidene. Our goal
IS to examine structure-property relationship adst luminophores to gain clearer
understanding of howrebridge length, different donor and acceptor umtkiences
the thermal, electrochemical, absorption and flsceat properties. DFT calculations
were performed to gain understanding about elerastructures of newly
synthesized compounds.

2. Experimental
2.1. Materials and instrument

All chemicals used in synthesis and analysis amangercially available and
are used without further purification unless othisenstated. ThéH- and**C-NMR
spectra were recorded in CQGblutions on a Bruker Avance 300 MHz spectrometer
at 300 MHz for'H- and 75 MHz for*C- nuclei. Chemical shifts were expressed in
parts per million (ppm) relative to solvent sign@he IR spectra in the range from
4000 to 650 cmwere recorded on a Perkin-Elmer Spectrum 100 Fpittsometer

using KBr pellets. Elemental analyses were performa Euro Vector EA 3000
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analyzer. Thermal properties were determinated oRe&kin Elmer STA 6000
instrument. Each sample was heated from 30<85With heating rate 10C/min in
nitrogen atmosphere. The purity of prepared organmpounds was established on
Waters 2695 HPLC using Waters 2996 Photodiode atidyVis detector. The
chromatographic analyses were performed using XleiS C18 (fum 2.1x100
mm) column, 50% Acetonitrile/0,1% formic acid sadut as mobile phase and flow
rate 0.2 ml/min. Low resolution mass spectra werquaed on a Waters EMD
1000MS mass detector (ESI+ mode, voltage 30 V).OYeVis absorption spectra of
all compounds in solutions and in thin films wekgared using Perkin-Elmer 35
UV/Vis spectrometer. Emission spectra in solutiand in thin films were measured
on QuantaMaster 40 steady state spectrofluoromdinoton Technology
International, Inc.). Absolute photoluminescencargum yields in solutions and in
thin films were determined using QuantaMaster 4ady state spectrofluorometer
(Photon Technology International, Inc.) equippedhvwd inch integrating sphere by
LabSphere. The cyclic voltammograms were recordesingu a computer
controlled electrochemical system PARSAT 2273. Tineasurements were carried
out using a three-electrode cell configuration.tiSteary glassy carbon disk (@ 0.5
cm) was used as a working electrode, Pt wire -naawiliary electrode. Potentials
were measureds saturated calomel electrode (SCE) and recalculasedormal
hydrogen electrode (NHE). The potential scan raas %00 mV/sec. Electrochemical
redox reactions were studied in 0,1 M tetra butylemium tetrafluorophosphate
(TBAPFg) solution in acetonitrile under Ar atmosphere. 8ign functional theory
(DFT) has been performed using ORCA program [28] @aussian 09 [24] package.
For auxiliary tasks Avogadro program [25] was usBge geometry optimization of

all compounds were obtained using non-local fumeidB3LYP with 6-311G** [26]



105 basis set. Diffraction data was collected on a Bruker-NoniusapigaCCD
106  diffractometer using graphite monochromated Mo-tédiation 1»20.710731&). The
107  crystal structure was solved by direct methods @7 refined by full-matrix least
108  squares [28] using maXus complex of programs [29ystal data or compouritb:
109  monoclinic, a=12.6089(2), b=10.5952(2), c=25.3021(5) A; p=104.0991(8) °;
110 V=3278.33 (10) A z=8, u=0.09 mm*; d.a=1.270 g/cmi; space group P2:/a. For
111  structure refinement 5716 independent reflectioitl 1#25(1) were used; the find®-
112 factor is 0.137.

113
114  2.2. Synthesis

115 2-Acetyl-1,3-indandione 8) was synthesized as described in the literature
116  [30], 2-acetyldimedone9} as in [31], 4-(bis(4-iodophenyl)amino)benzaldedy@)

117  and 4-(di([1,1-biphenyl]-4-yl)amino)benzaldehyd® &s in [32]. Synthesis of starting
118 materials3, 7 are shown in Scheme 1 and in Scheme 2 the systloésDtA

119 compoundd41-20 are depicted.

120  2.2.1. Synthesis of (E)-3-(4-(N,N-dimethylamino)phenyl)acrylaldehyde (3)
121 A mixture of 4N,N-dimethylaminobenzaldehyd&)((5.00 g, 34 mmol) and 25

122 ml concentrated sulfuric acid was cooled t830 Then 1 ml distilled water was added
123  slowly. The solution was cooled tc°G and acetaldehyd@)((5.6 ml, 102 mmol) was
124  added dropwise. During the addition temperatureeattion mixture was not allowed
125 to exceed 2C. After that dark colored reaction mixture wasret at 0°C for 0.5 h
126  and then poured into ice water and neutralized Wi$ NaOH solution until pH 7.
127  The obtained brown solution was filtered and crpaEluct was washed with distilled
128  water, crystallized from ethanol twice to give ayarsolid. Yield: 56%, m.p.=134-136

129 °C. FT-IR (KBr, cm): 2921, 2801, 2738, 1662, 1599, 1527, 1456, 13AMR
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(300 MHz, CDC}, ppm): &= 9.62 (1H, d,J=7.5 Hz), 7.48 (2H, dJ=7.5 Hz), 7.41
(1H, d,J=13.1 Hz), 6.71 (2H, d}=7.5 Hz), 6.57 (1H, dd)=7.5 Hz, 13.1 Hz), 3.08

(6H, ). MS (GiH1NO), mVz: 176.2 (M).
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(0) %
(@)
+ )J\H
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Scheme 1. Reagents and condition®) — concentrated $$0;,, 0°C, 0.5 h; 10% NaOHb)
Kl, KlO3;, (CH;COO)0, 80°C, 4 h.(c) — 2M NgCOs, Pd(PPBH)4, dry toluene, 80C, 24 h.

2.2.2. Synthesis of derivatives of 2-cinnamoyl-1,3-indandiones (11-15)

To 2-acetyl-1,3-indandion& (1.88 g, 10 mmol) and corresponding derivative
of benzaldehydel,3,4,7,10 (10 mmol) piperidine (5 mmol) was added. Reaction
mixture was refluxed at 11TC for 4 hours, then it was cooled to 8D and 8 ml of
ethanol was added. Solution was boiled for 30 nesuand after cooling, the formed
crystals were filtered off and washed with ethafsbducts were recrystallized from
CH.Clyand EtOH mixture.
(E)-2-(3-(4-(N,N-dimethylamino)phenyl)-1-hydroxyallylidene)-1H-inoke 1,3(2H)-
dione (1), purple crystals, Yield 67%, m.p.=210-211 °C. IR[-(KBr, cm): 3019,
2904, 1698, 1631, 1588, 1567, 152B-NMR (300 MHz, CDC}, ppm): 5=13.30
(1H, s), 7.93 (1H, dJ=15.0 Hz), 7.88-7.78 (2H, m), 7.80 (1H, ¥15.0 Hz), 7.73-

6



149  7.67 (2H, m), 7.65 (2H, dI=7.5 Hz), 6.81 (2H, dJ=7.5 Hz), 3.10 (6H, s)*C-NMR
150 (75 MHz, CDC}, ppm): 5=197.31, 189.01, 174.35, 152.52, 146.30, 140.98,763
151  134.31, 133.51, 131.40, 122.67, 122.07, 111.83,480@10.23. MSy)vVz 320.2 (M),
152  318.2 (M). Anal. Calcd. (%) for gH1/NOs: C, 75.22; H, 5.37; N, 4.39; found: C,
153  75.22; H 5.33; N, 4.31.

154  (E)-2-(3-(4-(N,N-diphenylamino)phenyl)-1-hydroxyallylidene)-1H-inue 1,3(2H)-

155  dione (12), purple crystals,Yield 60%, m.p.=220-222 °C. R-(KBr, cni®): 3049,
156 3033, 1696, 1632, 1617, 1548, 1504, 1483:NMR (300MHz, CDC}, ppm):
157  8=13.25 (1H, s), 7.90 (1H, d=13.5 Hz), 7.85-7.80 (3H, m), 7.75-7.66 (2H, mp57.
158  (2H, d,J=7.5 Hz), 7.37-7.32 (4H, m), 7.20-7.13 (6H, m),47(@H, d,J=7.5 Hz).}*C-
159 NMR (75 MHz, CDC4, ppm): 8=197.59, 188.83, 173.92, 151.01, 145.30, 145.00,
160 139.10, 138.85, 133.80, 133.50, 130.30, 129.61,0026124.58, 122.50, 122.06,
161 120.90, 114.73, 107.33. MB{z 444.2 (M), 442.3 (M). Anal. Calcd. (%) for
162  CgzoH21NOs: C, 81.25; H, 4.77; N, 3.16; found: C 81.64; HB4.N, 3.54.

163  (E)-2-(3-(1,2,3,5,6,7-hexahydropyrido[3,2,1-ijJquinckayl)-1-hydroxyallylidene)-
164  1H-indene-1,3(2H)-dion€lB), dark green crystals, Yield 50%, m.p.=225-226 FT-
165 IR, (KBr, Cm'l): 3014, 2939, 2843, 1693, 1627, 1567, 1543, 18483. 'H-NMR
166  (300MHz, CDC}, ppm):3=13.25 (1H, s), 7.84 (1H, d=14.3 Hz), 7.82-7.76 (2H, m),
167  7.69 (1H, dJ=14.3 Hz), 7.67-7.61 (2H, m), 7.20 (2H, s), 3.3H,(4 J=2.6 Hz), 2.78
168 (4H, t, J=2.6 Hz), 1.99 (4H, quint)=2.6 Hz).*C-NMR (75 MHz, CDC}, ppm):
169 0=197.51, 189.00, 174.58, 147.30, 147.00, 140.80,008 133.93, 133.54, 129.70,
170  122.30, 122.20, 122.00, 121.95, 110.00, 106.3@®BR7.10, 21.35. MSyWz 372.4
171 (M"). Anal. Calcd. (%) for gH2:NOs: C, 77.61; H, 5.70; N, 3.77; found: C, 77.62; H,

172 5.72; N, 3.99.



173 (BE)-2-(3-(4-(N,N-di([1,1'-biphenyl]-4-yl)amino)phenyl)-1-hydroxyslldene)-1H-

174  indene-1,3(2H)-dione14), dark red solid, Yield: 40%, m.p.=202-20%. FT-IR
175 (KB, Cm'l): 3063, 3027, 1700, 1622, 1584, 1558, 1505, 148NMR (300 MHz,
176 CDCl;, ppm):8=13.28 (1H, s), 7.96-7.83 (4H, m), 7.73-7.66 (3B, M73-7.69 (2H,
177  m), 7.64-7.58 (10H, m), 7.50-7.45 (4H, m), 7.37 (2HJ=6.0 Hz), 7.30-7.27 (4H,
178 m), 7.16 (2H, dJ=6.0 Hz).*C-NMR (75 MHz, CDC}, ppm): 5=197.39, 188.73,
179  173.65, 150.57, 145.69, 144.83, 141.05, 140.33,8138137.38, 134.65, 133.81,
180 130.66, 128.85, 128.23, 127.95, 127.23, 126.84,4822122.08, 121.58, 114.96,
181  107.26. MSm/z 596.3 (M), 594.6 (M). Anal. Calcd. (%) for GH»oNOs: C, 84.68;
182  H, 4.91; N, 2.35; found: C, 84.23; H, 4.92; N, 2.52

183  2-((2E,4E)-5-(4-(N,N-dimethylamino)phenyl)-1-hydroxypenta-2,4-dien-idghe)-

184  1H-indene-1,3(2H)-dionelb), purple solid, Yield: 30%, m.p.=230-23C. FT-IR
185  (KBr, cm™): 3017, 2913, 2903, 2821, 1690, 1634, 1618, 15322, 1554, 1522H-
186 NMR (300MHz, CDC4, ppm): 3=13.19 (1H, s), 7.85-7.78 (2H, m), 7.73-7.66 (3H,
187 m), 7.45 (2H, dJ=7.5 Hz), 7.40 (1H, d}=13.5 Hz), 7.06-6.92 (2H, m), 6.70 (2H, d,
188 J=7.5 Hz) 3.09 (6H, s)*C-NMR (75 MHz, CDC}, ppm):d=197.41, 188.82, 173.72,
189  151.51, 147.30, 144.83, 140.93, 138.82, 134.43,6133129.61, 124.02, 122.98,
190 122.34, 121.88, 118.01, 112.01, 106.63, 40.15. M8, 346.3 (M), 344.3 (M).
191  Anal. Calcd. (%) for @H19NOs: C, 76.50; H, 5.54; N, 4.06; found: C, 76.45; th4%
192 N, 4.20.

193  2.2.3. Synthesis of derivatives of 2-cinnamoyl-1,3-dimedones (16-20)

194 Compoundsl6-20 were synthesized by same procedure as for compgdind

195 15, except 2-acetyldimedon8)(was used instead of 2-acetyl-1,3-indandi@)e (

196  (E)-2-(3-(4-(N,N-dimethylamino)phenyl)-1-hydroxyallylidene)-5,5-
197  dimethylcyclohexane-1,3-dion&®), pink crystals, Yield 56%, m.p.=154-186. FT-

8
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IR, (KBr, cmi®): 3093, 2957, 2923, 2866, 2807, 1647, 1612, 15882, 1280, 1160.
'H-NMR (300 MHz, CDC}, ppm): 3=8.17 (1H, d,J=15.0 Hz), 8.00 (1H, d}=15.0
Hz), 7.60 (2H, dJ=6.4 Hz), 6.69 (2H, dJ=6.4 Hz), 3.08 (6H, s), 2.56 (2H, s), 2.44
(2H, s), 1.11 (6H, s)*C-NMR (75 MHz, CDC}, ppm): 5=201.85, 196.08, 186.76,
152.51, 147.93, 131.50, 122.94, 116.34, 111.7537%349.27, 40.09, 30.42,
28.27.MS,m/z. 314.5 (M), 312.4 (M). Anal. Calcd. (%) for @H2sNOs: C, 72.82; H,
7.40; N, 4.47; found: C, 72.90; H, 7.38; N, 4.41.
(E)-2-(3-(4-(N,N-diphenylamino)phenyl)-1-hydroxyallylidene)-5,5-
dimethylcyclohexane-1,3-diondq), orange crystals, Yield 45%, m.p.=162-1%4.
FT-IR, (KBr, Cm'l): 3099, 3033, 2960, 2949, 2869, 1653, 1602, 13834, 1266,
1173.*H-NMR (300 MHz, CDC4, ppm): =8.20 (1H, d,J=13.7 Hz), 7.95 (1H, d,
J=13.7 Hz), 7.52 (2H, dJ=6.7 Hz), 7.35-7.30 (4H, m), 7.18-7.11 (6H, m),17(@H,
d, J=6.9 Hz), 2.58 (2H, s), 2.44 (2H, s), 1.12 (6H,€E-NMR (75 MHz, CDC},
ppm): 6=201.83, 195.97, 187.12, 150.67, 146.64, 146.315630129.55, 127.89,
125.70, 124.38, 121.08, 119.49, 110.67, 53.27,14%80.45, 28.27. MSi/z: 438.4
(M™), 436.6 (M). Anal. Calcd. (%) for gH,7NOs: C, 79.61; H, 6.22; N, 3.20; found:
C, 79.44; H, 6.27; N, 3.29.
(E)-2-(3-(1,2,3,5,6,7-hexahydropyrido[3,2,1-ijJquimeB-yl)-1-hydroxyallylidene)-
5,5-dimethylcyclohexane-1,3-dion&8], purple solid, Yield 52%, m.p.=186-187 °C
FT-IR, (KBr, Cm'l): 3105, 2940, 2888, 2862, 2837, 1647, 1577, 13389, 1273,
1137.*H-NMR (300 MHz, CDC4, ppm): 5=8.10 (1H, d,J=13.3 Hz), 7.93 (1H, d,
J=13.3 Hz), 7.16 (2H, s), 3.28 (4H,J1.8 Hz), 2.75 (4H, t)=3.5 Hz), 2.54 (2H, s),
2.43 (2H, s), 1.97 (4H, quing=1.8 Hz, 3.5 Hz), 1.10 (6H, s)°*C-NMR (75 MHz,
CDCl;, ppm): 5=201.97, 196.15, 185.95, 148.67, 146.09, 129.22.112 121.06,

114.74, 110.09, 53.31, 50.16, 49.46, 30.49, 28238, 21.29. MSwz 366.3 (M),
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364.5 (M). Anal. Calcd. (%) for &H>/NOs: C, 75.59; H, 7.45; N, 3.83; found: C,
75.48; H, 7.50; N, 3.93.
(E)-2-(3-(4-(\N,N-di([1,1'-biphenyl]-4-yl)amino)phenyl)-1-hydroxyalldene)-5,5-
dimethylcyclohexane-1,3-dion&9), red solid, Yield 31%, m.p.= 221-222 °C. FT-IR,
(KBr, cm™): 3032, 2952, 2869, 1655, 1584, 1486, 1*FOINMR (300 MHz, CDC},
ppm): 5=8.23 (1H, dJ=13.9 Hz), 7.98 (1H, d}=13.9 Hz), 7.64-7.57 (10H, m), 7.49-
7.44 (4H, m), 7.38 (2H, di=6.2 Hz), 7.28-7.26 (4H, m), 7.14 (2H,36.2 Hz), 2.58
(2H, s), 2.45 (2H, s), 1.12 (6H, SFC-NMR (75 MHz, CDC}, ppm): =201.91,
196.04, 187.13, 150.32, 146.20, 145.81, 140.36,0837128.83, 128.35, 128.18,
127.18, 126.83, 125.69, 121.73, 119.75, 110.6275319.01, 30.48, 28.28. M|z
590.6 (M), 588.9 (M). Anal. Calcd. (%) for GiHzsNOs: C, 83.50; H, 5.98; N, 2.38;
found: C, 83.15; H, 5.98; N, 2.43.
2-((2E,4E)-5-(4-(N,N-dimethylamino)phenyl)-1-hydroxypenta-2,4-dien-idghe)-
5,5-dimethylcyclohexane-1,3-dion20j, purple crystals, Yield 52%, m.p.= 166-167
°C. FT-IR, (KBr, le): 3089, 2963, 2944, 2825, 1655, 1584, 1548, 14460, 1146.
'H-NMR (300 MHz, CDC}, ppm): =7.88-7.71 (2H, m), 7.42 (2H, d=6.5 Hz),
7.03-6.88 (2H, m), 6.69 (2H, d=6.5 Hz), 3.05 (6H, s), 2.55 (2H, s), 2.43 (2H, s),
1.10 (6H, s).*C-NMR (75 MHz, CDC4, ppm): 3=202.06, 195.96, 186.35, 151.38,
148.74, 148.69, 144.47, 129.43, 124.10, 123.30,612212.01, 110.37, 53.28, 49.26,
40.19, 30.42, 28.27.MSmz 340.3 (M), 338.5 (M). Anal. Calcd. (%) for
C2o1H2sNOs: C, 74.31; H, 7.42; N, 4.13; found: C, 73.98; BT N, 4.23.

3. Results and Discussion
3.1. Synthesis and characterization of luminophores

Schemes 1 and 2 show synthetic routes of lumin@gdidr20. (E)-3-(4-(N,N-

dimethylamino)phenyl)acrylaldehyd8) was obtained with moderate yield in a single

10
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260

step acid catalyzed aldol condensation betweenaldedtyde 2) and 4N,N-
dimethylaminobenzaldehydel)( It is worth to point out, that other methods for
synthesis of cinnamaladehyde withN-dimethylamino donor irpara position of
phenyl ring includes multiple steps (for example,itty reaction between
benzaldehyde derivative and Wittig reagent, whiliollowed by Vilsmeir reaction
between obtained alkene and Vilsmeir reagent) peesive reagents (for example,
1,3-dioxan-2-yl-tributylphosponium bromide, whichs inecessary in Wittig
oxopropenylation reaction)H-NMR spectra of compoundscharacterizes with large
trans constantd=13.1 Hz) for double bond protons of cinnamoyl niyie

O OH O OH
P PN
= t‘
15

|

O OH
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y O 7. @) \/

|
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O OH/ H_O O OH
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A A e @é
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Scheme 2. Reagents and conditior(g) — piperidine, 100C, 4 h; ethanol, 80C, 0,5 h.
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Aldehyde 7 was obtained in two-step synthesis fronNA-diphenylamino-
benzaldehyde 4). In the first stage the compound was iodinateth WwIOy/KI
mixture and the 4-(bis(4-iodophenyl)amino)benzajdieh (5) was obtained.
Afterwards in Pd(0) catalyzed Suzuki coupling reactbetween compoun8l and
phenylboronic acidg), aldehyder with 61 % yield was synthesized.

All luminophores 11-20 were synthesized through Claisen-Schmidt
condensation reaction between 2-acetyl-1,3-indared8oor 2-acetyldimedon® and
aldehydes1,3,4,7,10 in the presence of 5 mmol piperidirfél-, **C-NMR, FT-IR
characteristics as well as X-Ray analysis dat®foinnamoyl-1,3-indandionekl-13
were reported in our previous work [22].

2-Cinnamoyldimedoned46-20 showed similar characteristics to compounds
11-15. In *H-NMR spectra large coupling constanis13.3-15.0 Hz) were found for
double bond protons of cinnamoyl fragment, indiogitrans configuration for these
compounds. However, to get unquestionable eviddghee,compound46-20 similar
to cinnamoyl-1,3-indandiones exist in exocyclic lefiorm, a single crystal of
compoundl6 was obtained by slow evaporation from saturatedrethsolution for

X-ray analysis.

Table 1
Principal bond lengths in the structu@
Bond Bond length, A
Ci1-01 1.276(7)
Ci1-C2 1.427(7)
C2-C3 1.478(7)
C2-C9 1.433(7)
C3-02 1.218(6)
C9-09 1.309(7)

In accordance with the X-ray diffraction data th&yrametric unit of16
contains two independent molecules, one of theifustrated in Fig. 1. Table 1 lists
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304

the principal bond lengths in molecular structiiée Due to the fact that bond lengths
in two independent molecules are identical witthe errors the arithmetical mean
values are given in the Table 1. X-ray diffractiaita confirms, that derivative of 2-
cinamoyldimedond6 in solid state exist in exocyclic enol form, whishstabilized
by very strong intramolecular hydrogen bond betwearbonyl group oxygen atom
(O1) from dimedone fragment and hydroxyl group (@®-from allylidene fragment.
The hydrogen bond (OH9-09) is characterized with very short bond lengthich

is equal 2.386(7) A (OH9=1.59 A, 01'H9-09=138°) for one of independent
molecules and 2.401(7) A (OH9=1.48 A, O1'H9-09=149°) for the second. Due to
intramolecular hydrogen bond following structurargmeters are presented in the
molecule — bond lengths for C3—-C2 are longer tt@nd1-C2, meaning that bond
C3-C2 has less double bond order. Moreover, comgacarbonyl groups bond
lengths C3-02 and C1-01, the latter ones are sgignily longer, showing more
single bond character. These data lead to concluthat there is extended resonance
system between atoms O1-C1-C2-C9-0O9 stabilizedhbyiritramolecular hydrogen
bond presented in the molecule, similarly thataisweported to the 2-cinnamoyl-1,3-
indandionel3 [22]. Unfortunately, a bad quality of the crysta&does not permit to

provide a detailed analysis of the molecular geoynet

Cs

Ci4

13 ! c1a

Fig. 1. ORTEP drawing of compouri@ with the atom numbering scheme. All
nonhydrogen atoms are drawn as 50% probabilitgsalds.
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305

306 Interestingly, compoun6 does not show any intermolecular hydrogen bonds
307 between molecules, like it was observed for compoi® [22]. Dihedral angles
308 between least-squares planes of dimedone aNdN4limethylaminophenyl moiety
309 are 7.4 and 13.2° for two independent moleculess&lvalues indicate that molecule
310 16 are almost planar.

311
312 3.2. Thermal properties

313 In order to investigate thermal behavior of Iumihopes 11-20,
314 thermogravimetric (TG) analysis were carried outMeen 30 and 550C in nitrogen
315 atmosphere. Table 2 displays decomposition tempest(TEl,) of investigated
316 compounds and TG curves of some luminophores goectdd in Fig. 2. Obtained
317 results from TG analysis indicate, that all 10 dges thermally stable up to 20C.
318 Identical order in the decrease of thermal stabiiépending on donor group was
319 found for both 2-cinnamoyl derivativeéd-14 and16-19 and can be arranged in the
320 following order: N(BPh>N(Ph)>N(Me),>Julolidyl. This sequence indicates that the

321 thermal destruction of compounds begins with therdetion of the donor part.

322 Table 2
323  Thermal and electrochemical properties of compouiez0.

Code  Tsy " °C Eox V Eree, V

11 218 0.80 -1.17
12 283 1.05 -1.07
13 216 0.60 -1.21
14 290 0.98 -1.04
15 238 0.66 -1.04
16 233 0.81 -1.32
17 271 1.07 -1.19
18 219 0.61 -1.36
19 288 0.96 -1.18
20 234 0.67 -1.15
324 & Tsy is temperature of 5% weight loss, respectively.
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Investigation of TG curves also confirms conclusithrat thermal degradation
pattern is influenced by amino donor group. Compglsurwith amino donors
containing alkyl chains, julolidine shows lowegyvalues than those with phenyl or
biphenyl groups. Compoundsl, 13,15 as well asl16,18,20 starts to decompose at
[215-230° C and the first possible volatile fragnseate the alkyl chains on the
nitrogen atom. The alkyl chain replacement withmte&ings leads to increasegqJ
(270-290 °C), similar observations was reportedticyanovinyldinydrofuran Dr-A

dyes with different amino donors [33].

100 = 100
™

NS
| N

50 | ——13 —14

9 |
80
70
60

Weight loss , %
2
Weight loss, %

50
40 f
30 1

30 fp =18 19

20

20 L . L 10 L L L {
150 250 350 450 350 150 250 350 450 550
Temperature, °C Temperature, °C

Fig. 2. TG curves of compound8,14,18,19 (a) and compound$1,15,16,20 (b).

2-Cinnamoyl-1,3-indandiond4 and 2-cinnamoyl-dimedon&9 with bulky
N(BPh), substituent exhibit the highest,Jover 280°C, which can be explained with
their higher molecular mass, and additiorat stackings. Prolonging thebridge by
one more double bond between donor and accefpios 15 and 16 - 20) leads to
slight increase in g, for example compountil Tse, is 218°C, but for its analogue
15 decomposition temperature is increased to Z38As it can be seen from Fig. 2
(&) compounds with julolidine donof.8 and18) as well as ones with N(BRPhgyroup

(14 and19) shows two-step weight loss TG curves. On therdtla@d TG curves of
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dyes with N(Me) donor group 11,15,16,20) can be characterized with one-step
decomposition. The acceptor group shows no inflaemcthe form of TG curve. The
TG analysis results show, that all compounds haeg ggnough thermal stability for

the application in optoelectronic devices.

3.3. Electrochemical properties

Cyclic voltammetry was employed for all synthesizedmpounds to
investigate their redox behavior. The results anmmearized in Table 2 and some
compounds cyclic voltammograms in acetonitrile glfewn in Fig. 3. For all studied
compounddoth electrode processes - cathodic reduction #sawenodic oxidation
are electrochemically irreversible in acetonitrile.

The structure of the electron acceptor moietie3-ffidandione or dimedone)
has a negligible influence (10-20 mV) on the oxwmlapotentials of the dyed.1/16;
12/17; 13/18; 14/19), while prolongation of the olefinic linker facilitas anodic
oxidation for 140 mV 11/15; 16/20). Similar effects on oxidation properties caused
by elongation of planarbridge were reported for imidazole moiety contagndyes
[34]. The oxidation potentials of the luminophorage affected mainly by the
substituents attached directly to the nitrogen atémdependently from acceptor
moiety (1,3-indandione or dimedone) electron-ricioljdine fragment undergoes
oxidation at 0.60 V. Furthermore, dyEsand16 with two electron-donating methyl
groups at the nitrogen atom undergo oxidation 200 mmore anodically. For the
luminophoresl2, 17, 14 and 19 conjugation between the nitrogen lone electrom pai
and then-electron system of the aromatic rings results Ha highest oxidation

potential values.
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Fig. 3. Cyclic voltammograms of compourt#13,16 in acetonitrile solutions.

The electrochemical reduction process of compouldd®0 are localized on
their acceptor moieties. Cathodic peak potentidlthe compound46-20 are 110-
150 mV more negative than thoseldf15, confirming that 1,3-indandione possesses

stronger electron-acceptor strength than dimedasietyn

3.4. Absor ption properties

In order to gain information about compounds stresfproperty relationship,
UV-Vis absorption spectra [&.5-10° M) in a series of solvents with different
dielectric constants and thin films were investghatThe data of absorption band
maxima {ap9 are summarized in Table 3 and some compoundslmsospectra are
depicted in Fig. 4. All compoundkl-20 in chloroform show intense visible light
absorption with band maxima from 466 to 540 nm. &bsorption bands are wide and
correspond to intramolecular charge transfer (I€ansitionst(D) - 1t*(A) between
donor and acceptor groups in the molecule. For camgs14 and 19 with N(BPh)
substituent in cinnamoyl fragment second absorptiamd around 341 nm are
observed and can be attributedtto. 1 transitions of the aminodibiphenylamino

moiety. Due to the difference in acceptor grougsI@T band occurrs in the different
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spectral range — from 466 to 509 nm for dimedonévaives and from 502 to 540
nm for 1,3-indandione derivatives. Amino donor grelased on their structure and
strength also shows some effect on ICT band posi8y varying the donor moiety
on 1,3-indandione and dimedone derivatives, ICTdbanred shifted in the order:
N(Me),LN(Phh<N(BPh)<Julolidyl. N(Me) and N(Ph) shows similar donor strength
based on absorption data. However, it is knownt N@h) could have stronger
donor character than N(Mgjroup [9], but due to nitrogen atom lone pair cgajtion
with Teelectrons of phenyl rings, the donor strengtreduced and,,sdoes not show
the expected red shift. Furthermore, change otitr®r unit from N(Ph)to N(BPh)
results in bathochromic shift @fps (+10 nm) for both dimedone and 1,3-indandione
compounds. This fact could be explained with nigatom lone pair weaker
conjugation with biphenyl than phengroup, which results in enhanced donor
character for N(BPh)group. This assumption was confirmed by theoretbamical
calculations (Section 3.6). Among all investigataino groups julolidyl moiety
shows the most red shift af,s which can be explained with its rigid characted a
probably, more effective p-conjugation, which ensures stronger electron-dogat
effect than other amino substituents. Furtherm@m|ongation of thertrbridge
between D and A moietiedX - 15 and16 - 20) also shows some effect on ICT bands
position in the spectra. As expected red shift lvé A,ns was observed in the
absorption spectra - 1,3-indandione derivatii® €hows +17 nm shift, but dimedone
derivative 20) +20 nm bathochromic shift. It was concluded,t tttee strongest
impact on absorption spectra position is due toaitweptor unit ande-bridge length

between A and D moieties and amino donor groumgtheshows lesser effect.
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Fig. 4. Absorption spectra of compourk®14,17,19 in chloroform (¢11.5-10° M) solutions
(a) and in thin films Ip)

Only four luminophores1@,14,17,19) with N(Ph) and N(BPh) donor groups
formed thin films from chloroform solutions. Asdan be seen from Fig. #)(in solid
state compounddl2,14,17,19 absorption bands are wider and slight effect on
absorption band maxima are observed compared @ alatained from solution
samples.

The investigation of solvatochromic behavior of tewly synthesized dyes
was also conducted)aps in different solvents are summarized in Table 3.
Unfortunately, some compounds were insoluble irmpsblvents (MeCN and MeOH)
and full solvatochromic outlook was not obtainexbrf the data depicted in Table 3 it
was concluded, that these dyes did not show notstlleatochromism and upon
changing the solvents polarity from non-polar tolei¢o polar MeCN, only smalns

shifts (1-12 nm) were observed.

3.5. Emission properties

Emission properties of synthesized compounds wegeenied in series of

solvents solutions (@.5-10°M) and in thin films. The data of emission band ime
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432

433
434
435

436
437
438
439

(Aem), Stokes shifts Ay, and absolute photoluminescence quantum yiete)sale

summarized in Table 3.

Table 3
Absorption and emission characteristics of compeudel0 in a series in solutions and thin
films.
a a
Solvent Dye 7:‘:: )r”]eg Z;ntsl ®® Dye 7;?3? );]err;‘] i‘;fl o°
Toluene 499 548 1762 0.12 499 568 2434 0.52
THF 499 575 2649 <0.01 492 624 4300 0.49
CHCl; 11 503 566 2212 0.03 12 502 621 3817 0.76
MeCN 500 - - - -€ - - -
MeOH 501 582 2779 <0.01 - - - -
Thin film - - - - 501 643 4407 0.07
Toluene 532 577 1466 0.15 506 586 2698 0.93
THF 536 601 2018 <0.01 502 662 4815 0.10
CHCl; 13 540 595 1712 <0.01 14 512 663 4448 0.21
MeCN 540 - - - 494 - - -
MeOH 537 - - - 499 - - -
Thin film - - - - 500 667 5008 0.13
Toluene 511 613 3256 0.12 454 528 3087 0.05
THF 517 664 4282 0.31 456 546 3615 0.19
CHCl; 15 520 647 3775 025 16 467 548 3165 0.15
MeCN 514 - - - 459 571 4273 0.02
MeOH 518 680 4599 <0.01 466 570 3915 0.01
Thin film - - - - - - - -
Toluene 456 549 3715 0.40 497 552 2005 0.31
THF 452 624 6098 0.56 496 575 2770 0.32
CHCl; 17 466 612 5119 078 18 509 577 2315 0.36
MeCN 449 675 7457 <0.01 503 593 3017 <0.01
MeOH 451 643 6621 <0.01 510 600 2941 <0.01
Thin film 466 600 4793 0.17 - - - -
Toluene 465 572 4023 0.79 478 593 4057 0.05
THF 460 636 6016 0.16 476 635 5260 0.22
CHCl; 19 476 654 5718 0.16 20 487 624 4508 0.15
MeCN 453 666 7060 <0.01 475 662 5947 0.13
MeOH - - - - 483 666 5689 0.05
Thin film 478 626 4946 0.13 - - - -
aStokes shifts;

®Absolute photoluminescence quantum yield;

“insoluble
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The emission color of solutions afi-20 covers a very wide spectral range
from bright green to red light region. In non-polaluene emission color varies from
green to red light region, but in polar solventshifts from yellow to red region.
Emission spectra of dyeld-20 are characterized with wide emission bands (Fig. 5
and emission band maximkn is influenced by many factors, including dyes
structure. Due to the difference in acceptor grothEsiem position in chloroform
solutions shifts — from 548 to 654 nm for dimedaoenpounds and from 566 to 663
nm for 1,3-indandione derivatives. This red shifi.g, for 1,3-indandione derivatives
compared to the same analogues with dimedone (blE6; 12/17; 13/18 etc) can be
explained with additional phenyl ring of 1,3-ind@&me moiety, which ensures more
extendreconjugation in the molecules. Moreover, amino dogiup structure and
strength show major impact onn, position in the spectra. By varying the donor
moiety Aem is red shifted in the following order: N(Mg)Julolidyl< N(PhY<N(BPh).
N(Me), group having the weakest donor character fronamiho substituents shows
thelem at 566 nm (dydl) and at 548 nm (dy&6), while dyes containing N(BPh)
substituent showsILO0 nm red shift and emits red light at 663 nm (ti§eand 654
nm (dye 19) in chloroform solutions. All investigated compalsnbased on their
amino donor structures can be divided into two geoucompounds containing amino
donors with alkyl chains (Julolidyl, N(Mg)and phenyl groups (N(BPHh)N(Ph}).
There is essential difference in the Stokes shiftehese groups — first group show
smallerigs (in the range from 1466-2779 &nfor 1,3-indandione derivatives, and
2005-4273 cni for dimedone derivatives) than second group. Sesellgs was
obtained for julolidyl group containing compoundgiacan be explained with similar
dipole moment from ground and excited state fos¢hdyes. Similar observations

were found for other DeA dyes [15].0bserved relatively large Stokes shiftg for
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compounds12,14,15 as well as forl7,19,20 indicates, that after excitation these
molecules undergo some structural reorientatiorr, éxample, excited state
intramolecular proton transfer (ESIPT), which isntoon for compounds with strong
intramolecular hydrogen bond in the molecules [33frge Stokes shifts are a huge
advantage for dyes for OLED application, becauskedreases the possibility of self-
absorption, which can reduce the total emissioicieffcy.

The extension of the-linker betweerD and A parts 11 - 15 and16 - 20) also
has an impact ohen position in the spectra. As expected longer caatjog bridge
leads to bathochromic shift af,, for exampleien 11— 15 is red shifted for 81 nm in
chloroform solutions.

Another factor, which greatly influences thg, position in the spectra, is the
solvents polarity. Strong positive solvatofluorcatmism was observed by all
investigated compounds. Upon changing the solverdkarity from non-polar
(toluene) to polar (MeOH)Aem shifts in range from 24 to 126 nm. Among the
compounds investigated dyes with the diphenyl aibiplenyl substituents exhibit
largest emission shifts due to considerably strodgeor groups in the molecules, for
example, dyel7 shows the maximumen shift +126 nm going from toluene to
MeCN. It is common for DA dyes, which exhibit ICT, to have bathochromidftsh
of Aem [8,9] in polar solvents and can be explained wixicited state more polar
character than ground state. Therefawg, shows larger shifts with solvents polarity
change, thafaps

Also the absolute fluorescence quantum yield} dre largely dependent on
the solvents polarity. With the increase in solgepblarity (MeOH, MeCN) the
decrease i was observed and almost all dyes exd€pand20 were non-emissive

in polar environment. In non-polar toluene dyeshvii(BPh) donor group 14, 19)
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shows high® values (0.93 and 0.79), dy2%-13,15,17,18 - moderated ranging from
0.12 to 0.52, however remaining compourd@s?0 exhibit relatively low quantum
yields (0.05). Moreover, moderate to high quantuetdg (0.10-0.78) were obtained
in THF and CHQ solvents. Obtained quantum vyield data in differentvents
demonstrates that emission properties of investijdlyes are affected more by the
solvents polarity than nature of the donor groupwlemission intensity in polar
media can be explained with interactions betweessdynd polar solvent in polar

excited state, which leads to pronounced non-radiaieactivation [9,36].

b

Toluene
——THF
CHCI3
———=MeCN
~—=MeOH

0.8

Normalized FL intensity
Normalized FL intensity

500 550 600 650 700 750 800
‘Wavelength, nm

600 700
Wavelength, nm

Fig. 5. @) - Emission spectra of compounts 20 in chloroform (¢11.5- 10° M) solutions;
(b) — solvatofluorochromism of dy20

Photoluminescence spectra of thin films for computsut®,14,17 and 19 can
be characterized as wide emission bands with maximg, in the range of 600-667
nm and with quantum yield® from 0.07 to 0.17. Decreasedncould be explained
with concentration quenching, due to intermolecidéeractions in solid state. In the
future to increaseéb values in thin films, these dyes need to be domegalymer
matrix. However, still acquired values in thin films are notable, indicating, that
compounds12,14,17 and 19 might be the promising red light emitting optical

materials for optoelectronic devices.

23



510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

From all synthesized compounds, dyé with dimedone cycle as acceptor,
N(Ph), as donor and 1-hydroxyallylidene asbridge shows the most promising
optical properties for application in OLED. Intengsible light absorption aft455
nm, large Stokes shifts (3715-6098 Hnand bright yellow or orange-light emission
in non-polar solvents as well as in thin film withoderate to high quantum vyields
(0.17-0.78) is characteristic for these dye. Hosvedue to the demand for intense
red-light emitting organic materials dyll with 1,3-indandione as acceptor unit,
N(BPh) as donor and 1-hydroxyallylidene asbridge show some potential
application, due to its emission profild.{663 nm with ®=0.13-0.21) in THF,

CHCI; and in thin film.

3.6. Quantum-Chemical calculation of Electronic structures

To better understand the effect of the electrortiucture on different
photophysical properties of synthesized dyes, #resity functional theory (DFT) was
performed using ORCA program and Gaussiana@9initio quantum chemical
software package. The calculated HOMO and LUMO gnéevels of all dyes are
depicted in Table 4. The obtained optimized geoeetreveal that compounds with
alkyl amino substituents1{,13,15 and 16,18,20) have nearly planar structure.
However, dyes with phenyl amino groups (N@H)(BPh)) shows out of plane
twisting. In compoundd42, 14 as well as inl7, 19 phenyl and biphenyl groups are
twisted out of the plane of the cinnamoyl fragmetith dihedral angles of -30.3, -
31.2, -30.1 and -32.1 °, respectively. Comparisdnthese dihedral angles of
luminophores with N(Ph)and ones with N(BPh)donor group 12/14, 17/19), leads
to the fact, that latter ones have less planar domety, and nitrogen atom lone pair

conjugation with biphenyl group is weaker, whicbuks in enhanced donor character
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535 for N(BPh). This conclusion is in agreement with absorptioatad of these
536 luminophores. Moreover, such twisting out of thana for these four compounds
537 could lead to lowered absorption maxima, which whserved in CHGIlsolutions
538 (see paragraph 3.4.) and disarranged the ordeorajrdstrength based on absorption
539 maxima. Similar observations were reported foredght amino donor containing 4-
540 pyridylbutadienes [8].

541 Fig. 6 shows the HOMO and LUMO orbitals of optindzground state
542  structures. HOMO orbitals of compoundl$-20 are mainly localized on the donor
543  unit and cinnamoyl part of the molecule and theoc&ization is not influenced by
544  acceptor moiety. On contrary LUMO orbitals are lomad on the acceptor and
545 cinnamoyl moiety. Such a charge distribution leadsconclusion, that there is
546  noticeable intramolecular charge transfer preseme#flOMO- LUMO transition.
547  Similar localization of molecular orbitals and opardistribution was reported for
548 derivatives of cinnamoyl pyrones [17].

549 Optical (E°*) and electrochemicaEf) bandgap, as well as bandgaa{")
550 calculated from theoretically obtained HUMO/LUMOvéds are depicted in Table 4.
551  From the data of electronic levels, it can be gbah band gapeg™) calculated with
552 DFT method are in the range from 2.77 to 3.22 e¥ @duces with the increase of
553  strength of the donor groups, for example, compolhdhas the largest difference
554  between HOMO-LUMO levels and weakest donor grougratier. Moreover, there is
555  relationship between conjugation length offA system and band gap — molecules
556  with larger HOMO-LUMO band gap have shorter conjimalength, for example,
557 luminophoresl5 and 20 with longer tespacer between A and D units presents the
558  smallestEg* " values.

559
560
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Table 4
Calculated HOMO/LUMO energy levels and band gapsiminophoredl1-20.

Code HOMO,eV  LUMO,eV P, eV? EC", eV’ Eg V©
11 -5.37 -2.28 3.09 2.25 1.97
12 -5.34 -2.47 2.87 2.22 2.12
13 -5.11 -2.19 2.92 2.11 1.81
14 -5.27 -2.50 2.77 2.16 2.02
15 -5.22 -2.43 2.79 2.04 1.70
16 -5.38 -2.16 3.22 2.37 2.13
17 -5.33 -2.37 2.96 2.30 2.26
18 -5.16 -2.11 3.05 2.21 1.97
19 -5.26 -2.40 2.86 2.26 2.14
20 -5.21 -2.34 2.87 2.15 1.82

& Calculated from DFT calculationEg®"™=LUMO-HOMO;

b-Optical band gajk,°" calculated from UV-Vis spectra in CHC3olution: E°"=1240A nset
(nm);

‘.Electrochemical band gap Ealculated from cyclic voltammograms;E,-Eeq.

Optical and electrochemical band gaps are in thgag&.04-2.37 eV and 1.70-
2.26 eV, respectively. The difference between dated Eg°™ and experimentally
obtained P and E band gap values can be explained with use ofrdiftemethods
and conditions for experiments. All three methosutes shows, that compounds with
prolongedrebridge and N(Me)donor (5, 20) has the smallest band gap value and,
from the other hand compound4l( 16) with same donor unit and shorter

conjugation length exhibit the largest band gapesl
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Fig. 6. HOMO and LUMO orbitals of optimized groustte structures of compountls 20,

obtained using B3LYP 6-311G** set.
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4. Conclusions

In summary, the synthesis of ten @A dyes containing different amino
substituents as donors (D), 1,3-indandione or donedas acceptors (A) and different
1-hydroxyallylidene or 1-hydroxypenta-2,4-dien-ldgine asrtbridge are reported.
Donor, acceptor and-bridge influence on absorption, emission, eledtesgical and
thermal properties are investigated. Investigatgelsdexhibit high thermal stability
above 200 °C, negligible solvatochromic behavior and noticeabl
solvatofluorochromism changing solvents polarityvasl as intense green, yellow,
orange and red light luminescence with quantundgiélom 0.03 to 0.93 in non-polar
solvents. Prolongation atbridge by one double bond in 2-cinnamoyl-1,3-irdlane
and dimedone derivatives leads to red shift of giism and emission, enhanced
photoluminescence quantum yield and decomposiéorperature, as well as reduced
oxidation potential. Substitution of a strong, bulkamino donor groups
(diphenylamino and dibiphenylamino) in dyes struesuleads to higher quantum
yields, red-shifted emission, and large Stokegshif

For practical application in OLED dyE7 with dimedone cycle as acceptor,
N(Ph), as donor and 1-hydroxyallylidene méridge, and dyd4 with 1,3-indandione
as acceptor unit, N(BPhas donor and 1-hydroxyallylidene mdridge shows the
most promising properties among all investigatednpounds. These two dyes
showed high thermal stability withsgg>270°C, film forming properties and excellent
optical properties. Compouriy is characterized with intense visible light absionmp
at (M55 nm, large Stokes shifts (3715-6098¢rand bright yellow (649 nm) or
orange-light (620 nm) emission in non-polar solvents as wellraghin film with

moderate to high quantum vyields (0.17-0.78). Howeshge to the demand for intense
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red-light emitting organic materials d§4 show some potential application, due to its

emission profile Xem 663 nm with®=0.10-0.21) in THF, CHGland in thin film.
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Highlights

Series of 1,3-indandione and dimedone dyes with amino substituents are synthesized.
Structure-properties relationship is analyzed through different methods.

Dyes emission color and quantum yields are dependent on used amino donor structure.
Dyes with diphenylamino and biphenylamino donors shows high quantum yields.

T-spacer length has significant impact on optical and electrochemical properties.



