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Abstract: Optically active dihydrobenzopyran derivatives are syn-
thesized by 6-endo cyclization of corresponding epoxy-phenol,
which is readily derived from the enantioselective epoxidation of
1,3-diarylpropene. Synthetic dihydrobenzopyrans are converted
into (–)-5,7-dideoxy-gallocatechin gallate as well as (–)-5,7-
dideoxy-epigallocatechin derivative.

Key words: dihydrobenzopyran, 6-endo cyclization, enantioselec-
tive epoxidation, (–)-5,7-dideoxy-gallocatechin gallate

(–)-Epigallocatechin gallate (EGCG, 1) is a major constit-
uent of green tea extract, which has various bioactivities
such as cancer prevention and antiviral or antimicrobial
activity.2 Because these unique bioactivities are expected
to be candidates for drug development, the detailed struc-
ture–activity relationship (SAR) study3 has been a signif-
icant work. However, investigations of such bioactivities
have been limited to natural products and/or their deriva-
tives. Thus, developing an efficient and flexible synthetic
method has strongly been desired. Although many syn-
thetic efforts for catechin have been reported,2,3 there are
only a few examples of enantioselective syntheses.4 Dur-
ing the course of our synthetic investigation on the gallo-
catechins, we have found that synthetic 5,7-dideoxy-
epigallocatechin gallate (DO-EGCG, 3) possesses more
potent anti-influenza activities than natural EGCG (1).5

Inspired by this finding, we have launched an investiga-
tion into the synthesis of 5,7-dideoxy-gallocatechin gal-
late derivatives. Herein we report enantioselective
syntheses of 3 and 4 (Figure 1).

Figure 1 Structure of EGCG derivatives

Scheme 1 illustrates the heart of our synthetic plan. Be-
cause a facile deprotection of the benzyl group and the in-
corporation of the galloyl moiety proceeded smoothly, the
crucial problem in the synthesis of 4 should be the stereo-
selective construction of 2,3-trans-dihydrobenzopyran
ring 6. We anticipated that 6 could be synthesized by 6-
endo-cyclization of epoxy-phenol 7, which could be
readily obtained by an asymmetric epoxidation6 of 8a.
Several selective 6-endo cyclization-mediated pyran ring
constructions have been reported.7 Because the reaction
should be accomplished by stabilizing the cation at the re-
action site, an electron-rich B-ring group should enable
dihydrobenzopyrane ring synthesis.

Scheme 1 Synthetic strategy of dideoxy-gallocatechin gallate
(DO-GCG, 4)

As shown in Scheme 2, condensation of the A- and B-
rings was accomplished by Julia–Kocienski reaction8 be-
tween aldehyde 10 and phenyltetrazole (PT)-sulfone 13.
The A-ring unit of aldehyde 10 was readily prepared in
two steps from commercially available 2-allylphenol (9).
Introducing a TBS group to 9 and oxidative cleavage of
the double bond furnished aldehyde 10.The PT-sulfone
13a was prepared by a condensation reaction of 3,4,5-
tribenzyloxybenzyl alcohol (11a) and PT-SH (12) under
Mitsunobu conditions and subsequent oxidation to the
sulfone. Upon treating the mixture of aldehyde 10 and PT-
sulfone 13a with LHMDS in THF, the Z-selective olefina-
tion reaction proceeded smoothly to provide 14a as a sin-
gle isomer in 95% yield. Although the reason for the high
Z-selectivity of this Julia–Kocienski reaction is unclear,8c
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group at the B-ring of 13 as shown in Table 1. Because E-
isomer 8a9 was required to synthesize 4, the isomerization
reaction was performed by treating 14a with a catalytic
amount of I2 to predominantly afford 8a.

Scheme 2 Stereoselective synthesis of olefin 14a and 8a

Scheme 3 Conversion to epoxide16 from 8a

With the requisite E-double bond of 8a in hand, the epoxi-
dation and cyclization were investigated. The desired ox-
idation and simultaneous epoxide-opening reaction10

occurred by treating with MCPBA under acidic condi-
tions. However, to avoid a side reaction, neutral and non-
nucleophilic DMDO was tested. As shown in Scheme 3,
treating 8a with DMDO caused the oxidation to proceed
smoothly to provide 16 in high yield (conditions A). For
an optically active compound, oxidation was performed

by Shi’s conditions11 in the presence of fructose derivative
15 (conditions B).

As shown in Schemes 4, 2, 3-trans-dihydrobenzopyran 6
was constructed by a regio- and stereoselective 6-endo-
cyclization. Because treating 16 with TBAF, a basic 5-
exo-cyclization (Baldwin’s rule), gave dihydrobenzofuran
17, the TBS group was deprotected in the presence of
AcOH to provide 7. Upon treating 7 with CSA, the desired
6-endo-cyclization reaction12 proceeded smoothly with a
high diastereoselectivity, and subsequent recrystallization
gave optically pure 6. Conversion from 6 to (–)-5,7-
dideoxy-gallocatechin gallate (4) was achieved in two
steps and involved the incorporation of gallic acid 18 and
the deprotection of benzyl groups under hydrogenation
conditions. An efficient synthesis of (–)-5,7-dideoxy-
gallocatechin gallate (4)13 was accomplished in nine steps
from 9.

Scheme 4 Synthesis of (–)-5,7-dideoxy-gallocatechin gallate (4)

The absolute configuration of synthetic 4 was confirmed
by comparing to natural (–)-gallocatechin (19) as shown
in Scheme 5. Selective mesylation of the phenols at the A-
ring of 19, which should occur through the corresponding
borate intermediate,14 was performed in the presence of
boric acid to provide 20. After protecting 20 with a TBS
group, the mesyloxy group was removed using Sajiki’s
protocol.15 Upon treating the mesylate under hydrogeno-
lysis conditions in the presence of diethylamine, the
mesyloxy group was smoothly removed to afford 21. On
the other hand, synthetic intermediate 6 was also convert-

Table 1 Stereoselectivity of Julia–Kocienski Reaction
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ed into 21 through the deprotection of the benzyl groups
and subsequent introduction of TBS groups. All spectral
data, including retention time on a chiral column, were
identical regardless of how 21 was synthesized.16

As shown in Scheme 6, (–)-5,7-dideoxy-epigallocatechin
gallate (3) was synthesized by employing 14a using a sim-
ilar reaction procedure as that to prepare 4. After Shi ep-
oxidation of 14a and the removal of TBS ether, treating
the corresponding epoxy phenol with CSA enabled 6-
endo-cyclization to proceed smoothly to provide 22 and 6
as a 1:1 mixture. Formation of 6 might be explained by a
cyclization reaction, which proceeds through quinone me-
thide intermediate 25.10,17 Compared to 7, the steric hin-
drance of the cis-epoxide would make a direct inversion
reaction difficult and would readily lead to quinone me-
thide formation by a self-opening reaction of the epoxide.
After incorporating 18, separation of 5 and 23 was readily
carried out by silica gel column chromatography.18 Final-
ly, deprotection of the benzyl ether by hydrogenolysis

conditions afforded (–)-5,7-dideoxy-epigallocatechin
gallate (3).

In conclusion, the enantioselective syntheses of (–)-5,7-
dideoxy-epigallocatechin gallate (3) and (–)-5,7-dideoxy-
gallocatechin gallate (4) were achieved using regioselec-
tive 6-endo-cyclization of optically active epoxides. Our
synthesis features E- and Z-selective olefination and sub-
sequent enantioselective Shi epoxidation protocol. Con-
sidering the mildness of our reaction conditions, the
present synthesis should be compatible with a variety of
functional groups. Furthermore, substituted 2-allylphenol
derivatives are also readily available. Hence, applying our
method should provide various gallocatechin derivatives,
including 1 and 2. Further synthetic investigation and the
biologically evaluation of 3 and 4 are currently under in-
vestigation in our laboratory.
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