Dyes and Pigments 103 (2014) 138-144

Contents lists available at ScienceDirect

Dyes and Pigments

journal homepage: www.elsevier.com/locate/dyepig

Synthesis, characterization and electronic effects investigations of new 5,7-disubstituted tris(8-quinolinolate)Al(III) complexes

Saleh N. Al-Busafi*, FakhrEldin O. Suliman, Zaid R. Al-Alawi

Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khodh 123, Oman

A R T I C L E I N F O

Article history: Received 23 June 2013 Received in revised form 11 October 2013 Accepted 7 December 2013 Available online 18 December 2013

Keywords: Suzuki coupling reaction 8-Hydroxyquinoline Fluorescence sensors Photophysical properties Aluminum ion OLEDs

1. Introduction

8-Hydroxyquinoline (8-HQ), one of the most popular and versatile organic reagents, and its derivatives have found a great variety of applications ranging from pharmacological and pharmaceutical agents [1] to electron carriers in organic lightemitting diodes (OLEDs) [2] and fluorescent chemosensors for metal ions [3]. 8-hydroxyquinoline has bactericidal activity of comparable potency against non-replicating and replicating *Mycobacterium tuberculosis* (Mtb) [4], and *Staphylococcus aureus* [5]. Moreover, many substituted 8-HQ exhibit greater activity against bacterial strains and fungal strains than do the parent compounds, but moderate activity compared with standard drugs [6,7].

It has been almost more than two decades since tris(8-hydroxyquinoline)aluminum (III) [AlQ₃] was introduced as an electron-transporting material in organic light-emitting diodes (OLEDs) [8]. Nowadays, OLEDs are gradually replacing liquid crystal displays (LCD) as the most important full-color flat panel display technology. In order to improve the efficiency of MQ₃ (M = metal ion) complexes, researchers have centered their efforts on two major aspects: changing the chelated metal ion and modifying the structure of the chelating ligands [9–12]. Concerning the chelating ligands, it has been predicted that electron-donating substituents

ABSTRACT

Eight 5,7-diaryl-8-hydroxyquinoline ligands were synthesized and characterized by ¹H, ¹³C NMR spectroscopy and mass spectrometry. The electron-donating and electron-withdrawing aryl groups were attached to the 5- and 7-positions of the quinolinolate ring via Suzuki coupling reaction. The aluminum complexes of these ligands exhibited successful tuning in the emission color, covering a large segment of the visible spectrum.

© 2013 Elsevier Ltd. All rights reserved.

in the C-5 or C-7 positions of the quinoline skeleton cause a redshift of the complex emission, while a blue-shift is expected when electron-withdrawing groups are attached in the same positions. In this regard, blue-shifted absorbance/luminescence bands were recorded for 8-hydroxy-5-piperidinylquinolinesulfonamide complexes of aluminum [9]. A successful tuning in the emission color of AlQ₃ was achieved by attachment of electron-donating (EDG) or electron-withdrawing (EWG) aryl groups to the 5position of the quinolinolate ligand [13].

Sensing metal ions by fluorescent chemosensors is highly applicable to a wide range of technologies and has currently been studied intensively [14]. A chemosensor having a bipodal thiocarbamate scaffold attached to histidine moieties senses Hg²⁺ with a remarkable selectivity [15]. Azathia crown ethers carrying pyrene pendant as receptor molecules showed promising results as metal sensor systems for Cu²⁺, Zn²⁺, and Cd²⁺ [16]. Aluminum (III) ion exists widely in the environment due to acid rain and human activities. Its toxicity to the environment and to humans is well documented [17]. Therefore, detection of Al³⁺ is crucial to control its concentration levels in the biosphere, hence its impact on human health. In this regard, 2-hydroxy-1-naphthaldehyde was used as a highly sensitive and selective fluorescent sensor for Al^{3+} in EtOH-H₂O solution [18]. The fluorescent reagent sodium 4-(2,5diphenyl-1H-pyrrol-1-yl)benzoate (TriPP-COONa) showed good detection limit (27 μ g L⁻¹) for detecting aluminum ion in water samples [19]. An efficient fluorescent Al³⁺ receptor, 1-[[(2-

^{*} Corresponding author. Tel.: +968 24142305; fax: +968 24141469. *E-mail address:* saleh1@squ.edu.om (S.N. Al-Busafi).

^{0143-7208/\$ -} see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.dyepig.2013.12.007

Fig. 1. Structure of AlQ₃ complexes 1a-h with electron-rich and electron-poor aromatic moieties.

furanylmethyl)imino]methyl]-2-naphthol exhibited high selectivity and affinity towards Al^{3+} [20]. Owing to their chelating ability toward a great number of metal ions, 8-HQ and its derivatives have found many applications in the chemosensing field [21]. 8-Hydroxyquinoline was used to detect Al^{3+} in soil extracts with fluorometric detection limit of ~1 × 10⁻⁸ *M* (0.3 ppb) Al [22]. Moderate selectivity for Al^{3+} over other metal ions with detection limit reaching <10⁻⁷ *M* under weak acidic conditions was reported for 8-hydroxyquinoline-carbaldehyde Schiff-base [23].

Nevertheless, there is a need for more research to achieve higher selectivity and sensitivity to detect Al^{3+} over other metal ions. Our approach concentrates on increasing the chelating properties of 8-HQ derivative ligands to enhance the fluorescent output of the produced AlQ₃ complexes and consequently increase the quantum yield and shifting the color to red regions by introducing electron-withdrawing and electron-donating phenyl moieties at the C5 and C7 positions of 8-HQ [24]. In this paper, we report the synthesis, spectroscopic identification, and photophysical behavior of eight AlQ₃ complexes 1a-h in which the phenyl groups at C5 and C7 of the ligands are substituted either with electron-withdrawing groups a-c or with electron-donating groups d-h (Fig. 1).

2. Results and discussion

2.1. Synthesis

The eight ligands were prepared starting from 8-hydroxy quinoline following previously published method [25]. Dibromination of 8-HQ at C-5 and C-7 was performed satisfactorily using the published method with some modifications in which the concentrated sulfuric acid was replaced with acetic acid and the reaction was performed at room temperature to give compound 2 in 75.4% yield. The hydroxyl group in **2** was protected smoothly by the stable benzyl (Bn) group prior to the Pd-catalyzed coupling reactions to yield intermediate **3** in 54.0%. Compounds **4a**-**h** were prepared by coupling intermediate **3** with a suitable arylboronic acid using Suzuki cross-coupling reaction. Hence, the electron-rich EDG arenes and electron-poor EWG arenes were, respectively, attached to 8-benzyloxy-5,7-dibromoquinoline 3 in 50-89% yield. Deprotection of the benzyl group was achieved by catalytic transfer hydrogenation (CTH) using cyclohexa-1,4-diene and Pd/C catalyst in absolute ethanol to give ligands **5a-h** in 50–90% yield (Scheme 1). The final AlQ₃ complexes 1a-h were prepared by reacting the ligands 5a-h with AlCl₃·6H₂O in methanol. All the

Scheme 1. Synthesis of compounds 5a-h; reaction conditions: a) Br₂, AcOH, RT, 20 min; b) Bn-Cl, K₂CO₃, KI, acetone, reflux, 16 h; c) [Pd(pph₃)₄] (6%), Na₂CO₃, benzene, H₂O, EtOH, reflux, 24 h; d) 1,4-cyclohexadiene, Pd-C (10%), EtOH, reflux, 5 h.

synthesized complexes are new except **1d** which was prepared before by Hay et al. [25].

The prepared ligands **5a**–**h** exhibit a distinctive ¹H NMR coupling pattern for the protons 2, 3, 4, and 6 while protons that belong to the substituted phenyl groups at C-5 and C-7 varies from one ligand to another. In this regard, proton 2 appears as doublet of doublet, shifted down field by N-atom of the pyridine ring. The *J* values range from 1.0 to 1.4 Hz due to *meta*-coupling with H-4 and 4.0 to 4.5 Hz due to *ortho*-coupling with H-3. Proton 4 appears as doublet of doublet with *J* values varies from 1.0 to 1.4 Hz due to *meta*-coupling with H-2 and 8.0 to 8.4 Hz due to *ortho*-coupling with H-3. Proton 3 appears up-field as doublet of doublet and proton 6 as singlet (Fig. 2).

2.2. Spectroscopic properties

The complexes **1a**–**h** were studied by using UV–visible and fluorescence spectroscopies and the resulting photophysical data are summarized in Table 1. For the series, the π – π * absorption maxima of the complexes shifted to lower energies relative to the transition of the parent AlQ₃ (λ_{max} = 388 nm), most likely due to the extension in the conjugation of the quinoline chromophore. The fluorescence maximum of 5,7-diphenyl-8-hydroxyquinoline **1d** exhibited a red shift of 15 nm compared to the parent 8-

Table 1

Photophysical properties a recorded for AlQ3 and complexes 1a-h in methanol at 23 °C.

Complex	$\lambda_{\max}^{abs}(\varepsilon)^{b}$	$\lambda_{\rm F}$ [nm]	$\phi_{\rm F}^{\rm c}$	$\tau_{\rm F}[\rm ns]$
AlQ ₃	388 (7.6×10^3)	520	0.171	15.38
1a	$390~(8.9 imes 10^4)$	503	0.960	8.17
1b	398 (5.5×10^4)	527	0.950	7.90
1c	$400~(5.7 imes 10^4)$	531	0.950	7.60
1d	$401~(5.7 imes 10^4)$	535	0.930	7.45
1e	$394~(2.6 \times 10^4)$	540	0.910	5.39
1f	$408~(4.6 imes 10^4)$	542	0.440	5.07
1g	398 (6.0×10^4)	543	0.260	2.86
1h	410 (4.5 \times 10 ⁴)	567	0.189	1.23

^a λ_{max}^{abs} = absorption maximum, λ_F = fluorescence maximum, ϕ_F = fluorescence quantum yield, τ_F = fluorescence lifetime.

^b Unite are $[nm](M^{-1} cm^{-1})$.

 $^{\rm c}\,$ Determined by using quinine sulfate (in 0.05 M $\rm H_2SO_4)$ as a standard.

hydroxyquinoline complex. As expected, the introduction of two aryl groups at C-5 and C-7 to the 8-HQ system results in a higher degree of conjugation and hence lowers the π - π^* transition energies for the complexes. Such result also supported by high oscillating strength for the extended chromophores in complexes **1a**-**h** (ε = 2.6 × 10⁴-8.9 × 10⁴ M⁻¹ cm⁻¹) relative to the parent complex AlQ₃ (ε = 7.6 × 10³ M⁻¹ cm⁻¹).

Examination of the data in Table 1 and fluorescence spectra in Fig. 3 reveals successful emission color tuning in complexes 1a-h arbitrated by the aryl electronic spacers at C-5 and C-7 of the quinolinolate ring system. Almost direct correlation can be observed between the photophysical properties and the electronic nature of the attached aryl substituents. It is clear from Fig. 3 that the emission shifts systematically from blue to green, yellow, and red depending on the electronic nature of the modulator group. We believe that aluminum complex in which the quinolinolate chromophore is attached to two electronic effectors at C-5 and C-7 would exhibit amplified emission tuning compared to the C-5 substituted quinolinolate chromophores. The emission maxima of complexes 1a-h span over 63 nm between 503 and 567 nm, covering a significant portion of the visible light spectrum. The

Fig. 3. Emission spectra of complexes 1a-h.

Fig. 4. a) Emission spectra of complexes formed between **5c** and Al³⁺, Na⁺, Ll⁺, Mg²⁺, Ca²⁺, Fe³⁺, Co²⁺, Mn²⁺, Zn²⁺ and Cd²⁺ ions; b) Bar graph showing the change of emission intensity of **5c** at 531 nm when treated with various metal ions (max: 400 nm).

fluorescence of aluminum complex of 5,7-diphenyl-8-hydroxy quinoline **1d** (aryl substituent) is the reference of the series with $\lambda_F = 535$ nm since all the other ligands have either EW aryl groups **1a**–**c** or ED aryl groups **1e**–**h**. Hence, substitution of EW aryl groups at positions 5 and 7 of the quinoline ring shifted the fluorescence maximum wavelength from 4 to 32 nm towards blue (hypsochromic shift) relative to 5,7-diphenyl-8-hydroxyquinoline **1d** as in compounds **1a**–**c**. On the other hand, substitution of ED aryl groups at positions 5 and 7 of the quinoline ring shifted the fluorescence maximum wavelength from 5 to 32 nm towards red (bathochromic shift) compared to 5,7-diphenyl-8-hydroxyquino line **1d** as in compounds **1e–h**.

Furthermore, close inspection of the data in Table 1 reveals that the fluorescence quantum yield (ϕ_F) and lifetime (τ_F) of complexes **1a**–**h** depend on the electronic properties of the substituted aryl moieties connected to C-5 and C-7 of 8-HQ. For instance, the fluorescence quantum yield of the eight complexes has increased significantly relative to the parent 8-HQ from 11% in the case of **1h** to 462% for **1a**. In addition, the fluorescence quantum yield and lifetime decrease when the aryl groups are substituted with electron-donating groups for complexes **1e**–**h**, whereas electronwithdrawing entities as in complexes **1a**–**c** lead to an increase in both the fluorescence quantum yield and lifetime when compared with non-substituted aryl group (complex **1d**).

To examine the detection selectivity of the prepared ligands towards Al^{3+} , the response of ions such as Na^+ , Li^+ , Mg^{2+} , Ca^{2+} , Fe^{3+} , Co^{2+} , Mn^{2+} , Zn^{2+} and Cd^{2+} was investigated for compound **5c**. The results are shown in Fig. 4. **5c** itself exhibits weak fluorescence in methanol. However, treatment with Al^{3+} (10 μ M) resulted in a significant increase in fluorescence intensify at 531 nm upon excitation at 400 nm. No such effect was observed when other ions (100 μ M) were used. Therefore, **5c** and possibly the other ligands exhibit selectivity for Al^{3+} over other metal ions. In addition, using **5c**, we obtained a detection limit for Al^{3+} of 0.11 ppb.

3. Conclusion

In summary, starting from 8-hydroxyquinoline, we have synthesized a series of 5,7-disubstituted tris(8-quinolinolate) aluminum (III) complexes containing EW/ED groups connected via aryl spacer groups. We have demonstrated that the emission color and fluorescence quantum yield of the produced complexes influenced by the electronic environment of the aryl substituents. The spectroscopic measurements of the new AlQ₃ complexes demonstrate clearly the possibility of tuning their emission color by connecting the quinolinolate ligands with selected substituted aryl moieties at C-5 and C-7. Ligand **5c** shows high sensitivity towards Al^{3+} in the presence of interference ions.

4. Experimental

4.1. General

Melting points were determined using Gallen-Kamp melting point apparatus. NMR analysis (¹H and ¹³C) were performed on a Varian400 (VNMRS-400 MHz) spectrometer using CDCl₃ solution (referenced internally to Me₄Si): *J* values are given in Hertz. IR spectra were obtained with a Nicolet model Magna 560 spectrometer; absorption bands are recorded in wave number (cm⁻¹). TLC was performed on dry silica gel plates and developed by using hexane/ethyl acetate mixture as the eluent. Mass spectra were obtained using Quattro Ultima Pt tandem quadruple mass spectrometer (Waters Corp. MA, USA) instrument. UV–Vis spectra were performed on Varian CARY 50 spectrophotometer. Fluorescence spectra were recorded on a Perkin Elmer LS55 Luminescence spectrophotometer.

All reagents and solvents were purchased from Sigma–Aldrich and were used without further purification.

4.2. Synthesis of 5,7-dibromo-8-hydroxyquinoline (2)

A solution of bromine (8.79 g, 55.2 mmol) in acetic acid (25 mL) was added over 5 min with stirring to a solution of 8-hydroxyquinoline (4.00 g, 27.6 mmol) in acetic acid (25 mL). After stirring at room temperature for further 15 min, 300 mL of cold water was added to the mixture followed by 2 g of sodium meta-bisulfite. The crude product was filtered and recrystallized from ethanol to give the title compound as white solid (6.30 g, 75.4%), Mp: 198.2–199.4 °C. IR (KBr) ν_{max} in cm⁻¹: 3325, 3080, 1581 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.26 (s, 1H), 7.58 (dd, J = 4.3, J = 8.6 Hz, 1H), 7.92 (s, 1H), 8.46 (dd, J = 1.4, J = 8.6 Hz, 1H), 8.81 (dd, J = 1.4, J = 4.3 Hz, 1H). δ_{C} (100.4 MHz, CDCl₃): δ (ppm) 105.60, 110.54, 123.42, 127.70, 134.23, 136.52, 139.04, 149.62, 150.09. ESI-MS (M)⁺ calcd for C₉H₅Br₂NO:302.95, found:302.74.

4.3. Synthesis of 8-benzyloxy-5,7-dibromoquinoline (3)

A mixture of 5,7-dibromo-8-hydroxyquinoline (**2**) (5.00 g, 16.5 mmol), benzyl chloride (2.50 g, 19.8 mmol), potassium carbonate (3.70 g, 26.7 mmol) and potassium iodide (0.13 g,

0.78 mmol) in acetone (60 mL) was refluxed under N₂ for 10 h. The reaction mixture was poured into ice water, filtered and washed with water. The crude product was recrystallized from ethanol/ water and dried under vacuum to yield white to green solid (3.5 g, 54.0%), Mp.: 114.5–116.5 °C. IR (KBr) ν_{max} in cm⁻¹: 3100, 1574, 1366. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.98 (dd, J = 1.2, J = 4.1 Hz, 1H), 8.47 (dd, J = 1.2, J = 8.5 Hz, 1H), 7.61 (d, J = 8.4 Hz, 1H), 7.5 (dd, J = 4.1, J = 8.5 Hz, 1H), 6.96 (d, J = 8.4 Hz, 1H), 7.25–7.36 (m, 5H), 5.43 (s, 2H). δ_{C} (100.4 MHz, CDCl₃): δ (ppm) 151.06, 122.3, 136.40, 128.75, 122.90, 134, 117.20, 152.73, 137.41, 116.70, 144.31, 128.47 (2C), 129.08, 128.60 (2C). ESI-MS (M)⁺ calcd for C₁₆H₁₁Br₂NO: 393.10, found: 393.12.

4.4. General procedure for the synthesis of compounds 4a-h

A mixture of 8-benzyloxy-5,7-dibromoquinoline (**3**) (3.00 g, 7.63 mmol), substituted phenylboronic acid (2.2 equiv), benzene (30 mL), ethanol (12 mL), water (22 mL) and sodium carbonate (3.70 g, 30.3 mmol) was degassed under nitrogen for 30 min. To the mixture was added Pd(PPh₃)₄ (0.53 g, 0.46 mmol) and the reaction was refluxed under nitrogen for 24 h.

4.4.1. Synthesis of 5,7-bis(pyridin-4-yl)-8-benzyloxyquinoline (4a)

The specific amount of chemical used is: 4-Pyridinylboronic acid (2.06 g, 16.8 mmol). The crude product was extracted with benzene, recrystallized from ethanol, and dried under vacuum to give 4a (1.70 g, 55.6%) as a yellow powder. Mp.: 204.0–205.8 °C. IR (KBr) $\nu_{\rm max}$ in cm⁻¹: 3009, 2950, 1594, 1352, 745. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 5.53 (s, 2H), 7.07 (m, 2H), 7.19 (m, 2H), 7.35–7.42 (m, 5H), 7.52 (m, 1H), 7.65 (s, 1H), 7.67 (m, 2H), 8.11 (dd, J = 1.2, J = 8.3 Hz, 1H), 8.74 (m, 2H), 8.98 (dd, J = 1.2, 4.0 Hz, 1H). $\delta_{\rm C}$ (100.4 MHz, CDCl₃): δ (ppm) 74.05, 116.53, 121.83, 124.80 (2C), 126.65, 127.69, 128.15 (2C), 128.34 (2C), 128.65 (2C), 129.89, 131.21, 133.96, 134.73, 137.16, 143.66, 145.83, 149.61, 150.14 (2C), 150.24 (2C), 152.72. ESI-MS (M + H)⁺ calcd for C₂₆H₁₉N₃O: 389.15, found: 390.28.

4.4.2. Synthesis of 5,7-bis(p-nitrophenyl)-8-benzyloxyquinoline (4b)

The specific amount of chemical used is: 4-nitrophenyl boronic acid (2.23 g, 16.8 mmol). The crude product was extracted with benzene, recrystallized from ethanol, and dried under vacuum to give **4b** (2.63 g, 82.5%) as a tan powder. Mp.: 162.1–163.8 °C. IR (KBr) ν_{max} in cm⁻¹: 3010, 2977, 1595, 1346, 845. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 5.54 (s, 2H), 7.08 (m, 5H), 7.44 (dd, J = 4.4, J = 8.4 Hz, 1H), 7.62 (d, J = 8.4 Hz, 2H), 7.67 (s, 1H), 7.68 (d, J = 8.4 Hz, 2H), 8.08 (dd, J = 1.6, J = 8.4 Hz, 1H), 8.20 (m, 2H), 8.35 (d, J = 8.4 Hz, 2H), 9.00 (dd, J = 1.6, J = 4.4 Hz, 1H). $\delta_{\rm C}$ (100.4 MHz, CDCl₃): δ (ppm) 76.57, 116.49, 121.89, 122.30, 123.23, 123.86 (2C), 126.84, 128.09–128.52 (5C), 128.66 (2C), 128.78 (2C), 130.82 (2C), 131.42, 134.24, 137.13, 144.43, 144.62, 145.46, 150.06, 150.37, 152.78. ESI-MS (M + H)⁺ calcd for C₂₈H₁₉N₃O₅: 477.47, found: 477.85.

4.4.3. Synthesis of 5,7-bis(p-chlorophenyl)-8-benzyloxyquinoline (4c)

The specific amount of chemical used is: 4-chloro-phenyl boronic acid (2.63 g, 16.8 mmol). The crude product was extracted with benzene, recrystallized from ethanol, and dried under vacuum to give **4c** (1.80 g, 50.2%) as an orange powder. Mp.: 119.1–121.2 °C. IR (KBr) ν_{max} in cm⁻¹: 3009, 2967, 1637, 1343, 787. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 5.23 (s, 2H), 7.20 (m, 5H), 7.36 (m, 1H), 7.38 (d, *J* = 8.4 Hz, 2H), 7.41 (d, *J* = 8.4 Hz, 2H), 7.44 (s, 1H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.55 (d, *J* = 8.4 Hz, 2H), 8.19 (dd, *J* = 1.6, *J* = 8.6 Hz, 1H), 9.03 (dd, *J* = 1.6, *J* = 4.4 Hz, 1H). δ_{C} (100.4 MHz, CDCl₃): δ (ppm) 76.21, 121.40, 127.35, 127.79, 128.05 (2C), 128.30 (2C), 128.55 (2C), 128.76 (2C), 129.18, 131.25 (2C), 131.34 (2C), 132.77, 133.45, 133.84,

134.18, 134.78, 136.40, 137.13, 137.47, 143.53, 149.92, 151.31. ESI-MS $(M + H)^+$ calcd for C₂₈H₁₉Cl₂NO: 456.36, found: 456.29.

4.4.4. Synthesis of 5,7-diphenyl-8-benzyloxyquinoline (4d)

The specific amount of chemical used is: Phenylboronic acid (2.47 g, 16.8 mmol). The crude product was extracted with benzene, recrystallized from ethanol, and dried under vacuum to give **4d** (2.37 g, 80.1%) as a brown solid. Mp.: 122.5–122.8 °C. IR (KBr) v_{max} in cm⁻¹: 3019, 1353, 1210, 1073. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 5.18 (s, 2H), 7.40 (dd, J = 4.0, J = 8.0 Hz, 1H), 7.43–7.45 (m, 5H), 7.50 (m, 6H), 7.55 (s, 1H), 7.68 (m, 4H), 8.27 (dd, J = 2.0, J = 8.0 Hz, 1H), 9.02 (dd, J = 4.0, J = 2.0 Hz, 1H). δ_C (100.4 MHz, CDCl₃): δ (ppm) 76.34, 121.09, 127.29, 127.39, 127.61, 128.00 (2C), 128.14 (2C), 128.50 (4C), 129.70, 129.72, 129.97 (2C), 130.13 (2C), 133.92, 134.48, 135.95, 137.45, 138.14, 139.22, 143.60, 149.75, 151.11. ESI-MS (M + H)⁺ calcd for C₂₈H₂₁NO: 387.47, found: 388.04.

4.4.5. Synthesis of 5,7-dinaphthyl-8-benzyloxyquinoline (4e)

The specific amount of chemical used is: 1-naphthalene boronic acid (2.89 g, 16.8 mmol). The crude product was extracted with benzene, recrystallized from ethanol, and dried under vacuum to give **4e** (2.49 g, 67.0%) as brown solid. Mp.: 179.1–182.2 °C. IR (KBr) ν_{max} in cm⁻¹: 3010, 2870, 1590, 1219, 1095, 776. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 5.24 (s, 2H), 6.87–7.14 (m, 5H), 7.38–7.88 (m, 14H), 7.64 (s, 1H), 7.31 (m, 1H), 7.94 (dd, J = 1.8, J = 8.0 Hz 1H), 9.07 (dd, J = 1.8, J = 4.1 Hz, 1H). $\delta_{\rm C}$ (100.4 MHz, CDCl₃): δ (ppm) 76.76, 121.91, 125.77, 125.26–128.19, 126.48, 128.89, 127.37, 127.81–128.38 (6C), 135.08, 135.08, 137.53, 143.36, 149.88. ESI-MS (M + H)⁺ calcd for C₃₆H₂₅NO: 487.59, found: 488.37.

4.4.6. Synthesis of 5,7-bis(p-tert-butylphenyl)-8benzyloxyquinoline (**4f**)

The specific amount of chemical used is: 4-*tert*-butylphenylboronic acid (2.99 g, 16.8 mmol). The crude product was extracted with benzene, recrystallized from ethanol, and dried under vacuum to give **4f** (3.40 g, 89.2%) as an orange powder. Mp.: 149.0–149.2 °C. IR (KBr) v_{max} in cm⁻¹: 3010, 2830, 1637, 1368, 756. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.40 (s, 9H), 1.41 (s, 9H), 5.18 (s, 2H), 7.18–7.21 (m, 5H), 7.37 (dd, J = 4.0, J = 8.4 Hz, 1H), 7.44 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.58 (s, 1H), 7.61 (d, J = 8.4 Hz, 2H), 8.32 (dd, J = 1.6, J = 8.4 Hz, 1H), 9.01 (dd, J = 1.6, J = 4.0 Hz, 1H). $\delta_{\rm C}$ (100.4 MHz, CDCl₃): δ (ppm) 31.45 (6C), 34.63, 34.67, 76.47, 120.84, 125.03 (2C), 125.41 (2C), 127.27, 127.54, 127.91 (2C), 128.61 (2C), 129.68 (2C), 129.81 (2C), 133.92, 134.63 (2c), 135.27, 135.82, 136.34, 137.63, 143.70, 149.63, 150.30, 150.48, 151.14. ESI-MS (M + H)⁺ calcd for C₃₆H₃₇NO: 499.69, found: 500.30.

4.4.7. Synthesis of 5,7-bis(p-methoxyphenyl)-8-benzyloxyquinoline (**4g**)

The specific amount of chemical used is: 4-methoxy phenylboronic acid (2.55 g, 16.8 mmol). The crude product was extracted with benzene, recrystallized from ethanol, and dried under vacuum to give **4g** (2.40 g, 70.3%) as a pale yellow solid. Mp.: 147.1–147.9 °C. IR (KBr) ν_{max} in cm⁻¹: 3019, 1609, 1351, 1026, 723, ¹H NMR (400 MHz, CDCl₃): δ (ppm) 3.87 (s, 3H), 3.89 (s, 3H), 5.17 (s, 2H), 6.99 (d, J = 8.8 Hz, 2H), 7.05 (d, J = 8.8 Hz, 2H), 7.24–7.30 (m, 5H), 7.36 (dd, J = 4.4, J = 8.4 Hz, 1H) 7.42 (d, J = 8.4 Hz, 1H), 9.01 (dd, J = 1.8, J = 4.4 Hz, 1H). δ_{C} (100.4 MHz, CDCl₃): δ (ppm) 55.34, 55.43, 76.13, 113.95 (2C), 114.05 (2C), 120.84, 127.22, 128.03 (2C), 128.54 (2C), 129.59, 129.62, 130.56, 131.14, 131.20 (2C), 134.52 (2C), 134.86, 135.63, 137.61, 141.73, 149.70, 150.70, 159.04, 159.17. ESI-MS (M + H)⁺ calcd for C₃₀H₂₅NO₃: 447.52, found: 448.38.

4.4.8. Synthesis of 5,7-bis(p-dimethylaminophenyl)-8-benzyloxy quinoline (**4h**)

The specific amount of chemical used is: 4-(dimethylamino) phenylboronic acid (2.77 g, 16.8 mmol). The crude product was extracted with benzene, recrystallized from ethanol, and dried under vacuum to give **4h** (1.98 g, 54.7%) as light yellow powder. Mp.: 159.1–159.6 °C. IR (KBr) ν_{max} in cm⁻¹: 3012, 2967, 1521, 1086. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 3.013 (s, 6H), 3.014 (s, 6H), 5.48 (s, 2H), 6.79–6.87 (m, 4H), 7.31 (dd, J = 4.0, J = 8.0 Hz, 1H), 7.06–7.24 (m, 5 H), 7.56 (s, 1H), 7.66 (m, 4H), 8.31 (dd, J = 2.0, J = 8.0 Hz, 1H), 8.96 (dd, J = 2.0, J = 4.0 Hz, 1H). δ_{C} (100.4 MHz, CDCl₃): δ (ppm) 40.53 (2C), 40.62 (2C), 75.75, 112.23 (2C), 112.33 (2C), 121.20, 126.71, 127.35 (2C), 127.46–128.31 (5C), 128.05, 130.91–130.60 (4C), 132.87, 134.64, 137.19, 140.62, 148.99, 149.77, 153.12 (2C). ESI-MS (M + H)⁺ calcd for C₃₂H₃₁N₃O: 473.61, found: 474.41.

4.5. General procedure for the synthesis of compounds **5a**-**h**

A mixture of compound 4–11, Pd/C (10 wt%), cyclohexa-1,4diene, and absolute ethanol was refluxed under N_2 for 5 h. The mixture was filtered, and ethanol was evaporated under vacuum.

4.5.1. Synthesis of 5,7-bis(pyridin-4-yl)-8-hydroxyquinoline (5a)

The specific amount of chemicals used are: 5,7-bis(pyridin-4-yl)-8-benzyloxyquinoline (11) (1.01 g, 2.57 mmol), Pd/C (0.79 g), cyclohexa-1,4-diene (1.84 g, 22.8 mmol), and ethanol (25.0 mL). The crude product was recrystallized from ethanol/water and dried under vacuum to give 5a (0.512 g, 61.2%) as orange solid. Mp.: p134.6–134.9 °C. IR (KBr) ν_{max} in cm⁻¹: 3409, 1508, 1334, 1257. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.38 (d, J = 8.0 Hz, 2H), 7.77 (s, 1H), 7.78 (dd, J = 4.4, 8.8 Hz, 1H), 7.79 (d, J = 8.0 Hz, 2H), 8.06 (d, J = 6.8 Hz, 2H), 8.64 (dd, J = 1.2, 8.6 Hz, 1H), 8.86 (d, J = 6.8 Hz, 2H), 8.99 (dd, J = 1.2, 4.4 Hz, 1H). δ_{C} (100.4 MHz, CDCl₃): δ (ppm) 111.92, 122.88, 125.51, 126.51, 126.98 (4C), 131.02, 133.89, 135.94, 136.14, 143.71 (4C), 147.16, 153.90, 154.40. ESI-MS (M + H)⁺ calcd for C₁₆H₁₃N₃O: 299.33, found: 300.02.

4.5.2. Synthesis of 5,7-bis(p-nitrophenyl)-8-hydroxyquinoline (5b)

The specific amount of chemicals used are: 5,7-bis(p-nitrophenyl)-8-benzyloxyquinoline (10) (1.02 g, 2.09 mmol), Pd/C (0.64 g), cyclohexa-1,4-diene (1.50 g, 18.6 mmol), and ethanol (20.4 mL). The crude product was recrystallized from ethanol/water and dried under vacuum to give 5b (0.50 g, 61.7%) as brown solid. Mp.: 122.2–122.5 °C. IR (KBr) v_{max} in cm⁻¹: 3468, 3061, 1482, 1230. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 6.81 (m, 2H), 7.21 (m, 2H), 7.34 (m, 1H), 7.38 (m, 2H), 7.62 (s, 1H), 7.68 (m, 2H), 8.30 (m, 1H), 8.95 (d, J = 2.8 Hz, 1H). δ_{C} (100.4 MHz, CDCl₃): δ (ppm) 115.0 (2C), 121.89, 128.35, 128.64 (2C), 128.72 (2C), 130.42, 130.78 (2C), 131.95, 134.13, 138.01, 138.28, 1441.01, 144.66, 148.27, 148.91, 150.28. ESI-MS (M + H)⁺ calcd for C₂₁H₁₃N₃O₅: 387.35, found: 388.18.

4.5.3. Synthesis of 5,7-bis(p-chlorophenyl)-8-hydroxyquinoline (5c)

The specific amount of chemicals used are: 5,7-bis(*p*-chlorophenyl)-8-benzyloxyquinoline (9) (1.01 g, 2.19 mmol), Pd/C (0.67 g), cyclohexa-1,4-diene (1.57 g, 19.5 mmol), and ethanol (21.4 mL). The crude product was recrystallized from ethanol/water and dried under vacuum to give 5c (0.720 g, 89.7%) as yellow crystals. Mp.: 168.1–168.5 °C. IR (KBr) ν_{max} in cm⁻¹: 3415, 1538, 1381. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.39 (m, 1H), 7.44 (m, 2H), 7.53 (m, 2H), 7.70 (d, *J* = 8.8 Hz, 2H), 7.74 (d, *J* = 7.2 Hz, 2H), 7.83 (s, 1H), 8.90 (d, *J* = 8.0 Hz, 1H), 9.03 (m, 1H). δ_{C} (100.4 MHz, CDCl₃): δ (ppm) 120.35, 128.52, 128.69 (2C), 129.10 (2C), 129.85, 130.11 (2C), 131.22 (2C), 132.77, 133.59, 134.05, 134.43, 134.69, 141.70, 141.84, 144.81 (2C), 144.93. ESI-MS (M)⁺ calcd for C₂₁H₁₃Cl₂NO: 366.24, found: 366.18.

4.5.4. Synthesis of 5,7-diphenyl-8-hydroxyquinoline (5d)

The specific amount of chemicals used are: 5,7-diphenyl-8-benzyloxyquinoline (4) (1.0 g, 2.58 mmol), Pd/C (0.794 g), cyclohexa-1,4-diene (1.85 g, 23.0 mmol), and ethanol (25.2 mL). The crude product was filtered and recrystallized from ethanol/water and dried under vacuum to give 5d (0.511 g, 66.7%) as light yellow crystals. Mp.: 136.1–136.5 °C. IR (KBr) ν_{max} in cm⁻¹: 3315, 3033, 1638, 1371. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.39–7.43 (m. 2H), 7.47 (dd, J = 4.0, 8.8 Hz, 1H), 7.49–7.55 (m, 6H), 7.67 (s, 1H), 7.89 (m, 2H), 8.31 (dd, J = 1.6, 8.8 Hz, 1H), 8.83 (dd, J = 1.6, 4.0 Hz, 1H). δ_C (100.4 MHz, CDCl₃): δ (ppm) 121.68, 122.25, 125.88, 127.33, 127.36, 128.45 (2C), 128.58 (2C), 129.42 (2C), 129.97, 130.14, 130.72, 134.62, 137.60, 138.69, 139.30, 147.91, 148.23. ESI-MS (M + H)⁺ calcd for C₂₁H₁₅NO: 297.35, found: 298.06.

4.5.5. Synthesis of 5,7-dinaphthyl-8-hydroxyquinoline (5e)

The specific amount of chemicals used are: 5,7-dinaphthyl-8-benzyloxyquinoline (8) (1.01 g, 2.05 mmol), Pd/C (0.63 g), cyclohexa-1,4-diene (1.47 g, 18.2 mmol), and ethanol (20.0 mL). The crude product was recrystallized from ethanol/water and dried under vacuum to give 5e (0.57 g, 70.2%) as gold crystals. Mp.: 202.2–203.6 °C. IR (KBr) ν_{max} in cm⁻¹: 3433, 3046, 1631, 1193. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.46–7.62 (m, 7H), 7.91–7.96 (m, 7H), 7.34 (m, 1H), 7.64 (s, 1H), 7.84 (m, 1H), 8.86 (d, *J* = 4.1 Hz, 1H). δ_C (100.4 MHz, CDCl₃): δ (ppm) 121.80, 126.02, 128.03–128.55 (24C), 135.23, 148.09, 149.00. ESI-MS (M)⁺ calcd for C₂₉H₁₉NO: 397.47, found: 397.99.

4.5.6. Synthesis of 5,7-bis(p-tert-butylphenyl)-8-hydroxyquinoline (5f)

The specific amount of chemicals used are: 5,7-bis(*p*-tertbutylphenyl)-8-benzyloxyquinoline (6) (1.50 g, 3.00 mmol), Pd/C (0.92 g), cyclohexa-1,4-diene (2.15 g, 26.6 mmol), and ethanol (22.0 mL). The crude product was recrystallized from ethanol/ water and dried under vacuum to give 5f (0.670 g, 65.1%) as linen crystals. Mp.: 138.6–139.8 °C. IR (KBr) ν_{max} in cm⁻¹: 3489, 2954, 1637, 1361. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 1.39 (s, 9H), 1.41 (s, 9H), 7.39 (dd, J = 4.4, 8.4 Hz, 1H), 7.42 (d, J = 8.4 Hz, 2H), 7.52 (m, 4H), 7.66 (s, 1H), 7.80 (d, J = 8.4 Hz, 2H), 8.35 (dd, J = 1.2, 8.4 Hz, 1H), 8.81 (dd, J = 1.2, 4.4 Hz, 1H). δ_{C} (100.4 MHz, CDCl₃): δ (ppm) 31.37 (3C), 31.43 (3C), 34.60, 34.63, 121.40, 122.13, 125.38 (2C), 125.43 (2C), 125.80, 128.97 (2C), 129.75 (2C), 129.89, 130.54, 134.63, 134.77, 136.34, 138.70, 147.75, 147.92, 150.13, 150.22. ESI-MS (M + H)⁺ calcd for C₂₉H₃₁NO: 409.56, found: 410.23.

4.5.7. Synthesis of 5,7-bis(p-methoxyphenyl)-8-hydroxyquinoline (5g)

The specific amount of chemicals used are: 5,7-bis(*p*-methoxyphenyl)-8-benzyloxyquinoline (5) (1.0 g, 2.23 mmol), Pd/C (0.70 g), cyclohexa-1,4-diene (1.60 g, 20.0 mmol), and ethanol (22.0 mL). The crude product was recrystallized from ethanol/ water and dried under vacuum to give 5g (0.689 g, 54.0%) as orange crystals. Mp.: 118.2–119.3 °C. IR (KBr) ν_{max} in cm⁻¹: 3352, 3015, 1635, 1266. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 3.87 (s, 3H), 3.89 (s, 3H), 7.03 (d, *J* = 8.8 Hz, 2H), 7.05 (d, *J* = 8.8 Hz, 2H), 7.37 (dd, *J* = 4.0, 8.4 Hz, 1H), 7.41 (d, *J* = 8.8 Hz, 2H), 7.58 (s, 1H), 7.80 (d, *J* = 8.8 Hz, 2H), 8.27 (dd, *J* = 1.2, 8.4 Hz, 1H), 8.78 (dd, *J* = 1.2, 4.0 Hz, 1H). $\delta_{\rm C}$ (100.4 MHz, CDCl₃): δ (ppm) 55.34, 55.39, 113.90 (2C), 113.97 (2C), 121.34, 121.89, 125.76, 129.64, 129.99, 130.29, 130.50 (2C), 131.13 (2C), 131.70, 134.63, 138.70, 147.62, 147.78, 158.89, 158.99. ESI-MS (M)⁺ calcd for C₂₃H₁₉NO₃: 357.40, found: 357.40.

4.5.8. Synthesis of 5,7-bis(p-dimethylaminophenyl)-8-hydroxyquinoline (5h)

The specific amount of chemicals used are: 5,7-bis(*p*-dimethylaminophenyl)-8-benzyloxyquinoline (7) (0.30 g, 0.63 mmol), Pd/C (0.79 g), cyclohexa-1,4-diene (1.85 g, 23.0 mmol), and ethanol (15.0 mL). The crude product was recrystallized from ethanol/water and dried under vacuum to give **5h** (0.12 g, 50.2%) as yellow crystals. Mp.: 176.2–177.8 °C. IR (KBr) ν_{max} in cm⁻¹: 3332, 2954, 1520, 1353. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 3.02 (s, 12H), 6.84 (d, J = 8.8 Hz, 2H), 7.20 (d, J = 7.8 Hz, 2H), 7.25 (s, 1H), 7.32 (d, J = 8.8 Hz, 2H), 7.38 (dd, J = 4.0, 8.8 Hz, 1H), 7.40 (d, J = 7.8 Hz, 2H), 8.34 (dd, J = 1.6, 8.8 Hz, 1H), 8.76 (dd, J = 1.6, 4.0 Hz, 1H). $\delta_{\rm C}$ (100.4 MHz, CDCl₃): δ (ppm) 40.60 (4C), 109.46 (2C), 112.42 (2C), 121.45, 126.98, 127.38 (2C), 127.79, 130.76 (4C), 131.2, 135.01, 138.36, 147.47, 149.75 (2C), 150.92. ESI-MS (M + H)⁺ calcd for C₂₅H₂₅N₃O: 383.49, found: 384.14.

4.6. General method for the preparation of the aluminum complexes

The stock solution of AlCl₃·6H₂O was prepared by dissolving (0.0604 g, 0.4530 mmol) of AlCl₃ in 25.00 mL of water. The stock solutions of ligands were prepared by taking 15.00 mg of compound **5a**, 19.40 mg of compound **5b**, 18.31 mg of compound **5c**, 15.00 mg of compound **5d**, 20.00 mg of compound **5e**, 20.50 mg of compound **5f**, 18.00 mg of compound **5g**, and 19.00 mg of compound **5h**, and dissolved in 25 mL of methanol in separate volumetric flasks. The final concentration of all the stock solutions including AlCl₃·6H₂O was 1.00×10^{-2} M. The complexes **1a–h** were prepared by mixing appropriate volumes of the ligands with the respective volume of aluminum chloride in 5.00 mL volumetric flasks then the volume was completed with methanol to the mark. The final concentration of all complexes was 2.0×10^{-5} M.

Acknowledgments

We acknowledge, with thanks, financial support from the Sultan Qaboos University (Grant #: IG/SCI/CHEM/09/05).

References

- [1] Okide GB. J Heterocycl Chem 2001;38:1213.
- [2] Tang CW, VanSlyke S. Appl Phys Lett 1987;51:913.
 [3] Jotterand N. Pearce DA. Imperiali B. J Org Chem 2001:
- [3] Jotterand N, Pearce DA, Imperiali B. J Org Chem 2001;66:3224.
 [4] Darby CM, Nathan CF. J Antimicrob Chemother 2010;65:1424-7.
- [4] Darby CM, Fathan CL, Fathan CHO, Chemother 2010, 05, 1424-7.
 [5] Benjamin RD, Short MA, Vargas JC, Thomas SO, Mark CE. J Antimicrob Chemother 2006;57:104-9.
- [6] Ketan BP, Kiran SN. Res J Pharm Biol Chem Sci 2012;3:838–44.
- [7] Corce V, Morin E, Guiheneuf S, Renault E, Renaud S, Cannie I, et al. Bioconjug Chem 2012;23:1952–68.
- [8] (a) Tang CW, VanSlyke SA, Chen CH. J Appl Phys 1989;65:3610–6;
 (b) Chen CH, Shi J. Coord Chem Rev 1998;171:161–74;
 (c) Kelly S. Chem Br 2003;39:34–7;
- (d) Veinot JGC, Marks T. J Accounts Chem Res 2005;38:632–43.[9] Hopkins TA, Meerholz K, Shaheen S, Anderson ML, Schmidt A, Kippelen B,
- et al. Chem Mater 1996;8:344–51. [10] Ballardini R, Varani G, Indelli MT, Scandola F. Inorg Chem 1986;25:3858–65.
- [11] Wang S. Coord Chem Rev 2001;215:79–98.
- [12] Farruggia G, Iotti S, Prodi L, Montalti M, Zaccheroni N, Savage Pl B, et al. J Am Chem Soc 2006;128:344–50.
- [13] Pohl R, Montes VA, Shinar J, Anzenbacher P. J Org Chem 2004;69:1723–5.
- [14] (a) Bernard V, Isabelle L. Coord Chem Rev 2000;205:3–40;
 (b) Prasanna de S, Nimal GA, Thorfinnur GQ, Allen JM, Huxley CPM, Rademacher JT, et al. Chem Rev 1997;97:1515–66;
 (c) Mauro F, Vieri F, Luca G, Mauro M. Coord Chem Rev 2012;256. 170–192.22.
- [15] Hatai J, Pal S, Jose GP, Bandyopadhyay S. Inorg Chem 2012;51:10129–35.
- [15] Tatar J, Par S, Jose GP, Bandyopaniyay S. morg chem 2012, 51, 10129–55.[16] Ocak U, Ocak M, Parlayan S, Basoglu A, Caglar Y, Bahadir Z. J Lum 2011;131:
- 808-14.
- [17] (a) Kim SH, Choi HS, Kim JH, Lee SJ, Quang DT, Kim JS. Org Lett 2010;12:560–3;
 (b) Perlmutter JS, Tempel LW, Black KJ, Parkinson D, Todd RD. Neurology 1997;49:1432–8;
 (c) Walton JR. Neuro Toxi 2006;27:385–94.
- [18] Yen-Wen L, Chang-Hung C, An-Tai W. Analyst 2012;137:5201–3.
- [19] Dong Y, Han T, Shi J, Tong B, Feng X, Zhi J. Fam Zhu Shen 2012. CN 102313726
- A 20120111.
 [20] Sen S, Mukherjee T, Chattopadhyay B, Moirangthem A, Basu A, Marek J, et al. Analyst 2012;137:3975–81.
- (a) Rao TP, Gladis JM. Anal Sci 2002;18:517–24;
 (b) Bronson RT, Montalti M, Prodi L, Zaccheroni N, Lamb RD, Dalley NK, et al. Tetrahedron 2004;60:11139–44;
- (c) Vaswani KG, Keranen MD. Inorg Chem 2009;48:5797–800.
- [22] Bloom PR, Weaver RM, McBride MB. Soil Sci Soc Am J 1978;42:713-6.
 [23] Jiang Xin-hui, Wang Bao-dui, Yang Zheng-yin, Liu Yong-chun, Li Tian-rong,
- Liu Zeng-chen. Inorg Chem Comm 2011;14:1224–7.
- [24] Suliman FOS, Al-Busafi SN, Al-Risi M, Al-Badi K. Dye Pigment 2012;92: 1153–9.
- [25] Shoji E, Miyatake K, Hlil AR, Hay AS, Maindron T, Jousseaume V, et al. J Polym Sci Part A Polym Chem 2003;41:3006–16.