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Abstract
The hot tearing susceptibility (HTS) and itsmechanismofMg-4.5Zn-xY-yNd (x+y=6, x=0, 1, 3,
6) alloys is studied based onClyne-Davies’model and ‘T’mold. The hot tearing tendency of four alloys
is characterized by SEM,XRD andTEM.Morever, HTS of four kinds ofMg-4.5Zn-xY-yNd alloys is
predicted by numerical simulation (ProCAST). The order of the four alloys arranged according to
HTS fromhigh to low is as follows:Mg-4.5Zn-3Y-3Nd>Mg-4.5Zn-1Y-5Nd>Mg-4.5Zn-
6Nd>Mg-4.5Zn-6Y. The results show that the crystalline state ofα-Mg phase and the type of the
second phase changewith the relative contents of Y andNd, which are themain factors determining
the hot tearing tendency. ForMg-4.5Zn-6Y alloy, themain precipitated phases are LPSOphase
(Mg12ZnY) andWphase (Mg3Zn3Y2). ForMg-4.5Zn-3Y-3Nd andMg-4.5Zn-1Y-5Nd alloys, the
main precipitates areWphase (Mg3Zn3(Y,Nd)2). ForMg-4.5Zn-6Nd alloy, themain precipitation
phase is only T phase (Mg-Zn-Nd ternary phase).

1. Introduction

With the shortage of global energy and resources, countries around theworld are payingmore attention to
environmental protection.Magnesium alloys havemany advantages, such as lessmelting energy consumption,
faster feeding and solidification speed, shorter die casting cycle and longer service life ofmold. The effect of
substituting steels, aluminiumalloys and plastic parts under conventional use conditions is very excellent.
Therefore, it is known as ‘Metal of the 21st Century’ andwidely used in automobile, computer, communication
and other broadfields [1–4].

Due to the lowmechanical properties of commercialmagnesium alloys, the development of newmagnesium
alloys with high strength and toughness has become a new research hot focus. Previous studies have shown that
themechanical properties ofmagnesium alloys can be significantly improved by adding appropriate rare earth
[5–16]. Li et al [17] found that the yield strength, tensile strength and elongation ofMg-Zn alloys withNd (Mg-
0.2Zn-3Nd-0.4Zr) are 119MPa, 186.7 MPa and 10.04% respectively. After aging at 200°C for 16 hours, the yield
strength and tensile strength increased to 140MPa and 250MPa, respectively. Chen et al [18] found that the
tensile strength and yield strength ofMg-Zn-Nd alloywith Y (Mg-0.2Zn-6Y-3Nd-0.4Zr) increased to 245MPa
and 150MPa respectively, especially the elongation increased to 16%.Wang et al [19] investigated that the
tensile strength and yield strength of both as-cast and aged alloys increase with the increase of Y content. The
maximum tensile strength and yield strength ofMg-Nd-Zn-Zr-1.8%Y alloy could reach 198MPa and 122MPa
at room temperature, respectively. The tensile strength could reach 271MPa and 161MPa after peak aging
treatment (530 °C/14 h+200°C/12 h). Comparingwith Y-free alloys, it increases by 10.6% and 12.6%,
respectively.

The application ofmagnesium alloys requires not only high strength and toughness, but also good
technological properties, especially casting properties. As a result hot tearing susceptibility (HTS) is important
especially during solidification, which determines the size and structure complexity of parts or billets [20–29]. So
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far, about theHTS ofMg-RE-ZnTernary alloys, Huang et al [30] studied theHTS of alloys (Mg-3Nd-0.2Zn-Zr
alloys) shows that pouring andmold temperatures significant influence on theHTS and the ranges of pouring
andmold temperatures were suggested to be 1003–1033 K and>= 623 K forNZ30K alloy. Liu et al [31] studied
theHTS systematically ofMg-Y-Zn-Zr alloy shows thatMgZn(2.5)Y(1)Zr(0.5) alloy has the lowest hot tearing
tendency.However, theHTS ofMg-Y-Nd-Zn alloys with high strength and toughness has not been reported
publicly. In this paper, we tried to systematically analyze the hot tearing tendency ofMg-4.5Zn-xY-yNd
(x+y=6) alloys. In order to exploit newmagnesium alloys with high strength, toughness and lowHTS
[32–39].

2. Experimental procedure

2.1. Experimentalmaterials andprocesses
The alloy ismade of industrial puremagnesiumwith a purity of 99.95%, industrial pure zincwith a purity of
99.95%,Mg-25%Y andMg-20%Nd intermediate alloys as rawmaterials. First, puremagnesium ingots are
melted in stainless steel crucible coatedwith BNon the innerwall. Aftermelting, pure zinc,magnesium-25%Y
andmagnesium-20%neodymiummaster alloys are added in turn. Then, the temperature is adjusted to 700 °C,
holding for 40 min, and poured into the preheated die at 280 C. For the preheat treatment of themold, thewhole
mold is assembled first, then put into the preheater which is adjusted to 280 °C for at least one hour, and take out
when themoltenmetal is poured. The nominal chemical composition of the refined test alloys is shown in
table 1 [40–43].

Hot tearing experiment is used a T-shapedmold. The schematic is shown infigure 1. It ismainly composed
of a hot tearing casting system, a sensor and a data acquisition system. The solidification temperature data is
collected by a thermocouple inserted into the hot spot. The shrinkage stress acquisition by the sensor through
the connecting rod at the end of themold, and transmitting to analog-to-digital converter (A/D), then displayed
in the formof data and charts by computer.

2.2.Double thermocouple analysis system
The solidification curve is collected and analyzed by the double thermocouple analysis system. The schematic
diagram is shown infigure 2. Thermocouples are inserted into the center and edge of the crucible tomeasure the
center position temperature (Tc) and the edge position temperature (Te) during solidification. In order to ensure
the heat conduction from the radial direction asmuch as possible, we use thicker asbestos net seal the top of the
crucible. Thematerial used at the bottom is insulating sand and 3 cm thick asbestos to cut heat loss.

Table 1.Chemical compositions of experimental
alloys (wt)%.

Alloy Zn Y Nd Mg

Mg-4.5Zn-6Nd 4.5 0 6 Bal.

Mg-4.5Zn-1Y-5Nd 4.5 1 5 Bal.

Mg-4.5Zn-3Y-3Nd 4.5 3 3 Bal.

Mg-4.5Zn-6Y 4.5 6 0 Bal.

Figure 1. Schematic of experimental setup.
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Themain purpose of the dual thermocouple analysis system is to determine the dendrite coherence point
[44]. The principle as follows: with the decrease of temperature, the solid phase begins to increase continuously.
Because the thermal conductivity of solid phase and liquid phase is different, the thermal conductivity of solid
phase is larger than that of liquid phase.When dendrites form a continuous network structure, heat diffuses to
the edgemore easily through the connected solid phase, which reduces the temperature difference between the
center and the edge. Therefore, themaximum temperature difference between the central thermocouple and the
edge thermocouple indicates that the dendrite begins to coherence. At this time the corresponding temperature
of the central thermocouple is the dendrite coherence temperature (Tcoh).

2.3. Prediction of alloyHTSby clyne-daviesmodel
The prediction of alloyHTS is based on the assumption of Cyne-Daviesmodel [44].When the solid fraction ( fs)
between 0.4 and 0.9, the liquid can beflow freely between dendrites, and the solidification shrinkage can befilled
in time. Therefore, the shrinkage stress is fully releasedwithout hot tearing, so it is called stress relaxation stage.
When the solid fraction higher than 0.9, the dendrites begin to coherence. The residual liquid phase feeding is
confined and the feedingmechanism also changes from thewhole feeding to the local region feeding between the
dendrites. At this time the alloy enters the vulnerable region. As shown in Formula (1), defines the solidification
time of fs between 0.4 and 0.9 as tR and that of fs between 0.9 and 0.99 as tv. The ratio of fs and fs is used as a
parameter CSC (Cracking susceptibility coefficient) for the determinationHTS of alloys. The expression as
follows:

= =
-
-

( )CSC
t

t

t t

t t
1V

R

0.99 0.9

0.9 0.4

t0.99 is the time corresponding to fs=0.99; t0.9 is the time corresponding to fs=0.9; t0.4 is the time
corresponding to fs=0.4.

Since the temperature decreases with timemonotonously during solidification, the CSC formula can also be
expressed in another form, as shown in Formula (2). Here, the temperature difference of solid fraction fs
between 0.4 and 0.9 can be expressed by TR, between 0.9 and 0.99 can be expressed by TV [45, 46].
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3. Results and discussion

3.1. Prediction and characterization of alloysHTS by differential thermal analysis
3.1.1. HTS Prediction
Based on the dual-couple temperature curve and theClyne-Daviesmodel, the calculatedCSC andCSC* (Crack
Susceptibility Coefficient) ofMg-4.5Zn-xY-yNd (x+y=6, x=0, 1, 3, 6) alloys are shown in figure 3. The
results show that when the total content of rare earth elements is a constant, theHTS depends on the ratio of Y
andNd [31]. TheCSC andCSC* of theMg-4.5Zn-1Y-xNd-0.5Zr alloys are in the following order:Mg-4.5Zn-
3Y-3Nd>Mg-4.5Zn-1Y-5Nd>Mg-4.5Zn-6Nd>Mg-4.5Zn-6Y.

3.1.2. Characterization by solidification process
Figure 4 shows themethod of double-couple analysis ofMg-4.5Zn-6Y alloy. Under the same cooling conditions,
the lower the dendrite coherence temperature (Tcoh) is, and the larger the solid fraction ( fcoh) is during
coherence, the greater the tendency of hot tearing of alloys.

Figure 2. Schematic diagramof double thermocouple test system.
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Figure 3.HTS ofMg-4.5Zn-xY-yNd alloys: (1).Mg-4.5Zn-6Y; (2).Mg-4.5Zn-3Y-3Nd; (3).Mg-4.5Zn-1Y-5Nd; 4.Mg-4.5Zn-6Nd.

Figure 4.Method of double electric couple analysis of theMg-4.5Zn-6Y alloy.

Figure 5.Results of double electric couple analysis ofMg-4.5Zn-xY-yNd alloys.
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Figure 5 is the results of double electric couple analysis ofMg-4.5Zn-xY-yNd alloys. It can be seen that the
Tcoh of theMg-4.5Zn-6Y alloy is the lowest, and the Tcoh of theMg-4.5Zn-3Y-3Nd alloy is the highest,Which
may be add two rare earth elements at the same time ismore likely to be enriched at the front edge of the solid-
liquid interface, and leads to a larger constitutional super-cooling, accelerating dendrite branching andmaking
α-Mg dendrites coherence prematurely. Tcoh ofMg-4.5Zn-3Y-3Nd,Mg-4.5Zn-1Y-5Nd ,Mg-4.5Zn-6Nd and
Mg-4.5Zn-6Y alloys are 618.1 °C, 617.4 °C, 609.0 °C and 595.4 °C, respectively, decreasing order of it consistent
withCSC*.

3.2. Characterization by temperature-shrinkage stress curve
Figure 6 shows the curve of solidification shrinkage force (F) versus time (t) and the curve of cooling temperature
(T) versus time (t) ofMg-4.5Zn-xY-yNd alloys. Corresponding tofigures 6(a)–(d), the solid fractions of initial
cracking are 57.6%, 73.8%, 82.5% and 99.8%, respectively. As shown in table 3, the initial cracking ofMg-
4.5Zn-3Y-3Nd,Mg-4.5Zn-1Y-5Nd,Mg-4.5Zn-6Nd occurs before the precipitation of the second phase, that is
to say, the three alloys correspond to the remaining 42.4%, 26.2% and 17.5% liquid phases respectively. In the
presence of liquid phase between grains, the strength of grain boundaries is proportional to the surface tension
and contact area of liquid phase, and inversely proportional to the thickness of liquid film (Fcrack=2γA/b.
Among them, γ is surface tension of liquid phase, A is contact area between liquidfilm andmatrix, b is the
thickness of liquidfilm). Obviously, the liquidfilm thickness ofMg-4.5Zn-3Y-3Nd,Mg-4.5Zn-1Y-5Nd,Mg-
4.5Zn-6Nd alloys decreases in turn at the initial cracking, which is themain reason for the decrease of their
thermal cracking sensitivity.

In addition, forMg-4.5Zn-6Y alloy, the initial cracking temperature is lower than that of LPSOphase and
higher than that ofWphase. That is to say, the precipitated LPSOphase will play a role in bridging the two sides
of grain boundary to prevent crack growth.Of course, its effect is also related to the nature of LPSOphase itself
and the bonding relationship between LPSOphase andmatrix crystals.

3.3. Characterization bymicrostructure evolution
Figure 7 shows the as-castmicrostructure and precipitated second phasemorphology ofMg-4.5Zn-xY-yNd
alloys. Figure 8 shows theXRDdiffraction patterns ofMg-4.5Zn-xY-yNd alloys. It can be seen that themain
precipitated phase of theMg-4.5Zn-6Y alloy is the LPSOphase (Mg12ZnY), themain precipitated phase of the
Mg-4.5Zn-3Y-3Nd andMg-4.5Zn-1Y-5Nd alloy isW-phase (Mg3Zn3(Y,Nd)2),and themain precipitation of
Mg-4.5Zn-6Nd alloy is T-phase (Mg-Zn-Nd ternary phase).Moreover, themorphology ofW-phase and

Figure 6. Shrinkage force and temperature as a function of time forMg-4.5Zn-xY-yNd alloys: (a)Mg-4.5Zn-3Y-3Nd; (b)Mg-4.5Zn-
1Y-5Nd; (c)Mg-4.5Zn-6Nd; (d)Mg-4.5Zn-6Y.
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T-phase shows a network structure along grain boundaries, while LPSOphase tends to extend from grain
boundary to intragranular direction [47].

The composition of the lowmelting eutectic phase analyzed by EDS is shown in table 2. LPSOphase is the
main lowmelting precipitation and a small amount ofW-phase (Mg3Zn3Y2)without addingNd.With the
change of Y andNd ratio, LPSOphase disappeared andMg3Zn3Y2 transformed intoMg3Zn3(Y,Nd)2. Themain
precipitation is T-phase without Y.

Transmission electronmicroscope (TEM) patterns of the LPSOphase andW-phase infigures 9(a) and (b),
respectively. The LPSOphase is precipitated by eutectic reaction of residual liquid at 544.7°C, and the atomic

Figure 7. SEM images ofMg-4.5Zn-xY-yNd alloys: (a)Mg-4.5Zn-6Y; (b)Mg-4.5Zn-3Y-3Nd; (c)Mg-4.5Zn-1Y-5Nd; (d)Mg-4.5Zn-
6Nd.

Figure 8.XRD spectra ofMg-4.5Zn-xY-yNd alloys: (a)Mg-4.5Zn-3Y-3Nd; (b)Mg-4.5Zn-1Y-5Nd; (c)Mg-4.5Zn-6Y; (d)Mg-4.5Zn-
6Nd.
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stacking is similar to that of a-Mg phase with stacking faults. The distribution of rare earth and zinc atoms is
periodically distributed on stacking faults. Although the lattice constants are different, there is still a certain
coherent relationship between the two phases.Moreover, the strength of the precipitated LPSOphase has a
strong pinning force on both sides of grain boundary of a-Mg.

3.4. Characterization by FractureMorphology
Figure 10 shows the fracturemorphology ofMg-4.5Zn-xY-yNd alloys. The tearing liquidfilm ofMg-4.5Zn-3Y-
3Nd alloy has thickwrinkles and stretched ‘Wiredrawing’ on the fracture surface infigure 10(a). According to
the and F-t curves ofMg-4.5Zn-3Y-3Nd, the first hot tearing initiation at the temperature of 539.9°Cand solid
fraction is 57.6%, Because there are stillmore liquid phase remaining at this time, the crack is fully fed.However,
the solidification shrinkage stress increases further during solidification, and the second crack forms at the
temperature of 499.5°C ( fs=92.6%), the feeding position is stretched again. indicating thatMg-4.5Zn-3Y-3Nd
alloy has highHTS. Figures 10(b), (c) shows that the folded liquidfilm obvious decrease comparedwith
figure 10(a), indicating that the liquid fraction is low and the crack initiation is late relatively. The lowmelting
phase can fed the crack and reduce the tendency of hot tearing to some extent. This is consistent with the analysis
of the temperature-stress curve, so these two alloys have lowHTS than the alloy offigure 10(a). By observing the
thickness and continuity of the tear film, As shown infigure 10(d), it is caused byminute cracks initiation at the
end of the solidification. At this time, the strength of the alloy is close to themaximum, and the crack is difficult
to propagation, so the hot tearing resistance is the best.

3.5. Characterization by thermal analysis curve
Figure 11 shows the cooling curve, first derivative curve and baseline determined byNewton baselinemethod of
Mg-4.5Zn-xY-yNd alloys.When there is inflection point in the cooling curve and exothermic peak in the first
derivative curve of temperature, it indicates that the latent heat of crystallization is released and a newphase is
precipitated in the liquid phase. The temperatures of each precipitation in the figure 11 are shown in table 3.

It can be seen fromfigure 11 and table 3 that the latent heat peak and precipitation temperature of the second
phase ofMg-4.5Zn-3Y-3Nd alloy,Mg-4.5Zn-1Y-5Nd alloy,Mg-4.5Zn-6Nd alloy andMg-4.5Zn-6Y alloy
increase in turn, which indicates that the residual liquid phase between the dendrites increases sequentially after
the precipitation of theα-Mg phase. As a result, not only the feeding capacity of the residual liquid phase

Table 2.The EDS results of the second phasemarked by thewhite arrows and letters in
figure 4Mg-4.5Zn-xY-yNd alloys.

Chemical compositions (at%)

Position Mg Zn Y Nd Phase

A 80.23 16.81 2.96 — LPSOphase

B 69.85 26.63 3.52 — W-phase(Mg3Zn3Y2)
C 74.91 21.63 0.86 2.60 W-phaseMg3Zn3(Y,Nd)2
D 72.49 20.28 1.28 5.96 W-phaseMg3Zn3(Y,Nd)2
E 64.04 26.41 — 9.55 T-phase

Figure 9.TEMpatterns of theMg-Zn-Y LPSO-phase andW-phase.
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Figure 10. Fracturemorphologies ofMg-4.5Zn-xY-yNd alloys: (a)Mg-4.5Zn-3Y-3Nd; (b)Mg-4.5Zn-1Y-5Nd; (c)Mg-4.5Zn-6Nd;
(d)Mg-4.5Zn-6Y.

Figure 11. Solidification path ofMg-4.5Zn-xY-yNd alloys: (a)Mg-4.5Zn-3Y-3Nd; (b)Mg-4.5Zn-1Y-5Nd (c);Mg-4.5Zn-6Nd; (d)
Mg-4.5Zn-6Y.
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between the dendrites is improved, but also the local temperature rise between the dendrites is increased to
relieve the solidification shrinkage stress and reduce theHTS of the alloy.

3.6. Numerical simulation ofHTS
Figure 12 shows the calculatedHot Tearing Indicator (HTI) and Stress at the hot spot forMg-4.5Zn-xY-yNd
alloys. HTI provide a good indication for the susceptibility of the hot tearing occurred during solidification. The
simulation results show that the hot tearing tendency ofMg-4.5Zn-6Y alloy, as shown infigure 12(a), is
obviously different from that of the other three alloys. ItsHTI value is the smallest and stress distribution at the
hot spot ismore uniform.When the ratio ofNd is 3%, theHTS is the highest. The susceptibility of hot tearing
predicted by numerical simulation is in good agreementwith that obtained by experimental observations.

4. Conclusion

(1) When the total content of (Y+Nd) in the alloy is constant (6 wt%), the predicted and measured HTS of
Mg-4.5Zn-xY-yNd alloys changes with the relative content of Y andNd. The order fromhigh to low isMg-
4.5Zn-3Y-3Nd,Mg-4.5Zn-1Y-5Nd,Mg-4.5Zn-6Nd,Mg-4.5Zn-6Nd andMg-4.5Zn-6Y.

(2) The precipitations have an important effect on the hot tearing tendency of Mg-4.5Zn-xY-yNd alloys. The
latent heat peak and precipitation temperature of the second phase ofMg-4.5Zn-3Y-3Nd alloy,Mg-4.5Zn-
1Y-5Nd alloy,Mg-4.5Zn-6Nd alloy andMg-4.5Zn-6Y alloy increase sequentially, which not only improves

Table 3.Thermal analysis results for the characteristic temperatures forMg-4.5Zn-xY-yNd alloys.

Alloy α-Mg LPSOphase W-phase T-phase TS

Mg-4.5Zn-3Y-3Nd 626.8 °C — 496.4 °C — 469.2 °C
Mg-4.5Zn-1Y-5Nd 628.3 °C — 504.7 °C — 485.0 °C
Mg-4.5Zn-6Nd 628.8 °C — — 505.8 °C 490.8 °C
Mg-4.5Zn-6Y 631.9 °C 544.7 °C 525.4° C — 504.8 °C

Figure 12.Comparison betweenHTI predicted and the distribution of stress using ProCASTofMg-4.5Zn-xY-yNd alloys atmold
temperature of 280°C: (a)Mg-4.5Zn-6Y; (b)Mg-4.5Zn-6Nd; (c)Mg-4.5Zn-1Y-5Nd; (d)Mg-4.5Zn-3Y-3Nd.
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the feeding capacity of the residual liquid phase between dendrites, but also increases the local temperature
between dendrites to alleviate the solidification shrinkage stress and reduce theHTS of the alloys.

(3) According to the fracture temperature and solid fraction of the alloys, hot tearing occurs in the middle and
late solidification stages, and the interdendritic liquid phase and its crystallization behavior have a great
influence on the hot tearing. The residual liquid phase with eutectic composition feeding and the coherent
extension of the second phase precipitated at high temperature to thematrix can effectively pin grain
boundaries and inhibit the nucleation and growth of hot cracks.
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