Tetrahedron 67 (2011) 8404-8410

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Syntheses of ¹³C₂-labelled 11Z-retinals

Neville J. McLean, Axel Gansmuller, Maria Concistre, Lynda J. Brown, Malcom H. Levitt, Richard C.D. Brown*

School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK

ARTICLE INFO

Article history: Received 10 February 2011 Received in revised form 30 June 2011 Accepted 18 July 2011 Available online 22 August 2011

Keywords: Retinal Rhodopsin Polyene Labelled compounds

ABSTRACT

To enable solid-state NMR investigations of the rhodopsin chromophore and its photointermediates, a series of 11*Z*-retinal isotopomers have been synthesised containing pairs of adjacent ¹³C labels at C9/C10, C10/C11 or C11/C12, respectively. The C9 labelled carbon atom was introduced through the Heck reaction of a ¹³C-labelled Weinreb acrylamide derivative, and the label at the C12 position derived from a ¹³C-containing ethoxy Bestmann–Ohira reagent. The ¹³C labels at C10 and C11 were introduced through the reaction of β -ionone with labelled triethyl phosphonoacetate.

© 2011 Elsevier Ltd. All rights reserved.

Tetrahedror

1. Introduction

Located in the rod cells of the retina, rhodopsin is responsible for dim light vision in vertebrates. It is a 40-kd G-protein coupled receptor (GPCR) consisting of an 11*Z*-retinylidene chromophore bound to the apoprotein opsin by a protonated Schiff base linkage to the ε -amino group of lysine-296. Upon absorption of a photon, the chromophore photoisomerises to all *E*-retinylidene in approximately 200 fs leading to conformational changes within the protein producing the active form of rhodpsin, metarhodpsin II.¹

Members of the GPCR super-family of receptors are frequently identified as targets for the development of therapies to treat a diversity of diseases.² Detailed structural knowledge of GPCRs and their bound ligands is therefore of great significance, and rhodopsins have been one of the most widely studied GPCRs due to the availability of crystal structural data and adequate amounts of material.³ Understanding in detail how the protein environment in rhodopsin affects and accelerates isomerisation of the retinylidene chromophore, and how isomerisation of the chromophore influences conformational changes in the protein, is important for GPCR research. Recently, solid-state NMR has been used as a powerful tool to study the conformation of the retylidene chromophore in rhodopsin and its photointermediates with a level of resolution unmatched using other techniques.^{4,5} Double-quantum filtered ¹³C magic angle spinning structural studies,⁶ however, require access to

Fig. 1. Structures of 11Z-retinal isotopomers 1a-d and all E-retinal (2a).

Previously, ¹³C-labelled11*Z*-retinal isotopomers have been obtained by photoisomerisation of all *E*-retinals already containing appropriately positioned ¹³C labels introduced by total synthesis.^{7–9} This approach requires separation of the desired 11*Z*-retinal from a complex mixture of retinal stereoisomers and

^{*} Corresponding author. Tel.: +44 (0) 23 8059 4108; fax: +44 (0) 23 8058 6805; e-mail address: rcb1@soton.ac.uk (R.C.D. Brown).

^{0040-4020/\$ –} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2011.07.092

degradation products by means of preparative normal phase HPLC. Stereocontrolled syntheses of unlabelled 11*Z*-retinals have been reported,^{10,11} although we are not aware of reports detailing the application of these synthetic routes to obtain ¹³C-labelled compounds. The stereocontrolled synthesis of 11*Z*-retinal is complicated by facile chemical and photochemical isomerisation of the polyene system. In the present work, our objective was to develop stereocontrolled syntheses of 11*Z*-retinals containing adjacent ¹³C labels at positions close to the site of isomerisation in the rhodopsin retylidene chromophore. Here we describe syntheses of three 11*Z*-retinal isotopomers **1b–d**.

For the solid-state NMR studies, three different doubly labelled11*Z*-retinals **1b**–**d** were required, containing pairs of adjacent ¹³C labels at C9/C10, C10/C11 and C11/C12, respectively. Our synthetic approach was based on the previously demonstrated coupling of the alkyne and iodoalkene fragments **4a** and **5** to afford dehydroretinol (**3a**), followed by zinc-mediated semi-hydrogenation of the alkyne **3a**, and subsequent oxidation of the allylic alcohol to afford 11*Z*-retinal (Scheme 1).^{10b,12} Alkyne fragment **4a** was to be derived from aldehyde **6a**, which would in turn come from *E*selective olefination of β -ionone (**7a**).^{13,14} Synthesis of β -ionone would proceed by Heck coupling of cyclohexenyl triflate **10** and the acrylamide derivative **11a**.¹⁵ With the synthetic plan in place, appropriate commercially available ¹³C-labelled starting materials were identified to be: $[1-1^{13}C]$ -acetic acid, $[2-1^{13}C]$ -triethyl phosphonoacetate, $[1,2-1^{13}C]$ -bromoethyl acetate and ¹³CH₃I.

Scheme 1. Overview of the synthesis of 11Z-retinals suitable for introducing pairs of ^{13}C labels at the C9/C10, C10/C11 or C11/C12 positions.

2. Results and discussion

For clarity, the syntheses of the three different doubly ${}^{13}C_2$ -labelled isotopomers **1b**–**d** are described separately. Some of the reactions discussed below were initially performed using the unlabelled material, and any significant differences in yields or stereoselectivities, where observed, are discussed.

2.1. [9,10-¹³C₂]-11Z-Retinal

Incorporation of the ¹³C label at the C9 position in retinal required its introduction during the synthesis of ${}^{13}C-\beta$ -ionone **7b** (Scheme 2). The direct Heck reaction between labelled methyl vinyl ketone and the cyclohexenvl triflate 10 was considered to be unattractive due to the practical difficulties in manipulating relative small quantities of volatile and expensive labelled building blocks.¹⁵ We therefore targeted a novel Weinreb amide derivative **11b**, which would serve as a precursor to the methyl ketone once coupled to vinyl triflate 10. Thus, bromination of commercial $[1-^{13}C]$ -acetic acid (**12b**) and subsequent treatment with N-benzylmethoxyamine afforded bromoacetamide derivative 13 in 56% yield over the two steps. Arbuzov reaction of 13 with triethyl phosphite followed by Horner-Emmons olefination with formaldehyde provided acrylamide **11b**. Triflate **10** was prepared from 2,6-dimethylcyclohexanone as described in good yield,¹⁵ then coupled with acrylamide 11b to afford the Weinreb amide derivative 16. Finally, addition of methyllithium to the Weinreb amide analogue 16 provided the desired β -ionone isotopomer 7b containing the required ¹³C label at C9.

Scheme 2. Reagents and conditions: (a) (i) $[1^{-13}C]$ -acetic acid, PBr₃, Br₂, reflux, (ii) BnNH(OMe), Et₃N, CH₂Cl₂, 0 °C; (b) P(OEt)₃, 180 °C; (c) CH₂O, K₂CO₃, H₂O, 40 °C; (d) **10**, Pd(PPh₃)₂Cl₂, Et₃N, DMF, 75 °C; (e) MeLi, THF, -78 °C \rightarrow rt.

Olefination of the β -ionone isotopomer **7b** with commercial $[2-^{13}C]$ -triethyl phosphonoacetate proceeded with good E/Z selectivity (E/Z=7:1) and excellent yield (Scheme 3).¹³ However, the two-step ester reduction-alcohol oxidation sequence returned an unexpectedly poor yield of aldehyde 6b due to decomposition and isomerisation at the C9 double bond during silica gel purification. The same chemistry, previously carried out on the unlabelled material, had progressed smoothly in 71% yield and without substantial isomerisation, although the sensitivity of the aldehyde **6** has been noted by others.¹⁴ Reaction of the mixture of stereo-isomers **6b** (E/Z=3:1) with TMSCHN₂ afforded alkyne **4b** in 57% yield, with enrichment of the E-isomer to 12:1 after chromatography. Palladium-catalysed cross-coupling of alkyne 4b with the vinyl iodide fragment 5 returned the desired enyne 18b as a mixture with unreacted vinyl iodide 5.10b This mixture was subjected to silyl deprotection to secure $[9,10^{-13}C_2]$ -11Z-dehydroretinol (**3b**) in 44% isolated yield. Hydrogenation with activated zinc provided $[9,10^{-13}C_2]$ -11Z-retinol with Z/E ratio at C11 of 3:1.^{10b} Oxidation of the crude unseparated retinols with TPAP and NMO occurred rapidly to provide pure samples of $[9,10-^{13}C_2]-11Z$ -retinal (1b) and $[9,10-^{13}C_2]-11E$ -retinal (**2b**) after preparative HPLC separation on a silica column. The isomers were identified on the basis of HPLC retention times, and through successful incorporation of [9,10-¹³C₂]-11Z-retinal into rhodopsin.¹⁶

Scheme 3. Synthesis of [9,10-¹³C₂]-11Z-retinal (**1b**). Reagents and conditions: (a) triethyl phosphonoacetate or [2-¹³C]-triethyl phosphonoacetate, NaH, Et₂O; (b) (i) LiAlH₄, Et₂O, $-78 \degree C \rightarrow rt$, (ii) TPAP, NMO, 4 Å sieves, CH₂Cl₂; (c) TMSCHN₂, LDA, THF, $-78 \degree C$; (d) **5**, Pd(PPh₃)₄, Cul, *i*-PrNH₂; (e) TBAF, THF, $0\degree C \rightarrow rt$; (f) (i) Zn, Cu(OAc)₂, AgNO₃, H₂O/MeOH, 40 °C, (ii) TPAP, NMO, 4 Å sieves, CH₂Cl₂.

The final steps of the syntheses had been conducted in the dark, or in dim red light when necessary. Despite these precautions, some isomerisation of 11*Z*-retinal occurred during manipulation of material. It is evident that several of the steps involving the labelled intermediates were accomplished with significantly reduced yields and selectivities in comparison to the same reactions using unlabelled material. The cause was later traced to a poor quality batch of silica gel, and although similar problems were largely avoided in subsequent syntheses, these results do highlight the well-known sensitivity of the polyene intermediates towards thermal, acid catalysed and photochemical isomerisation.^{8d,17} However, once purified, the samples of 11*Z*-retinals have been stored at -78 °C in the dark, and have been used for incorporation into rhodopsin without problem over a number of years.

2.2. [10,11-¹³C₂]-11Z-Retinal

[10,11-¹³C₂]-11*Z*-Retinal (**1c**) was the most conveniently accessible of the three isotopomers due to the availability of both ¹³C labels in commercially available [1,2-¹³C₂]-bromoethyl acetate, which was readily converted to the phosphonate **8c** using the Arbuzov reaction (Scheme 4).⁹ Sequential Horner–Emmons reaction with β -ionone (**7a**), ester reduction then oxidation gave aldehyde **6c** in excellent yield and *E*/*Z* ratio of 11:1. Subsequent taken through the sequence described above to afford [10,11-¹³C₂]-11*Z*-retinal (**1c**). Unfortunately, we were once again inconvenienced by an unexpected isomerisation, this time at C13 (*E*/*Z*=1.5:2.0) in the enyne **18c** during column chromatography. This isomerisation had not been observed in previous syntheses, and was attributed to

direct exposure of the reaction mixture to silica gel column chromatography. As a precaution in subsequent reactions, an aqueous extraction was conducted and reaction mixtures were filtered through basic alumina prior to purification on silica gel. Separation of the desired 13*E*-isomer from the 13*Z*-isomer was possible following silyl deprotection. Pleasingly, selective hydrogenation provided the [10,11-¹³C₂]-11*Z*-retinol as the only observable isomer by NMR, a considerable improvement on the 3:1 previously attained. This result maybe attributed to the exclusion of light and the use of HPLC grade solvents (including water). Final oxidation proceeded smoothly and [10,11-¹³C₂]-11*Z*-retinal was isolated by preparative HPLC in good yield along with smaller amounts of the 11*E*-isomer and mixed isomers, which were formed during manipulation of the material rather than as a result of the reactions themselves.

Scheme 4. Synthesis of $[10,11^{-13}C_2]$ -11Z-retinal (1c). Reagents and conditions: (a) P(OEt)₃, 180 °C; (b) β-ionone (**7a**), NaH, Et₂O; (c) (i) LiAlH₄, Et₂O, −78 °C → rt, (ii) TPAP, NMO, 4 Å sieves, CH₂Cl₂; (d) TMSCHN₂, LDA, THF, −78 °C; (e) **5**, Pd(PPh₃)₄, Cul, *i*-PrNH₂; (f) TBAF, THF, 0 °C → rt; (g) (i) Zn, Cu(OAc)₂, AgNO₃, H₂O/*i*-PrOH, 40 °C, (ii) TPAP, NMO, 4 Å sieves, CH₂Cl₂.

2.3. [11,12-¹³C₂]-11Z-Retinal

Incorporation of the ¹³C label at C11 was performed as previously described (10,11-¹³C₂-11Z-retinal) utilising a ¹³C-labelled triethyl phosphonate in the Horner Emmons reaction with β -ionone (**7a**) in high yield and *E/Z* selectivity (Scheme 5). Ester reduction and immediate oxidation yielded the labelled aldehyde **6d**. The previous isotopomer syntheses had made use of TMSCHN₂ to

Scheme 5. Synthesis of $[11,12^{-13}C_2]$ -11*Z*-Retinal. Reagents and conditions: (a) $[1^{-13}C]$ -triethyl phosphonoacetate, NaH, Et₂O; (b) (i) LiAlH₄, Et₂O, $-78 \degree C \rightarrow rt$, (ii) TPAP, NMO, 4 Å sieves, CH₂Cl₂; (c) **9d**, NaOMe, MeOH (1 equiv), THF, $-78 \degree C \rightarrow rt$; (d) (i) **5**, Pd(PPh₃)₄, Cul, *i*-PrNH₂, (ii) TBAF, THF, $0\degree C \rightarrow rt$; (e) (i) Zn, Cu(OAc)₂, AgNO₃, H₂O/MeOH, 40 °C, (ii) TPAP, NMO, 4 Å sieves, CH₂Cl₂.

introduce C12 into 4a-c. However, a ¹³C-labelled Bestmann-Ohira reagent was preferred to TMS ¹³CHN₂on the basis of synthetic accessibility.¹⁸ Initial investigations began with the preparation of a labelled methoxy reagent 19 using a modified Michaelis-Becker reaction.¹⁹ however isotopic dilution was observed (Scheme 6). This problem was resolved by starting from diethyl phosphite, resulting in the formation of the desired phosphonate **20** in high yield.²⁰ Acetylation of phosphonate 20 followed by diazo transfer furnished the $[1,2-^{13}C_3]$ -Bestmann–Ohira reagent **9d**. Deacylative activation of **9d** was carried out by pre-treatment with 1 equiv of NaOMe before adding aldehyde 6d, which was smoothly converted to the alkyne 4d. More conventional reaction conditions (K₂CO₃, MeOH) resulted in the formation of the desired product 4d in 74% vield,¹⁸ but with isomerisation (6:1) resulting from methoxide addition-elimination to the unsaturated aldehyde 6d. Sonogashira reaction of the alkyne **4d** with iodide **5** proceeded efficiently, and the crude coupling reaction mixture was subjected to silyl deprotection. Careful filtration of crude mixture through neutral alumina followed by silica gel chromatography helped to minimise isomerisation. Subsequent alkyne reduction, final alcohol oxidation and purification by preparative HPLC afforded [11,12-¹³C₂]-11Zretinal (1d).

Scheme 6. Synthesis of a ¹³C-labelled Bestmann–Ohira Reagent. Reagents and conditions: (a) ¹³CH₃I, K₂CO₃, 35 °C then μ W, 110 °C; (b) *n*-BuLi, CuI, THF, -60 °C \rightarrow -30 °C, then AcCI, THF, -40 °C \rightarrow rt; (c) TsN₃, NaH, benzene/THF, 0 °C \rightarrow rt.

3. Conclusions

The stereoselective synthesis of three isotopomers, $[9,10-^{13}C_2]$ -11Z-retinal (**1b**), [10,11-¹³C₂]-11Z-retinal (**1c**), [11,12-¹³C₂]-11Z-retinal (1c), has been achieved. The syntheses utilised relatively inexpensive ¹³C enriched building blocks, lead to the development of a Weinreb acrylamide and incorporates the use of a ¹³C-labelled Bestmann–Ohira reagent on an α,β -unsaturated aldehyde, using the pre-deacetylation of the reagents to minimise isomerisation. Samples of the doubly ¹³C-labelled retinal isotopomers have been successful combined with the apoprotein opsin to generate rhodopsin with a labelled chromophore, and these specifically labelled proteins have been used in solid-state NMR experiments to study conformational changes in the rhodopsin chromophore and its photointermediates.^{5c} Some difficulties were encountered due to undesired isomerisation of certain polyunsaturated intermediates, highlighting their sensitive nature. However, these technical challenges were largely overcome during the synthesis of the final isotopomer 1d.

4. Experimental

4.1. General methods

All reactions were carried out under an inert atmosphere in oven dried glassware. THF and Et_2O were distilled from sodium and benzophenone prior to use. Triethylamine and dichloromethane

were dried by distillation from CaH₂. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ or C₆D₆ solutions using Bruker AC300, AV300 (300 and 75 MHz, respectively) or Bruker DPX400 (400 and 100 MHz, respectively) spectrometers. ¹⁹F and ³¹P NMR spectra were recorded in solution using a Bruker AV300 (282 and 121 MHz, respectively). Chemical shifts are reported in δ units using CHCl₃ or C_6H_6 as an internal standard (δ 7.27 ppm ¹H, δ 77.36 ppm ¹³C, δ 7.15 ppm ¹H, δ 128.62 ppm ¹³C, respectively). Infrared spectra were recorded on a Nicolet 380 fitted with a Diamond platform, as solids or neat liquids. Melting points were obtained using a Gallenkamp Electrothermal apparatus and are uncorrected. Electron impact and chemical ionisation mass spectra were obtained using a Fisons VG platform single quadropole mass spectrometer. Electrospray mass spectra were obtained using a Micromass platform mass analyser with an electrospray ion source. Reactions introducing and containing the 11Zisomers were carried out in dim red light conditions using base washed glassware. HPLC purification of retinal was performed with a Shimadzu VP series HPLC and Phenomenex silica column, eluting with Et₂O/hexane. The positions of ¹³C labels are indicated using the retinal numbering system, except for compounds 9d and 20.

4.2. Preparation of compounds

4.2.1. [9-¹³C]-N-Benzyl-2-bromo-N-methoxyacetamide (**13**). To [1-¹³C]acetic acid (1.00 g, 16.4 mmol) and PBr₃ (1.95 mL, 16.4 mmol) was added bromine (2.10 mL, 41.0 mmol) dropwise. The mixture was heated to 75 °C and stirred for 3 h. Distillation at atmospheric pressure removed excess bromine and then [1-¹³C]-bromoacetyl bromide (155–158 °C). The resulting [1-¹³C]-bromoacetyl bromide was dissolved in CH₂Cl₂ (45 mL), then cooled to 0 °C. A solution of N-benzyl-O-methylhydroxylamine²¹ (2.25 g, 16.4 mmol) in CH₂Cl₂ (5 mL) was added dropwise. After 10 min, Et₃N (2.28 mL, 16.4 mmol) was added dropwise and the reaction stirred at 0 °C. After 1 h the reaction was quenched with H₂O and extracted into CH₂Cl₂ and the combined organics were washed with brine, dried (MgSO₄) and concentrated in vacuo. Purification by silica gel column chromatography eluting with 1% Et₂O/CH₂Cl₂ gave the amide **13** as a colourless oil (2.39 g, 9.21 mmol, 56%). FT-IR (neat) *v*_{max}1620 (¹³C=O)cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.45-7.30 (5H, m), 4.83 (2H, d, *J*_{CH}=1.8 Hz), 4.05 (2H, d, *J*_{CH}=3.8 Hz), 3.74 (3H, s) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 168.1 (¹³C), 135.9 (C), 128.9 (CH), 128.7 (CH), 128.3 (CH), 62.8 (CH₃), 49.7 (CH₂), 25.8 (CH₂, d, J_{CC} =57.7 Hz) ppm; LRMS (CI, NH₃) m/z 259 [M (⁷⁹Br)+H]⁺, 261 [M (⁸¹Br)+H]⁺;HRMS (ES⁺) C₉¹³CH₁₃⁷⁹BrNO₂, calculated 259.0159, found 259.0160.

4.2.2. [9-¹³*C*]-*Diethyl*(*N*-*benzyl*-*N*-*methoxycarbamoyl*)-*methyl* phosphonate (**14**). A mixture of amide **13** (2.37 g, 9.16 mmol) and triethyl phosphite (1.57 mL, 9.16 mmol) was heated to 180 °C for 1 h giving a colourless oil. Purification by silica gel column chromatography eluting with EtOAc then 10% MeOH/CH₂Cl₂ gave the title compound **14** as a colourless oil (2.51 g, 7.95 mmol, 87%). FT-IR (neat) ν_{max} 1615 (¹³C=O), 1250 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.40–7.20 (5H, m), 4.83 (2H, d, J_{CH} =2.2 Hz), 4.17 (4H, qd, J_{HH} =7.0 Hz, J_{HP} =8.2 Hz), 3.72 (3H, s), 3.20 (2H, dd, J_{CH} =6.8 Hz, J_{HP} =22.0 Hz), 1.33 (6H, td, J_{HH} =7.0 Hz, J_{HP} =0.6 Hz) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 166.5 (¹³C), 136.3 (C), 128.9 (CH), 128.8 (CH), 128.1 (CH), 62.9 (CH₂, d, J_{CP} =6.1 Hz), 62.6 (CH₃), 49.1 (CH₂), 32.0 (CH₂, dd, J_{CP} =135.5 Hz, J_{CC} =53.1 Hz), 16.6 (CH₃, d, J_{CP} =6.0 Hz) ppm; ³¹P NMR (121 MHz, CDCl₃) δ 21.6 (s) ppm; LRMS (ES⁺) m/z 339 [M+Na]⁺; HRMS (ES⁺) C₁₃¹³CH₂₃NO₅P, calculated 317.1342, found 317.1340.

4.2.3. $[9-^{13}C]$ -*N*-*Benzyl*-*N*-*methoxyacrylamide* (**11b**). Phosphonate **14** (2.45 g, 7.73 mmol) and K₂CO₃ (3.21 g, 23.2 mmol) were suspended in H₂O (5 mL) and stirred for 15 min. CH₂O(aq) (1.15 mL, 15.5 mmol) was added dropwise and the reaction was warmed to 40 °C and stirred for 30 min. To the reaction 6 aliquots of CH₂O(aq) (0.58 mL, 7.73 mmol) were added at 30 min intervals. The reaction was diluted with Et₂O and H₂O then separated and the aqueous phase extracted with Et₂O (×3). The combined organics were washed with brine, dried (MgSO₄) and concentrated in vacuo. Purification silica gel column chromatography eluting with 30% EtOAc/hexane gave the title compound **11b** as a colourless oil (965 mg, 5.02 mmol, 65%). FT-IR (neat) v_{max} 1634 (¹³C=O), 1595 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.45–7.22 (5H, m), 6.77 (1H, ddd, *J*_{HH}=17.0, 10.2 Hz, *J*_{CH}=4.4 Hz), 6.50 (1H, ddd, *J*_{HH}=17.0, 2.0 Hz, *J*_{CH}=6.8 Hz), 5.81 (1H, ddd, *J*_{HH}=10.2, 2.0 Hz, *J*_{CH}=12.4 Hz), 4.87 (2H, d, *J*_{CH}=2.0 Hz), 3.65 (3H, s) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 166.8 (¹³C), 136.7 (C), 130.0 (CH₂), 128.9 (CH) 128.8 (CH), 128.1 (CH), 126.4 (CH, *J*_{CC}=65.8 Hz), 63.1 (CH₃), 49.7 (CH₂) ppm; LRMS (ES⁺) *m*/*z* 215 [M+Na⁺]; HRMS (ES⁺) C₁₀¹³CH₁₄NO₂, calculated 193.1053, found 193.1050.

4.2.4. [9-¹³C]-(2E)-N-Benzyl-N-methoxy-3-(2,6,6-trimethylcyclohex)-1-enyl acrylamide (16). To Pd(PPh₃)₂Cl₂ (56 mg, 0.08 mmol) suspended in DMF (5 mL) was added a solution of amide 11b (548 mg, 2.85 mmol), triflate 10 (981 mg, 3.60 mmol) and Et₃N (1.76 mL, 12.6 mmol) in DMF (5 mL) the reaction was warmed to 75 °C and stirred for 22 h. The mixture was diluted with Et₂O and H₂O then separated. The aqueous phase was extracted with Et₂O $(\times 4)$ and the combined organics washed with brine $(\times 3)$, dried (MgSO₄) and concentrated in vacuo. Purification by silica gel column chromatography eluting with 15% EtOAc/hexane gave the title compound 16 as an amber oil (708 mg, 2.25 mmol, 79%). FT-IR (neat) ν_{max} 1631 (¹³C=O), 1596 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (1H, dd, J_{HH}=16.1 Hz, J_{CH}=6.5 Hz), 7.40-7.25 (5H, m), 6.43 (1H, dd, J_{HH}=16.1 Hz, J_{CH}=4.3 Hz), 4.89 (2H, d, J_{CH}=1.8 Hz), 3.64 (3H, s), 2.07 (2H, t, J=6.3 Hz), 1.79 (3H, d, J=0.5 Hz), 1.70-1.60 (2H, m), 1.55–1.45 (2H, m), 1.09 (6H, s) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 167.7 ($^{13}\mathrm{C}$), 143.8 (CH), 137.1 (C), 136.9 (C, $J_{\mathrm{CC}}{=}5.8$ Hz), 135.0 (C), 128.9 (CH), 128.8 (CH), 127.9 (CH), 119.9 (CH, J_{CC}=66.6 Hz), 63.2 (CH₃), 49.8 (CH₂), 40.1 (CH₂), 34.4 (C), 33.8 (CH₂), 29.2 (CH₃), 22.1 (CH₃), 19.3 (CH₂) ppm; LRMS (ES⁺) *m*/*z* 315 [M+H]⁺; HRMS (ES⁺) for C₁₉¹³CH₂₈NO₂, calculated 315.2148, found 315.2150.

4.2.5. [9-¹³*C*]-β-Ionone (**7b**). To acrylamide **16** (702 mg, 2.23 mmol) in THF (40 mL) at -78 °C was added MeLi (2.23 mL of 1.6 M in Et₂O, 3.57 mmol) dropwise. The reaction was stirred at -78 °C for 45 min then warmed to $-20 \,^{\circ}$ C and stirred for 20 min. The reaction was quenched with a saturated NH₄Cl(aq), diluted with Et₂O and separated. The organics were washed with a saturated NH₄Cl(aq) and the aqueous phase extracted with Et_2O (×3). The combined organics were washed with brine, dried (MgSO₄) and concentrated in vacuo. Purification by silica gel column chromatography eluting with 10% Et₂O/hexane gave the title compound **7b** as a pale yellow oil (370 mg, 1.91 mmol, 86%). Spectroscopic data were consistent with selected reported values for the labelled and unlabelled_βionone.²² FT-IR (neat) ν_{max} 1665 (¹³C=O), 1647 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.28 (1H, dd, J_{HH} =16.5 Hz, J_{CH} =6.8 Hz), 6.12 (1H, dd, J_{HH}=16.5 Hz, J_{CH}=3.1 Hz), 2.30 (3H, d, J_{CH}=5.7 Hz), 2.08 (2H, t, J=6.1 Hz), 1.77 (3H, s), 1.70-1.55 (2H, m), 1.53-1.40 (2H, m), 1.08 (6H, s) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 199.1 (¹³C), 143.5 (CH, d, J_{CC}=1.7 Hz), 136.4 (2× C), 131.9 (CH, d, J_{CC}=52.7 Hz), 40.1 (CH₂), 34.4 (C), 33.9 (CH₂), 29.1 (2× CH₃), 27.5 (CH₃, d, J_{CC}=42.0 Hz), 22.1 (CH₃), 19.2 (CH₂) ppm; LRMS (CI, NH₃) m/z 194 [M+H]⁺; HRMS (EI) for C₁₂¹³CH₂₀O, calculated 193.1548, found 193.1549.

4.2.6. $[11^{-13}C]$ -(2E,4E)-Ethyl3-methyl-5-(2,6,6-trimethylcyclo hex-1enyl)penta-2,4-dienoate (**17d**). To a slurry of NaH (178 mg, 4.44 mmol) in Et₂O (5 mL) was added $[1^{-13}C]$ -triethyl phosphonoacetate (1.00 g, 4.44 mmol) dropwise. This mixture was stirred for 2 h. To the reaction was added β -ionone (**7a**) (569 mg,

2.96 mmol) in Et₂O (2 mL) dropwise, the yellow solution was stirred for 62 h forming a white suspension. H₂O was added and the mixture was extracted with hexane (\times 4). The combined organics were washed with brine, dried (MgSO₄) and concentrated in vacuo. Purification by silica gel column chromatography eluting with $2\% \rightarrow$ 3% EtOAc/hexane afforded the title ester **17d** as a pale vellow oil (713 mg, 2.71 mmol, 91%, E/Z=13:1). Spectroscopic and physical data were consistent with reported values for the unlabelled compound.²³ FT-IR (neat) ν_{max} 1669 (¹³C=O), 1606 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.60 (1H, d, *I*=16.1 Hz), 6.10 (1H, d, *I*=16.1 Hz), 5.75 (1H, s), 4.18 (2H, qd, J_{HH}=7.1 Hz, J_{CH}=3.0 Hz), 2.34 (3H, t, *I*=1.3 Hz), 2.03 (2H, t, *I*=6.0 Hz), 1.70 (3H, s), 1.67–1.59 (2H, m), 1.51–1.45 (2H, m), 1.30 (3H, t, *J*=7.1 Hz), 1.03 (6H, s) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 167.6 (¹³C), 153.1 (C), 137.6 (C), 136.6 (CH, d, J_{CC}=8.7 Hz), 134.0 (CH), 131.4 (C), 118.4 (CH, d, J_{CC}=77.8 Hz), 59.9 (CH₂, d, J_{CC}=1.9 Hz), 39.9 (CH₂), 34.6 (C), 33.4 (CH₂), 29.2 (CH₃), 22.0 (CH₃), 19.5 (CH₂), 14.7 (CH₂, d, J_{CC}=1.4 Hz), 14.0 (CH₃) ppm; LRMS (ES⁺) m/z 264 [M+H]⁺; HRMS (ES⁺) for C₁₆¹³CH₂₇O₂, calculated 264.2040, found 264.2039.

4.2.7. [11-¹³C]-(2E,4E)-3-Methyl-5-(2,6,6-trimethylcyclohex-1-envl) penta-2,4-dienal (6d). To a slurry of LiAlH₄ (162 mg, 4.28 mmol) in Et₂O (8 mL) at -78 °C was added ester 17d (705 mg, 2.68 mmol, 9-E/Z=13:1) in Et₂O (27 mL) dropwise, and the reaction stirred for 1 h at -78 °C. The reaction was warmed to rt and stirred for 2.5 h. The reaction was guenched with H₂O (0.2 mL), 15% NaOH (0.2 mL) and H₂O (0.6 mL) sequentially and stirred for 20 min producing a white precipitate. The heterogeneous mixture was dried (MgSO₄) and the precipitate removed by filtration, the solution was concentrated in vacuo giving a colourless oil. The oil was taken up in CH₂Cl₂ (28 mL) and crushed molecular sieves (1.6 g), NMO (628 mg, 5.36 mmol) and TPAP (94 mg, 0.27 mmol) added. After stirring at rt for 30 min the black suspension was filtered through Celite and concentrated in vacuo. Purification by silica gel column chromatography eluting with 4% EtOAc/hexane afforded the title aldehyde 6d as a pale yellow oil (431 mg, 1.97 mmol, 73%) and 9Z-aldehyde (44 mg, 0.20 mmol, 7%). ¹H NMR data were consistent with reported values for the unlabelled compound.^{14,24} FT-IR (neat) ν_{max} 1629 (¹³C=O) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 10.14 (1H, dd, J_{HH}=8.0 Hz, *J*_{CH}=169.8 Hz), 6.75 (1H, d, *J*=16.1 Hz), 6.22 (1H, d, *J*=16.1 Hz), 5.94 (1H, d, J=8.0 Hz), 2.32 (3H, s), 2.06 (2H, br t, J=6.3 Hz), 1.73 (3H, s), 1.68–1.59 (2H, m), 1.52–1.45 (2H, m), 1.05 (6H, s) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 191.6 (¹³CH), 155.3 (C, d, J_{CC}=2.9 Hz), 137.4 (C), 136.0 (CH, d, J_{CC}=6.8 Hz), 135.9 (C), 133.1 (CH), 129.1 (CH, d, J_{CC}=56.4 Hz), 39.9 (CH₂), 34.6 (C), 33.6 (CH₂), 29.3 (CH₃), 22.1 (CH₃), 19.4 (CH₂), 13.3 (CH₃, d, J_{CC} =4.9 Hz) ppm; LRMS (ES⁺) m/z 220 [M+H]⁺; HRMS (ES⁺) for C₁₄¹³CH₂₃O, calculated 220.1777, found 220.1780.

4.2.8. $[11,12^{-13}C_2]$ -1,3,3-Trimethyl-2-((1E,3E)-3-methylhexa-1,3dien-5-ynyl)cyclohex-1-ene (4d). To ¹³C-labelled diazophosphonate **9d** (391 mg, 1.77 mmol) in THF (20 mL) at -78 °C was added NaOMe (0.5 M in MeOH, 3.54 mL, 1.77 mmol) dropwise over 15 min. After stirring for 1 h at -78 °C aldehyde 6d (259 mg, 1.18 mmol) in THF (8 mL) was added dropwise over 10 min. The yellow solution was stirred at -78 °C for 30 min, warmed to rt over 30 min and stirred for 7.5 h. The reaction was quenched with H_2O_1 , dried (MgSO₄) and concentrated in vacuo. Purification by silica gel column chromatography eluting with 5% EtOAc/hexane gave the desired alkyne 4d as a pale yellow oil (162 mg, 0.75 mmol, 63%) and starting aldehyde 6d (39 mg, 0.18 mmol, 15%). Spectroscopic data were consistent with selected reported values for the unlabelled compound.²⁵ FT-IR (neat) ν_{max} 2010 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.29 (1H, d, *J*=16.1 Hz), 6.10 (1H, d, *J*=16.1 Hz), 5.41 (1H, br s), 3.29(1H, m), 2.09 (3H, s), 2.02 (2H, t, J=6.0 Hz), 1.70 (3H, br d, *J*=1.0 Hz), 1.66–1.58 (2H, m), 1.50–1.45 (2H, m), 1.02 (6H, s) ppm;

¹³C NMR (100 MHz, CDCl₃) δ 149.6 (C), 137.7 (C), 135.4 (CH, d, J_{CC}=8.8 Hz), 130.6 (CH), 130.5 (C), 107.6 (CH, dd, J_{CC}=70.0, 30.1 Hz), 84.1 (¹³CH, d, J_{CC}=200.2 Hz), 82.4 (¹³C, d, J_{CC}=200.2 Hz), 39.9 (CH₂), 34.6 (C), 33.4 (CH₂), 29.2 (CH₃), 22.0 (CH₃), 19.6 (CH₂), 15.4 (CH₃) ppm; LRMS (CI, NH₃) *m*/*z* 217 [M+H⁺].

4.2.9. [11,12-¹³C₂]-3,7-Dimethyl-9-(2,6,6-trimethylcyclohex-1-enyl)nona-2.6.8-trien-4-vn-1-ol (**3d**). Following the method of Borhan et al.,^{10b} to a solution of iodide 5(405 mg, 1.30 mmol) in *i*-PrNH₂ (3 mL) was added Pd(PPh₃)₄ (13 mg, 10.82 µmol) and the reaction was stirred for 5 min. CuI (2 mg, 10.82 µmol) was added and the reaction was stirred for a further 5 min. Alkyne 4d (234 mg, 1.08 mmol) in *i*-PrNH₂ (1.6 mL) was added dropwise and the reaction stirred for 3.5 h. The reaction was concentrated in vacuo, redissolved in Et₂O, washed with $H_2O(\times 3)$ and brine, and the organics concentrated in vacuo. The residue as a mixture of the desired alkyne $18d^{26}$ and iodide 5 (4:1, 465 mg, ~1.21 mmol) was dissolved in THF (6 mL) and cooled to 0 °C. TBAF (1.0 M in THF, 1.34 mL, 1.34 mmol) was added dropwise and the reaction warmed to rt and stirred for 1 h. The reaction was quenched with H₂O and the extracted with $Et_2O(\times 3)$. The combined organics were washed with brine, dried (MgSO₄) and concentrated in vacuo. The crude material was filtered through a plug of neutral alumina eluting with 20% EtOAc/hexane and concentrated in vacuo. Purification by silica gel column chromatography eluting with 15% EtOAc/hexane gave the desired dehydroretinol 3d (191 mg, 0.67 mmol, 69% over two steps) and the 13Z-isomer (23 mg, 0.08 mmol, 8%). Data for 3d: FT-IR (neat) ν_{max} 3313 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.27 (1H, d, J=16.1 Hz), 6.12 (1H, d, J=16.1 Hz), 6.01 (1H, br t d, J_{HH}=7.5 Hz, *I*_{CH}=7.5 Hz), 5.53 (1H, d, *I*_{CH}=4.8 Hz), 4.27 (2H, br t, *I*=5.4 Hz), 2.07 (3H, s), 2.02 (2H, t, J=6.3 Hz), 1.90 (3H, m), 1.70 (3H, s), 1.66-1.58 (2H, m), 1.51–1.44 (2H, m), 1.03 (6H, s) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 147.8 (C), 137.8 (C), 135.8 (CH, d, J_{CC}=9.3 Hz), 134.7 (CH, d, J_{CC}=3.9 Hz), 130.4 (C), 129.9 (CH), 108.8 (CH, dd, J_{CC}=91.4, 11.7 Hz), 98.8 (¹³C, d, J_{CC}=177.9 Hz), 87.2 (¹³C, d, J_{CC}=177.9 Hz), 59.6 (CH₂, d, J_{CC}=6.8 Hz), 39.9 (CH₂), 34.6 (C), 33.4 (CH₂), 29.3 (CH₃), 22.0 (CH₃), 19.6 (CH₃), 18.0 (CH₂), 15.4 (CH₃, d, J_{CC}=3.9 Hz) ppm; LRMS (ES⁺) m/ z 269 $[M-H_2O+H]^+$. Data for 13Z-Isomer: ¹H NMR (300 MHz, CDCl₃) δ 6.29 (1H, d, J=16.1 Hz), 6.12 (1H, d, J=16.1 Hz), 5.86 (1H, tqd, J_{HH}=6.8, 1.5 Hz, J_{CH}=13.8 Hz,), 5.57 (1H, br s), 4.36 (2H, d, J=6.8 Hz), 2.08 (3H, dd, J_{HH}=0.8 Hz, J_{CC}=0.8 Hz), 2.02 (2H, t, J=5.9 Hz), 1.95 (3H, m), 1.70 (3H, br s), 1.67–1.55 (2H, m), 1.52–1.43 (2H, m), 1.03 (6H, s) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 147.9 (C), 137.8 (C), 135.7 (CH, dd, J_{CC}=5.5, 3.3 Hz), 134.8 (CH), 130.5 (C), 130.2 (CH), 121.9 (C, dd, J_{CC}=58.1, 38.7 Hz), 108.6 (CH, dd, J_{CC}=61.1, 41.2 Hz), 95.4 (¹³C, d, J_{CC}=176.9 Hz), 93.0 (¹³C, d, J_{CC}=176.9 Hz), 61.9 (CH₂), 39.9 (CH₂), 34.6 (C), 33.4 (CH₂), 29.2 (CH₃), 23.6 (CH₃), 22.0 (CH₃), 19.5 (CH₂), 15.5 (CH₃) ppm.

4.2.10. [11,12-¹³C₂]-11Z-Retinal (1d). Following the method of Borhan et al.,^{10b} argon was bubbled through a suspension of zinc dust (11.42 g, 0.175 mol) in H₂O (68 mL) for 15 min. Cu(OAc)₂ (1.14 g, 6.28 mmol) was then added and after 15 min stirring AgNO₃ (1.14 g, 6.72 mmol) added (Care!-exothermic). After stirring for 30 min the activated zinc was filtered and washed with H₂O, MeOH, acetone and Et₂O sequentially. The moist zinc catalyst was suspended in H₂O (19 mL) and *i*-PrOH (19 mL) and the labelled dehydroretinol **3d** (134 mg, 0.47 mmol) in *i*-PrOH (19 mL) added. The reaction was heated at 40 °C for 26 h. The reaction was filtered through Celite flushing with H₂O and Et₂O and the phases were separated. The aqueous was extracted with $Et_2O(\times 4)$ and the combined organics washed with brine, dried (Na₂SO₄) and concentrated in vacuo. The crude labelled retinol (136 mg, ~0.47 mmol) was dissolved in CH₂Cl₂ (5 mL) and crushed molecular sieves (280 mg), NMO (110 mg, 0.94 mmol) and TPAP (49 mg, 0.14 mmol) added sequentially. After 30 min stirring the reaction was passed through a short column of neutral alumina topped with Celite, flushing with Et₂O

and concentrated in vacuo. Purification by HPLC eluting with Et₂O (2.00 mL/min) and hexane (7.99 mL/min) gave [11,12-¹³C₂]-11Zretinal (1d) as a yellow oil (69 mg, 0.24 mmol, 51% over two steps), $[11,12-^{13}C_2]$ -all-*E*-retinal as a yellow oil (5 mg, 0.02 mmol, 4%) and $[11,12^{-13}C_2]$ -retinal as a mixture of isomers (22 mg, 0.08 mmol, 16%). Spectroscopic data for 1d were consistent with those reported for the unlabelled compound.²⁷ FT-IR (neat) v_{max} 1657 (s), 1566 (m) cm⁻¹; ¹H NMR (400 MHz, C_6D_6) δ 9.91 (1H, d, J=7.8 Hz), 6.58 (1H, br d, J=11.1 Hz), 6.38 (1H, dq, J_{HH}=12.1 Hz, J_{CH}=148.3 Hz), 6.34 (1H, d, *I*=16.1 Hz), 6.22 (1H, d, *I*=16.1 Hz), 6.10 (1H, br t, *I*_{HH}=7.8 Hz, *J*_{CH}=7.8 Hz), 5.58 (1H, dd, *J*_{HH}=11.8 Hz, *J*_{CH}=154.7 Hz), 1.91 (2H, t, J=6.4 Hz), 1.77 (3H, dd, J_{HH}=1.4 Hz, J_{CH}=4.1 Hz), 1.74 (3H, s), 1.68 (3H, s), 1.60–1.52 (2H, m), 1.46–1.42 (2H, m), 1.07 (6H, s) ppm; ¹³C NMR (100 MHz, C₆D₆) δ 190.5 (CH), 154.6 (C, dd, J_{CC}=39.4, 13.1 Hz), 141.4 (C, d, J_{CC}=5.8 Hz), 138.8 (CH, d, J_{CC}=4.9 Hz), 138.6 (C), 131.9 (¹³CH, d, J_{CC} =70.0 Hz), 131.1 (¹³CH, d, J_{CC} =70.0 Hz), 131.1 (CH, dd, J_{CC} =3.9, 2.0 Hz), 130.7 (C), 130.1 (CH), 127.0 (CH, dd, J_{CC}=41.8, 13.6 Hz), 40.4 (CH₂), 35.1 (C), 33.8 (CH₂), 29.7 (CH₃), 22.4 (CH₃), 20.2 (CH₂), 18.0 (CH₃), 12.8 (CH₃, d, J_{CC} =3.4 Hz) ppm; LRMS (ES⁺) m/z 287 [M+H]⁺; HRMS (ES⁺) for C₁₈¹³C₂H₂₉O, calculated 287.2280, found 287.2279.

4.2.11. [1-¹³C]-Diethyl methyl phosphonate (**20**). To a mixture of diethyl phosphite (0.70 mL, 5.38 mmol) and K₂CO₃ (1.49 g, 10.8 mmol) was added ¹³CH₃I (1.00 g, 6.99 mmol) dropwise and the vessel was sealed. The reaction was stirred at 35 °C for24 h. After which crushed molecular sieves and K₂CO₃ (740 mg, 5.38 mmol) were added. The reaction was stirred for a further 24 h at 35 °C. After this time the mixture was transferred to a microwave tube washing with CHCl₃ (2 mL), before the mixture was irradiated (110 °C, 300 W), the reaction was stopped at 9 min. The suspension was filtered washing with CHCl₃ and CH₂Cl₂ and the solution was concentrated in vacuo giving a yellow oil. Purification by vacuum transfer (0.4 mbar, rt) yielded the desired phosphonate 20as a colourless oil (663 mg, 4.33 mmol, 80%). Spectroscopic data were consistent with those reported for the unlabelled compound.²⁸ FT-IR (neat) v_{max} 1305, 1227, 1026 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 4.10 (4H, qdd, J_{HH}=7.1 Hz, J_{CH}=4.6 Hz, J_{HP}=8.2 Hz), 1.47 (3H, dd, J_{CH} =128.2 Hz, J_{HP} =17.5 Hz), 1.33 (6H, t, J=7.1 Hz) ppm; ¹³C NMR (75 MHz, CDCl₃)[™] 61.8 (CH₂, d, *J*_{CP}=6.1 Hz), 16.7(CH₃, d, *J*_{CP}=6.1 Hz), 11.6 (¹³CH₃, d, *J*_{CP}=144.8 Hz) ppm; ³¹P NMR (121 MHz, CDCl₃)[™] 31.1 (d, *J*_{CP}=144.8 Hz) ppm; LRMS (ES⁺) *m*/*z* 154 [M+H]⁺.

4.2.12. [1-¹³C]-Diethyl (1-diazo-2-oxopropyl)phosphonate (**9d**). Following the procedure of Mathey and Savignac,²⁹ to a solution of phosphonate 20 (303 mg, 1.98 mmol) in THF (2.5 mL) at -60 °C was added n-BuLi (2.34 M in hexane, 0.93 mL, 2.18 mmol) dropwise, after 5 min CuI (415 mg, 2.18 mmol) was added. The reaction was slowly warmed to -30 °C and stirred for 1.5 h, then cooled to -40 °C. Acetyl chloride (0.15 mL, 2.08 mmol) in Et₂O (1.5 mL) was added slowly and the reaction stirred at -35 °C for 2.5 h. The reaction was warmed to rt and stirred for 17 h. The reaction was quenched with H₂O producing a white suspension, which was filtered through Celite, flushing with THF then CH₂Cl₂. The phases were separated and the aqueous extracted with CH_2Cl_2 (×3), and the combined organics were dried (MgSO₄) and concentrated in vacuo. Purification by distillation under reduced pressure (0.4 mbar, 60 °C) gave [1-¹³C]-diethyl (2-oxopropyl)phosphonate as a colourless oil (323 mg, 1.66 mmol, 84%). Spectroscopic data were consistent with reported values for the unlabelled compound.³⁰ FT-IR (neat) ν_{max} 1714, 1246 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 4.16 (4H, qdd, J_{HH} =7.0 Hz, J_{CH} =1.3 Hz, J_{HP} =8.2 Hz), 3.09 (2H, dd, J_{CH}=128.8 Hz, J_{HP}=22.9 Hz), 2.33 (3H, d, J_{CH}=1.5 Hz), 1.35 (6H, td, $J_{\rm HH}$ =7.0 Hz, $J_{\rm HP}$ =0.6 Hz) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 62.9 (CH₂, d, $J_{CP}=6.6$ Hz), 43.8 (CH₂, d, $J_{CP}=127.2$ Hz), 31.7 (CH₃, d, J_{CC}=14.9 Hz), 16.6 (CH₃, d, J_{CP}=6.1 Hz) ppm; ³¹P NMR (121 MHz,

CDCl₃) δ 20.3 (d, *J*=127.0 Hz) ppm; LRMS (ES⁺) *m/z* 196 [M+H]⁺. To a slurry of NaH (42 mg, 1.06 mmol) in benzene (1.5 mL) and THF (2 mL) at 0 °C was added [1-¹³C]-diethyl (2-oxopropyl)phosphonate (188 mg, 0.96 mmol) in THF (2 mL). After stirring for 1 h at 0 °C, TsN₃ (209 mg, 1.06 mmol) in THF (1 mL) was added slowly dropwise. The reaction was warmed to rt and stirred for 16 h. The resultant red suspension was filtered through Celite flushing with benzene (\times 3) followed by EtOAc (\times 3), the filtrate was concentrated in vacuo. Purification by silica gel column chromatography eluting with EtOAc afforded the title diazo compound 9d as an oil (156 mg, 0.71 mmol, 73%). Spectroscopic data were consistent with reported values for the unlabelled compound.³¹ FT-IR (neat) ν_{max} 2113, 1655, 1260 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 4.21 (4H, m), 2.29 (3H, d, J_{CH} =2.2 Hz), 1.40 (6H, td, J_{HH} =7.0 Hz, J_{HP} =0.7 Hz) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 64.6 (¹³C, d, J_{CP} =218.4 Hz), 53.7 (CH₂, d, J_{CP}=5.5 Hz), 27.6 (CH₃, d, J_{CC}=21.6 Hz), 16.5 (CH₃, d, J_{CP}=6.6 Hz) ppm (carbonyl carbon not observed); ³¹P NMR (121 MHz, CDCl₃) δ 11.7 (d, *J*_{CP}=218.4 Hz) ppm; LRMS (ES⁺) *m/z* 222 [M+H]⁺; HRMS (ES⁺) for C₆¹³CH₁₄N₂O₄P, calculated 222.0719, found 222.0718.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tet.2011.07.092.

References and notes

- 1. Palczewski, K. Annu. Rev. Biochem. 2006, 75, 743–767.
- 2. Klabunde, T.; Hessler, G. ChemBioChem 2002, 3, 929-944.
- (a) Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Motoshima, H.; Fox, B. A.; Le Trong, I.; Teller, D. C.; Okada, T.; Stenkamp, R. E.; Yamamoto, M.; Miyano, M. Science 2000, 289, 739–745; (b) Teller, D. C.; Okada, T.; Behnke, C. A.; Palczewski, K.; Stenkamp, R. E. Biochemistry 2001, 40, 7761–7772; (c) Li, J.; Edwards, P. C.; Burghammer, M.; Villa, C.; Schertler, G. F. X. J. Mol. Biol. 2004, 343, 1409–1438; (d) Okada, T. Biochem. Soc. Trans. 2004, 32, 738–741.
- (a) Verdegem, P. J. E.; Bovee-Geurts, P. H. M.; de Grip, W. J.; Lugtenburg, J.; de Groot, H. J. M. Biochemistry 1999, 38, 11316–11324; (b) Brown, M. F.; Salgado, G. F. J.; Struts, A. V. Biochim. Biophys. Acta, Biomembr. 2010, 1798, 177–193.
- (a) Gansmuller, A.; Concistre, M.; McLean, N.; Johannessen, O. G.; Marin-Montesinos, I.; Bovee-Geurts, P. H. M.; Verdegem, P.; Lugtenburg, J.; Brown, R. C. D.; DeGrip, W. J.; Levitt, M. H. *Biochim. Biophys. Acta, Biomembr.* 2009, 1788, 1350–1357; (b) Concistre, M.; Gansmuller, A.; McLean, N.; Johannessen, O. G.; Montesinos, I. M.; Bovee-Geurts, P. H. M.; Brown, R. C. D.; DeGrip, W. J.; Levitt, M. H. J. Am. Chem. Soc. 2009, 131, 6133–6140; (c) Concistre, M.; Gansmuller, A.; McLean, N.; Johannessen, O. G.; Montesinos, I. M.; Bovee-Geurts, P. H. M.; Brown, R. C. D.; DeGrip, W. J.; Levitt, M. H. J. Am. Chem. Soc. 2009, 131, 6133–6140; (c) Concistre, M.; Gansmuller, A.; McLean, N.; Johannessen, O. G.; Montesinos, I. M.; Bovee-Geurts, P. H. M.; Verdegem, P.; Lugtenburg, J.; Brown, R. C. D.; DeGrip, W. J.; Levitt, M. H. J. Am. Chem. Soc. 2008, 130, 10490–10491; (d) Pileio, G.; Concistre, M.; M. H. J. Am. Chem. Soc. 2008, 130, 10490–10491; (d) Pileio, G.; Concistre, M.; M.; Gansmuller, A.; Gansmuller, A.; McLean, N.; Gansmuller, A.; McLean, N.; Gansmuller, A.; Brown, R. C. D.; Levitt, M. H. J. Magn. Reson. 2007, 186, 65–74; (e) Lai, W. C.; McLean, N.; Gansmuller, A.; Verhoeven, M. A.; Antonioli, G. C.; Carravetta, M.; Duma, L.; Bovee-Geurts, P. H. M.; Johannessen, O. G.; de Groot, H. J. M.; Lugtenburg, J.; Emsley, L.; Brown, S. P.; Brown, R. C. D.; DeGrip, W. J.; Levitt, M. H. J. Am. Chem. Soc. 2006, 128, 3878–3879.
- Levitt, M. H. Symmetry-based pulse sequences in magic-angle spinning solidstate NMR In *Encyclopedia of Nuclear Magnetic Resonance: Supplementary Volume*; Grant, D. M., Harris, R. K., Eds.; Wiley: Chichester, England, 2002; pp 165–196.
- 7. (a) Lugtenburg, J.; Creemers, A. F. L.; Verhoeven, M. A.; van Wijk, A. A. C.; Verdegem, P. J. E.; Monnee, M. C. F.; Jansen, F. J. H. M. Pure Appl. Chem. 1999, 71, 2245–2251.

- For reviews of retinoid syntheses: (a) Valla, A. R.; Cartier, D. L.; Labia, R. Curr. Org. Synth. 2004, 1, 167–209; (b) Valla, A. R.; Cartier, D. L.; Labia, R. In Studies in Natural Products Chemistry; Atta-ur, R., Ed.; Elsevier: 2003; pp 69–107; (c) Dominguez, B.; Alvarez, R.; de Lera, A. R. Org. Prep. Proced. Int. 2003, 35, 239–306; (d) For a review of the photochemistry and synthesis of the stereoisomers of vitamin A: Liu, R. S. H.; Asato, A. E. Tetrahedron 1984, 40, 1931–1969.
- For a synthesis of all *E*-retinal ¹³C-labelled at every position: Creemers, A. F. L.; Lugtenburg, J. J. Am. Chem. Soc. **2002**, 124, 6324–6334.
- (a) Uenishi, J.; Kawahama, R.; Yonemitsu, O.; Wada, A.; Ito, M. Angew. Chem., Int. Ed. 1998, 37, 320–323; (b) Borhan, B.; Souto, M. L.; Um, J. M.; Zhou, B. S.; Nakanishi, K. Chem. – Eur. J. 1999, 5, 1172–1175; (c) Wada, A.; Fujioka, N.; Tanaka, Y.; Ito, M. J. Org. Chem. 2000, 65, 2438–2443; (d) Lopez, S.; Montenegro, J.; Saa, C. J. Org. Chem. 2007, 72, 9572–9581; (e) Montenegro, J.; Bergueiro, J.; Saa, C.; Lopez, S. Org. Lett. 2009, 11, 141–144.
- For syntheses of 11Z-retinal where mixtures of stereoisomers were obtained: (a) Knudsen, C. G.; Chandraratna, R. A. S.; Walkeapaa, L. P.; Chauhan, Y. S.; Carey, S. C.; Cooper, T. M.; Birge, R. R.; Okamura, W. H. J. Am. Chem. Soc. 1983, 105, 1626–1631; (b) Hosoda, A.; Taguchi, T.; Kobayashi, Y. Tetrahedron Lett. 1987, 28, 65–68; (c) Oroshnik, W. J. Am. Chem. Soc. 1956, 78, 2651–2652.
- 12. For an example of Cu promoted cross coupling: Hopf, H.; Krause, N. *Tetrahedron Lett.* **1985**, *26*, 3323–3326.
- (a) Bergen, H. R.; Furr, H. C.; Olson, J. A. J. Labelled Compd. Radiopharm. 1988, 25, 11–21; (b) Tanumihardjo, S. A. J. Labelled Compd. Radiopharm. 2001, 44, 365–372.
- 14. Dugger, R. W.; Heathcock, C. H. Synth. Commun. 1980, 10, 509-515.
- 15. Breining, T.; Schmidt, C.; Polos, K. Synth. Commun. 1987, 17, 85-88.
- 16. ¹³C NMR Spectra for the labelled chromophores are provided in the Supporting data.
- (a) For early work describing the sensitivity of retinal isomers to photochemical isomerisation, and in particular to blue, violet, or ultraviolet light: Hubbard, R.; Wald, G. J. Gen. Physiol. **1952**, *36*, 269–315; (b) For discussion of the isomerisation of 11Z-retinal catalysed by acid and secondary amines: Lukton, D.; Rando, R. R. J. Am. Chem. Soc. **1984**, *106*, 4525–4531; (c) For thermal isomerisation of 11Z-retinal: Hubbard, R. J. Biol. Chem. **1966**, *211*, 1814–1818.
- 18. Roth, G. J.; Liepold, B.; Muller, S. G.; Bestmann, H. J. Synthesis 2004, 59-62.
- Bondarenko, N. A.; Rudomino, M. V.; Tsvetkov, E. N. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Trans.) 1990, 39, 1076–1076.
- In the ¹³C NMR spectra additional doublets indicated that some methyl phosphonate ester (H₃¹³CO-P) formation still occurred with the ¹³C-labelled Mel. The corresponding peaks in the¹H NMR showed less than 1% of these ¹³C-labelled byproducts to be present.
- 21. Keck, G. E.; Wager, T. T.; McHardy, S. F. Tetrahedron 1999, 55, 11755-11772.
- (a) Pardoen, J. A.; Mulder, P. P. J.; Vandenberg, E. M. M.; Lugtenburg, J. Can. J. Chem. -Rev. Can. Chim. 1985, 63, 1431–1435; (b) Gebhard, R.; Courtin, J. M. L.; Shadid, J. B.; Vanhaveren, J.; Vanhaeringen, C. J.; Lugtenburg, J. Recl. Trav. Chim. Pays-Bas 1989, 108, 207–214.
- (a) Partial ¹H NMR data: Ramamurthy, V.; Tustin, G.; Yau, C. C.; Liu, R. S. H. Tetrahedron **1975**, *31*, 193–199; (b) IR data: Ishikawa, Y. Bull. Chem. Soc. Jpn. **1963**, 36, 1527–1528.
- 24. (a) Pardoen, J. A.; Neijenesch, H. N.; Mulder, P. P. J.; Lugtenburg, J. *Recl. Trav. Chim. Pays-Bas* **1983**, *102*, 341–347; (b) Wada, A.; leki, Y.; Nakamura, S.; Ito, M. *Synthesis* **2005**, 1581–1588; (c) In this reference the authors report a broad triplet at 2.21 ppm, whereas we find a triplet at 2.06 ppm: Valla, A.; Valla, B.; Le Guillou, R.; Cartier, D.; Dufosse, L.; Labia, R. *Helv. Chim. Acta* **2007**, *90*, 512–520.
- 25. Wada, A.; Fukunaga, K.; Ito, M.; Mizuguchi, Y.; Nakagawa, K.; Okano, T. *Bioorg. Med. Chem.* **2004**, *12*, 3931–3942.
- Spectroscopic data for the TBS protected coupling product were consistent with those reported for the unlabelled compound: Iglesias, B.; Torrado, A.; de Lera, A. R.; Lopez, S. J. Org. Chem. 2000, 65, 2696–2705.
- Wada, A.; Sakai, M.; Imamoto, Y.; Shichida, Y.; Yamauchi, M.; Ito, M. J. Chem. Soc., Perkin Trans. 1 1997, 1773–1777.
- Vugts, D. J.; Koningstein, M. M.; Schmitz, R. F.; de Kanter, F. J. J.; Groen, M. B.; Orru, R. V. A. Chem.—Eur. J. 2006, 12, 7178–7189.
- 29. Mathey, F.; Savignac, P. Tetrahedron 1978, 34, 649-654.
- 30. Moorhoff, C. M. Synth. Commun. 2003, 33, 2069-2086.
- Harned, A. M.; Sherrill, W. M.; Flynn, D. L.; Hanson, P. R. Tetrahedron 2005, 61, 12093–12099.