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Tuning the donorsto control the lifetimes of char ge-separ ated
statesin triazine-based donor-acceptor systems

Abstract: Six donor-acceptor systems with styrene baseche®wyd carbazole,
4,4-di(hydro, methyl, methoxy or octyloxy) triphgamine and 4-methylphenyl
indoline derivatives as donors, and s-triazine gras the acceptor were synthesized
and characterized. The charge-separated statéesd tlonor-acceptor systems were
generated through the effective photoinduced alactransfers from excited donor
modules to acceptor modules and had lifetimes ranfyiom 57 ns to 215 ns. These
donor-acceptor systems are capable of fast chapgraion, but have extremely slow
charge recombination. The back electron transfecgsses of these donor-acceptor
systems occur in the inverted region of the Mamuye. The driving forces of back
electron transfer and the reorganization energiedextron transfer decrease in the
order of 9-phenyl carbazole derivative, 4,4’-di(hydmethyl, methoxy or octyloxy)
triphenylamine derivative and 4-methylphenyl indeliderivative. These two factors
work together to determine the different lifetinefscharge-separated states in these

donor-acceptor systems.

Keywords: Donor-acceptor system; Photoinduced electron fiean€harge-separated

state; Lifetime; Driving force; Reorganization eger
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1. Introduction

In recent years, many researchers have exprgssat interest in the simulation
of the long-lived charge-separated states of tlaeti@n center in photosynthesis,
where the cascade formation of short-range photoed energy transfer and
multistep electron transfer occurs [1-7]. A varietfy supramolecular systems were
developed as a result of the integration of varidmsors and acceptors to obtain long
distance charge-separated states [8-15]. Howevkrga amount of energy is lost
during the multistep electron transfer processesesmh the final charge-separated
state in both natural and artificial photosynthegiaction centers [16,17]. Additionally,
the difficulty of synthesizing these multistep efea transfer molecules has
prevented the practical applications for constarctof energy conversion systems
[17].

Alternatively, attempts have been made to desgmple and small
Donor-Acceptor (D-A) systems in such a way thatrghaseparation occurs rapidly
and quantitatively, while charge recombinationasmehow impeded [18]. According
to the Marcus theory, the increase of the lifetiofecharge-separated states was
accompanied with the decrease of the reorganizatiengy of electron transfer in the
Marcus inverted region. It is possible to obtaistsgimple D-A systems because the
reorganization energy of electron transfer is etgueto reduce with decreasing D-A
distance [19]. Hence, a number of simple D-A systemare designed and synthesized
to obtain long-lived charge-separated states [18410 The relevant energy levels

determine the driving force of the electron trandfetween the donor and acceptor
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[25-30], while the distance, spatial orientatiomdaflexibility of molecules
significantly influence the rate of photoinducedation transfer and the efficiency of
creating charge-separated states [25,31-35]. Hawdlve design principle between
donor and acceptor, which aimed at increasingitéegnhes of charge-separated states
in simple D-A systems, is unclear and should bdistufurther.

Triphenylamine and indoline could act as aredife electron donor and
potentially be widely used in organic photovoltaiaterials [36-41]. Triazine (TRC)
was confirmed as an effective electron-acceptingluteo in D-A systems, which
could improve the electron-injection and electrmamsportation abilities of its
conjugated derivatives in previous studies by @&Hé-45] and our previous work
[46-49]. Therefore, we have designed and reponteml D-A systems MTPA-TRC
[47-49] and YD-TRC [49], which used styrene basefi-dimethyl-triphenylamine
(MTPA) and 4-methylphenyl indoline (YD) as the desorespectively, and triazine
group (TRC) as the acceptor. Two lifetimes of ckasgparated states were obtained
such that MTPA-TRC™ as 80 ns and YDTRC™ as 215 ns. The important conclusion
indicated was that YD module was more effectiventN&IPA in forming long-lived
charge-separated states, which should be discusskaxplained systematically in
more detail.

Therefore, more compounds based on D-TRC systemldi® designed and
characterized, and the relationship between theawgment of donor ability and the
lifetime of charge-separated states of the D-TR&tesy should be clarified and

defined in an intuitive way. To summarize the effetctuning donors on lifetimes of
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charge-separated states, we synthesized four newpamds of D-TRC systems,
which used the replacement and modification ofheipylamine moiety to achieve
different donor ability in comparison with MTPA-TR©On one hand, styrene based
non-substituted triphenylamine (TPA) and 9-phemybazole (PCB) were alternatives
to MTPA and used to obtain TPA-TRC and PCB-TRCpeesively. On the other hand,
the dimethoxy groups and dioctyloxy groups weregohiced to triphenylamine

moiety of TPA-TRC to construct the derivatives MAFPRC and OeTPA-TRC,

respectively. Combining the results of these D-T$8tems with the reported results
of MTPA-TRC [48] and YD-TRC [49], this work will éxbit six D-TRC systems

which have the increased lifetimes of charge-sepdrastates through the
enhancement of donor ability, and the reason fa ¢bnclusion will be discussed
systematically in this paper. Structures of key poands characterized in this work
are provided in Scheme 1, while MTPA-TRC and YD-TR@re synthesized and
studied previously. PCB-TRC, TPA-TRC, MeTPA-TRC andTPA-TRC were first

reported here and their synthetic routes were shovtheme 1.

Photophysical properties of these compounds vetundied using both steady
state and transient UV-Vis and fluorescence measemés coupled with
electrochemical measurements and DFT calculationse results of these

measurements and the corresponding analysis avelpdoin Section 3 following the
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description of methods in Section 2. Finally, thendusions of this work are
summarized in Section 4.
2. Experimental and computational methods
2.1 Materials

3-(4-nitrostyryl)-9-phenyl-9H-carbazole (PCB[H0], 4-(4-nitrostyryl)-triphen
ylamine (TPAn) [50], 4,4’-dimethyl-4”-(4-nitrostytytriphenylamine (MTPAN) [5
0], 4,4’-dimethoxy-4"-(4-nitrostyryl)-triphenylamen (MeTPAnN) [50], 4,4’-dioctylo
xy-4"-(4-nitrostyryl)-triphenylamine (OeTPAN) [50}-(4-methylphenyl)-7-(4-nitro
styryl)-1,2,3,3a,4,8b-hexahydrocyclopenta[b]indg¥Dn) [50], 4,4’-dimethyl-4"-(4
-(4,6-dichloro-1,3,5-triazin-2-ylamino)styryl) tiy@nylamine (MTPA-TRC) [48] an
d 4-(4-methylphenyl)-7-(4-(4,6-dichloro-1,3,5-tria22-ylamino)styryl)-1,2,3,3a,4,8b
-hexahydrocyclopenta[b]indole (YD-TRC) [49] wereepared according to the li
terature. The synthetic pathways of 3-(4-(4,6-diotH1,3,5-triazin-2-ylamino)styr
yh)-9-phenyl-9H-carbazole (PCB-TRC), 4"-(4-(4,6-dioro-1,3,5-triazin-2-ylamino)
styryltriphenylamine (TPA-TRC), 4,4’-dimethoxy-44-(4,6-dichloro-1,3,5-triazin-
2-ylamino)styryl)-triphenylamine (MeTPA-TRC), 4,dioctyloxy-4"-(4-(4,6-dichlor
0-1,3,5-triazin-2-ylamino)styryhtriphenylamine (DA-TRC) were illustrated in
Scheme 1. All reagents and solvents were reageadegand further purified b
y the standard methods when necessary. All symthmibcedures were carried
out under an atmosphere of dry nitrogen or dry mrgaless otherwise indicate
d.

TPAa. TPAn (0.090 g, 0.23 mmol) was dissolved in absoéiteanol (40 mL) at
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room temperature. Then Sp€H,O (0.23 g, 1.0 mmol) was added into the solution.
Afterwards, the suspension was refluxed at 90 AC8fd. After filtration, the solid
was washed with absolute ethanol. Then the orgamases were condensed by rotary
evaporation. The product was further purified byuotn chromatography on silica
gel using cyclohexane: dichloromethane (3:2 v:v)haseluent to yield a pale yellow
solid (0.060 g, 72%). HRMS-ESI: Found: m/z=363.1@&5H)" (Calc. for GeH2aN,"
m/z=363.1856)*H NMR (CDCk, 500 MHz),5: 7.76-7.62 (m, 2H), 7.61-7.29 (m, 4H),
7.29-7.19 (m, 6H), 7.19-6.76 (m, 8H), 6.44 (s, 2H).

Synthetic procedures of MeTPAa, OeTPAa and P&igathe same as that of
TPAa except that TPAn was replaced by MeTPAnR (§,10.23 mmol), OeTPAn (0.15
g, 0.23 mmol) and PCBn (0.090 g, 0.23 mmol), rebpely. The characterization data
of these compounds are as follows. .

MeTPAa. A pale green solid (0.065 g, yield: 67%) was ol#dirby column
chromatography. HRMS-ESI: Found: m/z=423.2065 (M+@B)plc. for GgH27N,0,"
m/z=423.2067)'H NMR (CDCk, 500 MHz),5: 7.48 (dd, J=26.1, 19.7 Hz, 1H), 7.37
(d, J=8.3 Hz, 1H), 7.33-7.25 (m, 5H), 7.17 (d, &8z, 1H), 7.04 (t, J=16.8 Hz, 3H),
6.94 (dd, J=16.4, 7.2 Hz, 1H), 6.86 (dd, J=32.8, Hz, 6H), 5.31 (s, 2H), 3.79 (d,
J=9.1 Hz, 6H).

OeTPAa. A pale green solid (0.085 g, yield: 60%) was olsdirby column
chromatography. HRMS-ESI: Found: m/z=619.4261 (M+{@alc. for GoHssN,O,":
m/z=619.4258)*H NMR (CDCk, 500 MHz),5: 7.86-7.69 (m, 2H), 7.67-7.33 (m, 6H),

7.33-7.21 (m, 2H), 7.21-6.77 (m, 6H), 6.20 (dd,.J=8.3 Hz, 2H), 4.32 (t, J=6.7 Hz,



147 2H), 4.06-3.83 (m, 4H), 2.11-0.56 (m, 30H).

148 PCBa. A yellow solid (0.060 g, vyield: 73%) was obtained/ lwolumn
149 chromatography. HRMS-ESI: Found: m/z=361.1697 (M+KJalc. for GgHoiN,":
150  m/z=361.1699)'H NMR (CDCk, 500 MHz),5: 8.74-8.69 (m, 2H), 8.30 (s, 1H), 8.21
151 (dt, J=21.0, 10.5 Hz, 1H), 8.01 (dd, J=8.6, 1.4 H1), 7.71-7.56 (m, 3H), 7.56-7.29
152 (m, 8H), 7.29-7.03 (m, 2H), 5.31 (s, 2H).

153 TPA-TRC. Cyanuric chloride (0.047 g, 0.26 mmol) was firssstilved in the
154  absolute tetrahydrofuran at 0 °C. Then TPAa (09326 mmol) was added into the
155  solution. Afterwards, the solution was warmed tal dhen kept stirring at room
156  temperature for 30 min. Then the solvent was remdoerotary evaporation and the
157  residue was purified by column chromatography tinasgel using petroleum ether :
158  dichloromethane (1:1 v:v) as the eluent to yieldyadlow solid (0.11 g, 84%).
159  HRMS-ESI: Found: m/z=510.1250 (M+H)Calc. for GgH2:,CloNs": m/z=510.1247).
160 'H NMR (CDChk, 500MHz),8: 7.62-7.43 (m, 5H), 7.39 (d, J=8.6 Hz, 2H), 7.84d,(
161 J=9.8, 5.9 Hz, 4H), 7.12 (d, J=7.8 Hz, 4H), 7.08{m, 5H), 6.97 (d, J=16.3 Hz, 1H).
162  °C NMR (CDCB, 100.6 MHz),5:171.42, 163.92, 147.59, 147.50, 136.42, 135.42,
163  134.57, 131.14, 129.31, 128.62, 127.05, 124.59452323.15, 121.36. Anal.: Found:
164 C, 68.09; H, 4.03; N, 13.51% (Calc. fosdH,1Cl:Ns: C, 68.24; H, 4.15; N, 13.72%).
165 Synthetic procedures of MeTPA-TRC, OeTPA-TR@ &CB-TRC are the same
166 as TPA-TRC except that TPAa was replaced by MeTRA&l g, 0.26 mmol),
167 OeTPAa (0.16 g, 0.26 mmol) and PCBa (0.094 g, Ori260l), respectively. The

168  characterization data of these compounds are kasvil



169 MeTPA-TRC. A yellow solid (0.12 g, yield: 82%) was obtained bglumn
170  chromatography. HRMS-ESI: Found: m/z=570.1460 (M+H)Calc. for
171 CaiH26CLNsO,": m/z=570.1458)*H NMR (CDCk, 500 MHz),8: 7.57-7.46 (m, 2H),
172 7.33 (d, J=7.9 Hz, 2H), 7.46-7.08 (m, 4H), 7.081(d), 7.06 (s, 2H), 7.10-6.90 (m,
173 3H), 6.84 (d, J=8.7 Hz, 5H), 3.81 (s, 6i)C NMR (CDC}, 100.6 MHz),8: 171.24,
174  163.91, 158.41, 147.46, 137.28, 135.47, 134.58,4B31129.26, 128.62, 127.03,
175  126.95, 124.38, 121.33, 113.67, 55.50. Anal.: Fouhd65.13; H, 4.28; N, 12.03%
176  (Calc. for GiH2sCIoNsO2: C, 65.27; H, 4.42; N, 12.28%).

177 OeTPA-TRC. A yellow solid (0.16 g, yield: 78%) was obtained bglumn
178  chromatography. HRMS-ESI: Found: m/z=766.3651 (M+H)Calc. for
179 CasHs4CLNsO,": m/z=766.3649)'H NMR (CDCk, 500 MHz),8: 7.62-7.41 (m, 5H),
180  7.41-7.25 (m, 3H), 7.13-6.97 (m, 5H), 6.97-6.72 @Hi), 3.95 (dt, J=13.0, 6.5 Hz,
181 4H), 1.96-1.61 (m, 4H), 1.55-1.38 (m, 4H), 1.3841(2n, 11H), 1.38-1.02 (m, 11H).
182 °C NMR (CDCk, 100.6 MHz),5: 171.26, 163.68, 158.63, 147.55, 136.26, 135.49,
183  134.56, 131.93, 129.09, 128.73, 127.25, 126.83,7P26124.71, 121.42, 120.22,
184  115.32, 68.32, 31.95, 31.86, 29.73, 29.41, 29.88,2 22.69, 14.14. Anal.: Found: C,
185  70.32; H, 6.85; N, 8.97% (Calc. fousHs3CloNsO2: C, 70.48; H, 6.97; N, 9.13%).

186 PCB-TRC. A pale green solid (0.11 g, yield: 80%) was obtdiry column
187  chromatography. HRMS-ESI: Found: m/z=508.1091 (M+@alc. for GgH2cCloNs":
188  m/z=508.1090)'H NMR (CDCk, 500 MHz),5: 8.28 (s, 1H), 8.18 (d, J=7.8 Hz, 1H),
189  7.68-7.37 (m, 10H), 7.35-7.24 (m, 5H), 7.15 (d, §21Hz, 1H), 5.30 (s, 1H)C

190 NMR (CDCk, 100.6 MHz),s: 171.40, 163.89, 141.38, 137.53, 137.02, 136.34,



191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

135.65, 132.42, 129.93, 129.40, 128.64, 127.60,0627126.99, 126.22, 123.82,
123.33, 122.34, 121.37, 121.18, 120.37, 118.62,061Anal.: Found: C, 68.43; H,
3.62; N, 13.59% (Calc. forfH1sCIoNs: C, 68.51; H, 3.77; N, 13.78%).

2.2 Mass spectrometry. The ESI mass spectra were obtained on a TherstwefFi
LCQ Deca XP MAX mass spectrometer. MALDI-TOF magedira were obtained on
a Bruker Autoflex tof/toflll mass spectrometer.

2.3 NMR spectrometry. *H NMR spectra and®C NMR spectra were obtained on a
VARIAN INOVA 500MHz spectrometer, and the testirgrtperature was set to 25 °C.
2.4 Elemental analysis. Elemental analysis for carbon, hydrogen, and nénog/as
determined on a VARIO EL CUBE (ELEMENTAR, Germam¢mental analyzer.

2.5 Thermogravimetric analysis (TGA). Thermogravimetric analysis was performed
on a Rigaku Thermo plus TG 8120 instrument. Thentlaé stability of the samples
was determined by measuring the weight loss wteletihg at a rate of 10 °C min
from room temperature to 500 °C under the nitrogtemosphere.

2.6 Differential scanning calorimetry (DSC). Differential scanning calorimetry at a
heating rate of 10 °C mitfrom 50 to 250 °C was performed using a TA DSC Q 20
instrument under the nitrogen atmosphere.

2.7 Cyclic voltammetry. The electrochemical properties were measured @sB4S
100W electrochemical analyzer utilizing the thréectrode configuration with a
glassy carbon electrode as the working electrodg/AgNO; electrode as the
reference electrode, and platinum as the auxil@lgctrode. The analyzer was
calibrated using a ferrocene/ferrocenium redox map the external standard prior to

10



213  the measurements. The scan rate was set to 30 Di¢fdoromethane containing 0.1
214  molsL™ tetra-butylammonium hexafluorophosphate (TBAPKas employed as the
215  medium for the cyclic voltammetric determinatiorheTcompound concentration was
216 5x10*moleL™.

217 2.8 Computational details. Geometry optimizations of the molecules were cdrrie
218  out using the three-parameter exchange functidnBeoke and correlation functional
219  of Lee, Yang, and Parr (B3LYP) [51-53] with the B&3d, p) basis set in toluene
220 without any symmetry constraints. The polarizedticmum model (PCM) framework
221 [54] was used to describe the solvent effect. TBE Sonvergence was f@.u, the
222 gradient and energy convergence was® . and 10 a.u., respectively. All
223  calculations were performed using the Gaussian@8gge [55]. In order to confirm
224  the optimized geometry as a global minimum, fregyesalculations at the same level
225  of theory were performed. A detailed descriptioncomputational methods can also
226  be found in our previous work [48].

227 2.9 UV-Vis spectroscopy in solution. The absorption spectra were taken on a Thermo
228  Spectronic, Helios Gamma spectrometer. Quartz waflsa path length of 1 cm were
229 used to observe absorption in the UV region.

230 2.10 Fluorescence spectroscopy in solution. The fluorescence spectra were recorded
231  on a Varian CARY ECLIPSE fluorospectrophotometer.

232 211 Time-correlated single photon counting (TC-SPC). Excitation of samples was
233  done with picosecond diode lasers (Horiba JobinYwstruments) at 366 nm, and the
234  time resolution was ~ 150 ps. The laser pulse gnems ca. 15 pJ and attenuated

11
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(often more than an order of magnitude) to therddstount rate of ca. 1% or less of
the excitation frequency. A cooled (ca. -40 °C) Hamatsu MCP- photomultiplier
R3809U 51 was used for detection of single photand,the signal passed through a
discriminator (Ortec 9307) and into a TAC (Ortec65800 ns range used). The
electrical trigger signal from the laser was alsmsged through a discriminator
(Tennelec TC454) and onto the TAC (Ortec 566). T output was read by a
DAQ-1 MCA computer card wusing 1024 channels andlectdd with
HoribaJobinYvon Data Station 2.5. Measurements weade in reverse mode at 5
MHz and under magic angle polarization. A cutoffefi GG400 (Excitation at 366
nm), was used to block stray excitation light. Aité solution of Ludox was used to
record the instrument response function without fter for solution measurements.
No monochromator was used; i.e., all wavelengthasimitted by the cut off filter
were collected. The sample concentrations were &xidleL™, and the solutions
were bubbled with argon for 30 min before the measents.

2.12 Nanosecond transient absorption spectroscopy. Nanosecond transient
absorption measurements were performed on a LPA&) flash photolysis setup
(Edinburgh). Excitation at 420 nm with a power oD 2nJ per pulse from a
computer-controlled Nd:YAG laser/OPO system fromo@®@g (Vibrant 355 1)
operating at 10 Hz was directed to the sample. |[aber and analyzing light beams
passed perpendicularly through a 1 cm quartz ddie complete time-resolved
spectra were obtained using a gated CCD cameraoff8$iTAR); the kinetic traces
were detected by a Tektronix TDS 3012B oscilloscapd a R928P photomultiplier

12



257 and analyzed by Edinburgh analytical software (LBJ92he samples used in the
258 flash photolysis experiments were bubbled with argfor 30 min before
259 measurements. The compound concentrations were smaoL ™.

260 3. Resultsand discussion

261 We characterized and compared PCB-TRC, TPA-TRETPA-TRC,
262  MeTPA-TRC, OeTPA-TRC and YD-TRC for the studiespbbtophysical processes.
263  We performed electrochemical and spectroscopic umeasents and computational
264  calculations on these compounds. The results floeset studies are discussed as
265  follows.

266 3.1 Thermal properties

267 The thermal properties of the six compounds wenrestigated by thermal
268 gravimetric analysis (TGA) and differential scargioalorimetry (DSC) under the
269 nitrogen atmosphere (Figure 1). TGA curves (Figdr@ revealed the onset
270 decomposition temperatures (Td) of PCB-TRC, TPA-TRGITPA-TRC,
271  MeTPA-TRC, OeTPA-TRC and YD-TRC were 294 °C, 283 281 °C, 236 °C,
272 222 °C, 249 °C, respectively, indicating that thesecompounds had the relatively
273 high thermal-stability. Additionally, the glass rigtion temperatures (Tg) of six
274 compounds were obtained in the range of 96-99 °Cabwlyzing the DSC
275  thermograms (Figure 1b). The values of Td and TY@HTRC are smaller than those
276 of PCB-TRC and TPA-TRC, and the introduction of ytaty groups obviously
277  reduces the values of Td and Tg of OeTPA-TRC in mamison with those of
278  TPA-TRC.

13
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................................................ BLOUrE Lo e

3.2 Electrochemical & Computational results

To reveal the orbital energy levels of these simpounds, the electrochemical
behaviors were investigated by cyclic voltammetryhe electrochemical
measurements are shown in Figure 2. The oxidamahraduction potentials as well
as the frontier orbital energies derived from thessmasurements are summarized in

Table 1.

As shown in Figure 2, PCB-TRC, TPA-TRC, MTPA-TRC,eWPA-TRC,
OeTPA-TRC and YD-TRC present the reversible oxatativaves, which could be
attributed to PCB, TPA, MTPA, MeTPA, OeTPA and Ydules, respectively, and
the irreversible reduction wave ascribed to the TR&tiule [48]. As shown in Table 1,
the charge transition first occurs in donor modfiem the highest occupied
molecular orbital (HOMO) to the lowest unoccupielecular orbital plus one
(LUMO+1), and then the electron transfer from LUMDto LUMO is possible in
these D-TRC systems. It can be concluded thatialhm®lecules are typical D-A
systems with PCB, TPA, MTPA, MeTPA, OeTPA and Y Deéactron donors and the

14
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TRC module as electron acceptor. Meanwhile, theprdational results (Figure 3)
show that the HOMO and LUMO+1 are located at theodomodules and TRC
module respectively. It should be noted that thevi@and LUMO+1 energy levels

of these studied D-A systems are within the eresrand can have the same energy.

................................................ BLQUIE 3.

As shown in Table 1, even though there is littiéedence of LUMO level among
these compounds, the HOMO level of PCB-TRC is lothan that of TPA-TRC by
0.15 eV. The HOMO levels of MTPA-TRC, MeTPA-TRC amdeTPA-TRC
introduced by methyl groups, methoxy groups anacgroups increased by 0.03
eV, 0.19 eV and 0.24 eV, respectively. In compariseith the triphenylamine
derivatives, YD-TRC has the highest HOMO level hmede D-A systems. This
demonstrates that donor modules with stronger releationating abilities (PCB <
TPA < MTPA < MeTPA < OeTPA < YD) have the stronggomoted effects on the
HOMO levels, but have little effects on LUMO levatsthe D-A systems.

3.3 Absorption and fluorescence properties

The UV-vis absorption spectra of PCB-TRC, TPA-TRMTPA-TRC,
MeTPA-TRC, OeTPA-TRC and YD-TRC in toluene are shaw Figure 4. All six
compounds show two obvious absorption bands frothrz@ to 600 nm in toluene.
The bands appeared at 300 nm are due ta-tttetransition of 9-phenyl carbazole,
triphenylamine and 4-methylphenyl indoline. The maxm absorption bands are
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344

ascribed to the intramolecular charge transfer YI@&nsitions. Once the methyl
groups, methoxy groups and octoxy groups are intted to triphenylamine, the
absorption maxima of MTPA-TRC, MeTPA-TRC and OeTPRE become 393 nm,
396 nm and 397 nm, which are red-shifted 7nm, 1@meh 11nm from 386 nm of
TPA-TRC, respectively. Both PCB-TRC and YD-TRC halever absorption
intensities than TPA-TRC. The absorption maxim#®6B-TRC and YD-TRC are at
359 nm and 402 nm, which are blue-shifted 27 nmradeshifted 16 nm, respectively,
in comparison with that of TPA-TRC. The absorptioaxima of these D-A systems
in order of decreasing wavelength is YD-TRC > OeTHRC > MeTPA-TRC >
MTPA-TRC > TPA-TRC > PCB-TRC which is in agreemenmith the degree of
enhanced ICT character of donor modules in the Bystems (YD > OeTPA >

MeTPA > MTPA > TPA > PCB).

................................................ BLQUIE A e

To explore the differences of photophysicalcesses from the excited donor
(PCB, TPA, MTPA, MeTPA, OeTPA and YD) module to eptor (TRC) module, the
fluorescence spectra at the excitation waveleng880fnm were exhibited in toluene
(Figure 5). The emission maxima are in a seriesdefreasing wavelength of
OeTPA-TRC (470 nm), MeTPA-TRC (468 nm), MTPA-TRC4A¢4nm), TPA-TRC
(437 nm) and PCB-TRC (424 nm). However, the emissiaxima of YD-TRC (452
nm) is significantly blue-shifted compared with thaf OeTPA-TRC, which
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corresponds to a much smaller Stokes shift of YBETR implies that the structure
reorganization of YD-TRC upon photoexcitation i€ tamallest among these D-A

systems.

................................................ BLQUIe 5. .

Meanwhile, the fluorescence quantum vyield9 (vere obtained as 0.005, 0.054,
0.055, 0.108, 0.132 and 0.018 for PCB-TRC, TPA-TRITPA-TRC, MeTPA-TRC,
OeTPA-TRC and YD-TRC molecules, respectively. Tgkireported compound
MTPA-TRC for instance, its fluorescence intensity Substantially quenched in
comparison with that of the compound MTPA [5@}0.690). The fluorescence of
MTPA-TRC follows a bi-exponential decay equatioonfr the emission fluorescence
decay experiments: the fast component (0.29 nd)eofluorescence is assigned to the
electron transfer from MTPA to the TRC module, whiesults in a charge-separated
state of MTPA-TRC", and the slow component (1.73 ns), which is attgt to the
solvation relaxation of MTPA singlet. We also cadiout the emission fluorescence
decay experiments to investigate the fluorescehteecother five compounds (Figure
6). It is clear that the fluorescence from PCB, TRIRTPA, OeTPA and YD modules
follow the bi-exponential decay process. The eraisdifetimes and proportions are
provided in Table 2, illustrating that the photamedd electron transfer, which is
attributed to the short lifetime should lead to kv fluorescence yield of these D-A

systems.

................................................ FBLQUIE 6. . e
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................................................ T A C 2.

Interestingly, different donor modules affedtet emission lifetimes and
proportions of the fluorescence decay of D-A systalifferently. As shown in Table
2, the lifetimes of fluorescence for PCB-TRC and-YRC are obviously larger than
those of TPA-TRC, MTPA-TRC, MeTPA-TRC and OeTPA-TRiMe proportions of
the fluorescence decay related to photoinducedretetransfer are different in these
six compounds. The proportion of photoinduced etecttransfer is given in
decreasing value in these D-A systems (66.8% for-TRLC > 64.3% for
OeTPA-TRC > 45.9% for MeTPA-TRC > 39.7% for MTPA-CR> 33.9% for
TPA-TRC > 12.3% for PCB-TRC). This result revediattusing the YD module as
the donor in these D-A systems should be more tefeethan other donor modules to

form the long-lived charge-separated states.

Therefore, to determine the lifetimes of chargpasated states for compounds
PCB-TRC, TPA-TRC, MTPA-TRC, MeTPA-TRC, OeTPA-TRCnda YD-TRC,
nanosecond transient absorption measurements leaveperformed. As we reported
previously, there is no signal for the triplet atptmn by compounds MTPA and YD,
and the positive transient absorptions of MTPA-TR& YD-TRC in the range
400-700 nm were attributed to the MTPAand YD® absorptions [48,49]. The
absorptions of PCB TPA*, MeTPA" and OeTPA should be similar with that of
MTPA™. The lifetimes of charge-separated states of MTHRC™ and YD'-TRC"
were reported as 80ns [48] and 215 ns [49], resmdgt Meanwhile, the lifetimes of
charge-separated states PEERC", TPA™-TRC", MeTPA*-TRC", OeTPA-TRC"
were estimated as 57 ns, 75 ns, 115 ns and 13tespectively, and have been

exhibited in Figure 7 (a)-(d). It is obvious thhetlifetimes of six compounds are in
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the increasing order shown as PCB-TRC < TPA-TRCKPM-TRC < MeTPA-TRC
< OeTPA-TRC < YD-TRC, which is also in agreementhvthe degree of enhanced
ICT character of donor modules in the D-A systeRGE < TPA < MTPA < MeTPA

< OeTPA<YD).

................................................ BLQUI @ 7.

3.4 Decay pathways of charge-separated states in PCB-TRC, TPA-TRC,
MTPA-TRC, MeTPA-TRC, OeTPA-TRC and YD-TRC

Here we derive and compare the decay pathways badje:separated states
lifetimes of PCB-TRC, TPA-TRC, MTPA-TRC, MeTPA-TR@eTPA-TRC and
YD-TRC. It is beneficial to comprehend the prineigf tuning the donors to control
the lifetimes of charge-separated states in theaeirte-based D-A systems. It also
exhibits the photoinduced electron transfer fromM®@ of donor modules (LUMO+1)
to the LUMO of TRC module, which then generates ridspective charge-separated
states. The energy diagram and photophysical psesesf six compounds were

therefore constructed and exhibited in Figure 8.

............................................... BIQUIE 8. e

In PCB-TRC, about 12.3% of excited singlet P@&ay to the photoinduced
electron transfer pathway to form the charge-sepdrstate, which is less than that of

TPA-TRC as about 33.9%. For MTPA-TRC, MeTPA-TRC, TBA-TRC and
19
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YD-TRC about 39.7%, 45.9%, 64.3% and 66.8% of dosioglet excited states
convert into the charge-separated states throughpliotoinduced electron transfer
pathway, respectively. The value in YD-TRC is sfgaintly larger than those in other
D-A systems. This demonstrates that the tuningn@fdonors to control photoinduced
electron transfer was reasonable and effectivechwhiill change the quantum yield
of long-lived charge-separated states in D-A system

The Marcus theory of electron transfer offersaluable guide to controlling and
optimizing the efficiency of charge separation wuerscharge recombination.
According to the Marcus theory of electron trangtef], the rate constants of both
forward electron transfer and back electron trarafe given by eq (1), whekéis the
electronic coupling matrix elemenig is the Boltzman constanh is the Planck
constant, and is the absolute temperaturter is the free energy change of electron

transfer, and is the reorganization energy of electron transfer.

ker = (o) 2V 2exp [~ 8] @

AGgr is the free energy change of electron transfet, Jais the reorganization
energy of electron transfer.

The most significant concept of the Marcus tiide that the electron transfer
rate constant is expected to decrease as the gifioroe of electron transferAGgr)
increases in the region where the driving fordarger than the reorganization energy
of electron transfer-4Ggr > A) [17]. This region {4Ggr > 1) is referred to as the
Marcus inverted region [58-61]. The reorganizatemergy of electron transfet)(is

the energy required to structurally reorganize dbeor, acceptor and their solvation
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spheres upon electron transfer [17]s one of the most important terms, which has a
strong impact on the lifetime and quantum yielde Bmall reorganization energy of
electron transfer reactions and large driving foofeback electron transfer are
required to form long-lived charge-separated st@2<%5].

The driving force Ggerin eV) for back electron transfer process from TRC
radical anion to donor radical cation were caladaby eq (2), where stands for
the elementary chargeéd,(D*/D) is the first one-electron oxidation potential oéth
donor module, whileERz, (A7/A) refers to the first one-electron reduction potaruf
the acceptor moiety [57].

-AGeger = €[Egx(D"/D)-Eggp(ATA)] (2)

Furthermore, the forward electron transfer idgvforce (AGgr in eV) is
determined by eq (3)IEo.ois the energy of the 0-0 transition energy gap betwthe
lowest excited state and the ground state [57]. driveng forces of forward electron
transfer {4Ggr) and back electron transfei4Gger), the rate constants of forward
electron transfer g¢) and back electron transfersfd) were calculated and shown in
Table 3.

-AGgr= 4B +4GgeT 3)

From Table 3 we can see photoinduced forward elediransfer processes in
these D-A systems are extremely rapid, and badkrele transfer processes are up to
three orders of magnitude slower. We investigateddiectron transfer processes of
these D-A systems at a specific temperature (298n)also estimated the valuest of
and V according to eq (1) (Table 3) and drew the drivingces dependence of

21



461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

intramolecular electron transfer rate constanthe$e D-A systems (Figure 9).

It elucidates that back electron transfer processéisese D-TRC systems occur
in the inverted region of the Marcus curve, whitdyp a key role in the differences of
charge-separated state lifetimes for these D-Aegyst The forward electron transfer
processes of PCB-TRC, TPA-TRC, MTPA-TRC are sitdiatethe normal region of
the Marcus curve, and the forward electron tranpfecesses of MeTPA-TRC and
OeTPA-TRC are located in the beginning of the itedregion. For YD-TRC, the
forward electron transfer process is within thepiieénverted region of the Marcus
curve. As illustrated in table 3 and Figure 9, thizing forces of the back electron
transfer decrease gradually in the order of PCB-FRTPA-TRC > MTPA-TRC >
MeTPA-TRC > OeTPA-TRC > YD-TRC. The reorganizatiemergies also decrease
in the same order, and are used to determine tieecanstants of back electron
transfer in these D-A systems. These two factorskvtogether to determine the
differences of lifetimes of charge-separated staiesPCB-TRC < TPA-TRC <
MTPA-TRC < MeTPA-TRC < OeTPA-TRC < YD-TRC. It shaube noted that the
electronic coupling matrix element of YD-TRC isailky larger than that of other D-A
systems, which demonstrates that the electronicplomu of electron transfer
processes of YD-TRC is enhanced remarkably.
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Above all, there are two reasons that accoontifferences in the lifetimes of
the charge-separated states among these D-TRGnsystee is the driving force of
back electron transfer and the other is the redzgtion energy of electron transfer.
These two factors work together to determine thdferdint lifetimes of
charge-separated states in these D-A systems.

4. Conclusions

In this paper, we designed and synthesized mew D-A systems PCB-TRC,
TPA-TRC, MeTPA-TRC, OeTPA-TRC, together with sonesuits of two reported
D-TRC systems, MTPA-TRC and YD-TRC, to comparertpéiotophysical processes
using steady-state and transient absorption arateflcence spectra as well as the
electrochemical measurements and computationalulesitns. Meanwhile, the
thermal properties of six compounds had been dualyeT GA and DSC. In the above
D-TRC systems, charge-separated states, PTHC", TPA*-TRC’, MTPA*-TRC,
MeTPA™-TRC", OeTPA-TRC and YD'-TRC", were generated through the effective
photoinduced electron transfer with the lifetimé®o ns, 75 ns, 80 ns, 115 ns, 131 ns
and 215 ns, respectively.

In accordance with the Marcus theory of electiansfer, these simple D-TRC
systems are capable of fast charge separationhéwge extremely slow charge
recombination, and the back electron transfer msE® of these D-TRC systems
occur in the inverted region of the Marcus curvhe back electron transfer driving
forces decrease in the order of PCB-TRC > TPA-TR@TPA-TRC > MeTPA-TRC >
OeTPA-TRC > YD-TRC. The reorganization energiesrelase in the same order as
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the back electron transfer driving forces, andus®d to determine the rate constants
of back electron transfer in these D-A systems. &leetron transfer driving forces
and reorganization energies of electron transferkwiogether to determine the
different lifetimes of charge-separated stateb@sé simple D-TRC systems.

This work indicates that tuning donor abilitp ttontrol the lifetime of
charge-separated state in D-A system was reasoaablachievable while providing
an important theoretical basis for the design gharc optoelectronic materials.
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Figuresand Table captions:

Scheme 1 Synthesis scheme of key compounds

Figure 1 TGA (a) and DSC (b) curves of PCB-TRC (olive), TPRC (black), MTPA-TRC (red),
MeTPA-TRC (blue), OeTPA-TRC (magenta) and YD-TRE@(we).

Figure 2 Electrochemical curves of PCB-TRC (a), TPA-TRC {d),PA-TRC (c), MeTPA-TRC
(d), OeTPA-TRC (e) and YD-TRC (f) in dichlorometigavs Ag/Ag+. The concentration is
5x10% molsL®. The data of MTPA-TRC and YD-TRC were taken fromef.R48 and Ref. 49,
respectively, for comparison purposes.

Figure 3 Some molecular orbitals and the corresponding éwergf PCB-TRC, TPA-TRC,
MTPA-TRC, MeTPA-TRC and YD-TRC obtained using B3U/8RB1G(d, p) in toluene. The blue,
grey, green, and white spheres represent nitrogarhon, chloride, and hydrogen atoms,
respectively.

Figure 4 Absorption spectra of PCB-TRC (olive), TPA-TRC @3 MTPA-TRC (red),
MeTPA-TRC (blue), OeTPA-TRC (magenta) and YD-TRCafme) in toluene. (Concentration:
5x10° molsL™).

Figure 5 Normalized fluorescence emission spectra excite@8& nm of PCB-TRC (olive),
TPA-TRC (black), MTPA-TRC (red), MeTPA-TRC (blu€)eTPA-TRC (magenta) and YD-TRC
(orange) in toluene. (Concentration: 5%1@olsLY).

Figure 6 Fluorescence emission decay spectra of PCB-TRGrefoliTPA-TRC (black),
MTPA-TRC (red), MeTPA-TRC (blue), OeTPA-TRC (magenand YD-TRC (orange) in toluene.
The excitation wavelength is 366 nm and the emissiavelength is 440 nm. The concentration is
5x10° molsL™.

Figure 7 Transient absorption kinetics at 600 nm of PCB-T@RY; TPA-TRC (b), MeTPA-TRC
(c), OeTPA-TRC (d) in toluene following excitatiavith 410 nm, 8 ns laser pulses (Concentration:
5x10° molsL™). The cyan lines are the fitting curves by thegkrorder exponential decay
equation.

Figure 8 Energy-level diagram and photophysical processes PEGB-TRC, TPA-TRC,
MTPA-TRC, MeTPA-TRC, OeTPA-TRC and YD-TRC. The dafaMTPA-TRC and YD-TRC
were taken from Ref. 48 and Ref. 49, respectivefgr comparison purposes.

Figure 9 Driving force (AGgr and AGget) dependence of intramolecular electron transfer ra
constants in PCB-TRC (olive), TPA-TRC (black), MTHRC (red), MeTPA-TRC (blue),
OeTPA-TRC (magenta) and YD-TRC (orange). (Forwalelcteon transfer: triangles; back
electron transfer: circles).

Table 1 Electrochemical data obtained vs Ag/Ag dichloromethane and frontier orbital energies
Table 2 Fluorescence quantum yield®, emission lifetimesz{) and fractions (in parentheses) of
PCB-TRC, TPA-TRC, MTPA-TRC, MeTPA-TRC, OeTPA-TRCdaryD-TRC in toluene by
steady and fitting transient spectra with exporatlecay equations.

Table 3 The driving forces of forward electron transfedGgr) and back electron transfer
(-4Gggr), respective rate constanks(andkger), reorganization energies) @nd electron coupling
matrix element {) in PCB-TRC, TPA-TRC, MTPA-TRC, MeTPA-TRC, OeTPRT and
YD-TRC.
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Table 1. Electrochemical data obtained vs Ag/Ag dichloromethane and frontier orbital energies

Ey, 0 ? S Etomo” ELumo” Eg(opt)  ELumor 2
Compound
V) V) (eV) (eV) (eV) (eV)

PCB-TRC 0.73 -1.21 -5.66 -3.72 2.95 -2.71

TPA-TRC 0.58 -1.21 -5.51 -3.72 2.82 -2.69
MTPA-TRC? 0.55 -1.19 -5.48 -3.74 2.78 -2.70
MeTPA-TRC 0.39 -1.20 -5.32 -3.73 2.73 -2.59
OeTPA-TRC 0.34 -1.22 -5.27 -3.71 2.68 -2.59

YD-TRC? 0.28 -1.19 -5.21 -3.74 2.56 -2.65

a) The data of MTPA-TRC and YD-TRC were taken filgef. 48 and Ref. 49, respectively, f or
comparison purposes;

b) V vs Ag/Ad, the potential of Ag/Awas measured as 0.19 V vs SCE;

¢) Exomo = - Ex2"%-4.93 eV.E yuo = - Exn” -4.93eV;

d) ELumo+1=EnomotEg(0pt), theEy(opt) (optical band gap) was estimated from the onséteof t
ICT absorption band of respective compounds.
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941  Table 2. Fluorescence quantum yield®s], emission lifetimest) and fractions (in parentheses)
942  of PCB-TRC, TPA-TRC, MTPA-TRC, MeTPA-TRC, OeTPA-TRd YD-TRC in toluene by
943  steady and fitting transient spectra with exporidecay equations.

944
Emission lifetimegz; / ns (fraction %)
Compound D¢
Aex=366 NM A =440 Nm
PCB-TRC 0.005 403 Eé??i
TPA-TRC 0.054 Tae §2§?§
MTPA-TRC 0.055 173 E231§§
MeTPA-TRC 0.108 %2 Egi:?g
OeTPA-TRC 0.132 g:ig Egg%
YDTRC 0018 462 (32.2)
945

946
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947  Table 3. The driving forces of forward electron transfer@gr) and back electron transfer
948  (-4Gggy), respective rate constanks{andkggr), reorganization energies) @nd electron coupling
949 matrix element {) in PCB-TRC, TPA-TRC, MTPA-TRC, MeTPA-TRC, OeTPART and
950 YD-TRC.

951
-AGgr -AGger ker Keer A \%
Compound
(eV) (eV) (x10sY)  (x1Psh (eV) (cm™)
PCB-TRC 0.99 1.94 1.20 17.54 1.19 2.67
TPA-TRC 1.05 1.79 2.86 13.33 1.03 3.38
MTPA-TRC 1.05 1.74 3.45 12.50 0.98 3.75
MeTPA-TRC 1.06 1.59 5.00 8.70 0.82 5.93
OeTPA-TRC 1.08 1.56 4.00 7.63 0.79 6.26
YD-TRC 1.28 1.47 1.22 4.65 0.55 208.59
952

953
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. Six s-triazine based donor-acceptor systems were synthesized and characterized
. These donor-acceptor systems have different lifetimes of charge separated states
. The driving forces and reorganization energies of electron transfer determine the

lifetimes



