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Abstract: A copper-catalyzed intramolecular cyclization reaction of 2-

isocyanoacetophenone derivatives to afford 4-hydroxyquinolines chemoselectively is 

described. The transformation proceeds through enol tautomerism and subsequently C-

C bond formation. Compared to previous methods, this study provides a new protocol 

for the construction of 4-hydroxyquinoline compounds from functionalized isocyanides 

under mild conditions. 

socyanides are versatile building blocks and intermediates in chemical synthesis 

with wide applications for their unique structures and reactivities.1a Besides the 

well-known multicomponent Ugi1b,2 and Passerini3 reactions, isocyanides insertion and 

cyclization reaction are of the most powerful strategies for the preparation of nitrogen-

containing heterocycles.4,5 In view of their high reaction activities and variabilities, the 

application of isocyanides has drawn considerable attention. Notably, 2-

isocyanoacetophenone derivatives was easily available starting materials for the 
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construction of various heterocyclic compounds in recent years.6-13 In 2009, Konishi 

and co-workers reported a simple method for the synthesis of 4-alkylidene-4H-3,1-

benzoxazine derivatives via acid-catalyzed cyclization of 2-isocyanophenyl ketones in 

the presence of vinyl ether.6 Later, cyclization reaction of 2-isocyanoacetophenone 

derivatives with sulfur and Eschenmoser’s salt were well developed for the preparation 

of corresponding nitrogen-containing heterocycles.7 In addition, Wü rthwein8 group 

reported the intramolecular cycloaddition of 2-isocyanoacetophenone for the synthesis 

of 4‐methylene‐4H‐benzo[d][1,3]oxazine (Scheme 1, eq. 1). Recently, silver-catalyzed 

cyclization reaction of 2-isocyanoacetophenone derivatives with isocyanoacetamides 

has been developed for the facile and efficient synthesis of quinolones by Xu group.9 

As versatile building blocks, 2-isocyanoacetophenone derivatives have recently been 

employed in the assembly of  indole/furan-fused heterocycles,10 quinazolines11 

(Scheme 1, eq. 2) and indolin-3-ol derivatives.12 Among these transformations, 

isocyanides attacked by nucleophile is indispensable. However, for the most parts, 

nucleophiles are heteroatom nucleophiles and carbon atom nucleophiles are not typical. 

It was seldom achieved when heteroatom and carbon atom nucleophile coexist 

simultaneously.13 It’s desirable to control the chemoselective cyclization of 

isocyanides. As continuation of our interests in isocyanides reactions,14 herein, we 

reported a copper-catalyzed cyclization reaction of 2-isocyanoacetophenone for the 

synthesis of 4-hydroxyquinoline derivatives chemsoselectively under mild conditions.
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Scheme 1 The cyclization reaction of 2-isocyanoacetophenones

Initially, we investigated the reaction of 2-isocyanoacetophenone 1a in 2 mL DMF 

at room temperature catalyzed by CuI in the presence of KOH. To our delight, the 

desired product quinolin-4-ol 2a was formed in 32% yield (Table 1, entry 1). 

Encouraged by this promising result, we further tried the reactions by screening 

different copper catalysts. Nevertheless, other copper catalysts could not increase the 

yield of 2a (Table 1, entries 2-6). Then, diverse bases have been applied to the reaction 

(Table 1, entries 7-12). When 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) was served 

as the base, the yield of 2a could be increased to 46%. A series of other solvents such 

as MeOH, dimethyl sulfoxide (DMSO), tetrahydrofuran (THF) and acetonitrile were 

also applied to the reactions and it was found that acetonitrile was the most suitable 

solvent for this reaction, affording 2a in 57% yield (Table 1, entries 13-18). Thus, the 

optimized conditions is following, 2a and DBU (1.2 equiv) catalyzed by CuI (10 mol%) 

in MeCN at room temperature for 6 h. 

Table 1. Optimization of The Reaction Conditionsa

O

NC N

OH

Conditions

Entry Cat (mol%). Base (equiv) Solvent Yieldb (%)

1 CuI (10) KOH (1.2)     DMF 32

2 CuBr (10) KOH (1.2)     DMF 28

3 CuCl (10) KOH (1.2)     DMF 30

4 Cu(OTf)2 (10) KOH (1.2)     DMF 19

5 CuO (10) KOH (1.2)     DMF 10

6 Cu(OAc)2 (10) KOH (1.2)     DMF 25

7 CuI (10) CsOH (1.2)     DMF 28

8 CuI (10) NaOH (1.2)     DMF 5

9 CuI (10) LDA (1.2)     DMF 13

10 CuI (10) DIPEA (1.2)     DMF 37

11 CuI (10) DABCO (1.2)     DMF 35

12 CuI (10) DBU (1.2)     DMF 46

13 CuI (10) DBU (1.2)     DMSO 44

14 CuI (10) DBU (1.2)     DMA 39

15 CuI (10) DBU (1.2)   CH3OH 21

16 CuI (10) DBU (1.2)   DCM 48

17 CuI (10) DBU (1.2)   THF 52

18 CuI (10) DBU (1.2)   MeCN 57
aReaction conditions: 1a (0.5 mmol)，base (0.6 mmol)，copper reagent (10 mol%) , solvent (2 mL). 
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stirred at room temperature for 6 h under an air atmosphere. bIsolated yield.

With the optimization conditions in hand, we next explored the scope of the 

isocyanide substrates (Table 2). The reaction of 1-(2-isocyanophenyl)pentan-1-one 1b 

afforded 3-propylquinolin-4-ol 2b in 63% yield. 1-(2-Isocyanophenyl)-3-

phenylpropan-1-one 1c underwent smoothly to give 3-benzylquinolin-4-ol 2c in 70% 

yield. 1-(2-isocyanophenyl)-3-ortho substituted arylpropan-1-ones reacted also well to 

furnish the corresponding 3-ortho substituted benzylquinolin-4-ols 2d-f in 72% to 76% 

yields. The reactions of 3-(3-chlorophenyl)-1-(2-isocyanophenyl)propan-1-one 1g and 

1-(2-isocyanophenyl)-3-(3-methoxyphenyl)propan-1-one 1h led to 2g and 2h in 77% 

and 70% yields, respectively. Unfortunately, 1-(2-isocyanophenyl)-3-(3-

nitrophenyl)propan-1-one 2i bearing NO2 functional group failed to give the desired 

product. It should be noted that the reactions of 3-(4-chlorophenyl)-1-(2-

isocyanophenyl)propan-1-one 1j and 3-(4-bromophenyl)-1-(2-isocyanophenyl)propan-

1-one 1k frunished 2j and 2k in 82% and 84% yields, respectively. Similarly, no desired 

product was observed when di-NO2 functionalized 1l was applied to the reaction. To 

our delights, some 1-(2-isocyanophenyl)-3-disubstituted arylpropan-1-ones reacted 

well to give 2m and 2n in 72% and 86% yields, respectively. The isocyanides bearing 

heterocycle or naphthalenyl functionalized groups such as 3-(furan-2-yl)-1-(2-

isocyanophenyl)propan-1-one 1o, 1-(2-isocyanophenyl)-3-(thiophen-2-yl)propan-1-

one 1p, 3-(naphthalen-2-ylmethyl)quinolin-4-ol 1q and 3-(naphthalen-1-

ylmethyl)quinolin-4-ol 1r could undergo smoothly to give 2o-2r in 66% to 72% yields. 

The reaction of 1-(2-isocyano-5-methylphenyl)ethan-1-one 1a under the standard 

conditions gave 2a in 82% yield. In order to test the application of the reaction, we 

conducted the reaction of 1a in 5 mmol scale and the desired product 2s could be 

isolated in 78% yield. Unfortunately, 1-(2-isocyano-5-(trifluoromethyl)phenyl)ethan-

1-one could not yield the desired 3-propylquinolin-4-ol for the strong electron-

withdrawing effect.  

Table 2. Substrate scope of 2-Isocyanoacetophenonea
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aReaction conditions: 1a (0.5 mmol)，DBU (0.6 mmol)，copper reagent (10 mol%) , MeCN (2 mL).
stirred at room temperature for 6 h under an air atmosphere. bIsolated yield.
     

To understand the reaction mechanism, control experiments were performed 

(Scheme 2). When the reaction was carried out in the absence of CuI, no desired product 

was observed (Scheme 2, A). When the radical scavenger TEMPO was added to the 

reaction system, 2a could also be obtained in the yield of 54% (Scheme 2, B). This 

result indicates that the reaction might not involve radical process.
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Scheme 2. Control experiments

Based on the above results and related literature precedents,15 we proposed a 

reasonable mechanism for the reaction (Scheme 3). The in situ generated Copper(I) A 

from CuI reacts with isocyanide B15a to give Complex C. De-protonation of C with the 

assistance of DBU leads to copper complex D via keto-enol tautomerism. 

Intramolecular cyclization of D affords E. Subsequently, the aromatization of E affords 

4-hydroxyquinoline and releases the active copper complex A.

Cu(I)Ln

O

N
C

O

N
C

CuLn

DBUO

N
C

CuLn

N

O

CuLn

N

OH
Cu(I)I

Ln

E

2a A B

C

D

Scheme 3. Proposed Mechanism

In summary, we have developed a copper-catalyzed cyclization reaction of 2-

isocyanoacetophenone derivatives for the construction of 4-hydroxyquinoline 

compounds. Moreover, the reaction explored the chemistry of copper-mediated carbon 
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atom nucleophile addition to isocyanides, which represents a valuable addition to 

isocyanide chemistry. 

EXPERIMENTAL SECTION

1. General Information. 

Unless otherwise noted, all commercially available compounds were used as provided without further 

purification. Solvents for chromatography were analytical grade and used without further purification. Analytical 

thin-layer chromatography (TLC) was performed on silica gel, visualized by irradiation with UV light. For column 

chromatography, 200-300 mesh silica gel was used. 1H and 13C{1H} NMR were recorded on a BRUKER 400 MHz 

spectrometer in (CD3)2SO. Chemical shifts (δ) were reported referenced to an internal tetramethylsilane standard or 

the C2D6OS residual peak (δ 2.50) for 1H NMR. Chemical shifts of 13C{1H} NMR are reported relative to (CD3)2SO 

(δ 39.52). Data are reported in the following order: chemical shift (δ) in ppm; multiplicities are indicated s (singlet), 

bs (broad singlet), d (doublet), t (triplet), m (multiplet); coupling constants (J) are in Hertz (Hz). Melting points were 

measured on an Electrothermal digital melting point apparatus and were uncorrected. IR spectra were recorded on a 

BRUKER MODEL ALPHA spectrophotometer and are reported in terms of frequency of absorption (cm-1). HRMS 

spectra were obtained by using BRUKER MICROTOF-Q III instrument with ESI source. The starting materials 

were isolated by SepaBean machine Flash Chromatography, which purchased from Santai Technologies Inc.

2.Synthesis of 2-isocyanoacetophenone

Method A: To a 100 mL round-bottom flask were added 2-aminoecetophenone (1.2 mL, 1.0 equiv, 10 mmol), 

benzaldehyde (1.1 mL, 1.1 equiv, 11 mmol), 10 % NaOH aqueous solution (40 mL), EtOH (10 mL). The reaction 

mixture was stirred for another 12-24h at room temperature. After the reaction was completed, mixture was solid 

recrystallized (EtOH) and reduced by H2（balloon） and  Pd/C (Palladium 10% on activated carbon, 100mg) in 

ethyl acetate to afford 1-(2-aminophenyl)-3-phenylpropan-1-one. Then according to the literature procedures12 by 

the typical formylation and dehydration procedure to afford desired 2-isocyanoacetophenone.

Method B: To a 100 mL round-bottom flask were added 2-iodo-4-methylaniline (2.331 g, 1.0 equiv, 10 mmol), 

Trimethylsilylacetylene (1.7 mL, 1.2 equiv, 12 mmol), PdCl2(PPh3)2 (0.140 g, 0.02 equiv, 0.2 mmol), CuI(0.076 g, 

0.04 equiv, 0.4mmol), Et3N (4 mL, 3 equiv, 30 mmol), THF (10 mL). The reaction mixture was stirred for 12h at 

room temperature under argon. After the reaction was completed, mixture was purified by flash chromatography on 

silica gel to afford the 2-(trimethylsilyl)ethynyl)aniline. Potassium carbonate (1.659 g, 1.2 equiv, 12 mmol) and 2-

(trimethylsilyl)ethynyl)aniline (2.031 g, 1.0 equiv, 10mmol) were blended to stir for 12h at room temperature in 

MeOH (15 mL), then saturated salt solution was added and mixture was extracted by ethyl acetate for three times to 

afford 2-ethynylaniline. Concentrated hydrochloric acid (5 mL) and surfactant CTAB(hexadecyl trimethyl 

ammonium bromide, 5.5 g, 1.5 equiv, 15 mmol) were mixtured with 2-ethynylaniline to stir at 80℃ for 12h in 

distilled water to generate substituted 2-aminoecetophenone.Then according to the literature procedures12 by the 

typical formylation and dehydration procedure to afford desired 2-isocyanoacetophenone

3.General procedure for the synthesis of compounds 2

To a stirring solution of 2-isocyanoacetophenone 1 (29 mg, 1.0 equiv, 0.2 mmol), copper iodide (3.8 mg, 0.1 

equiv, 0.02 mmol), and DBU (36 μL, 1.2 equiv, 0.24 mmol). The mixture was pour into saturated salt solution and 

extracted three times with ethyl acetate. The pure products were obtained after purification by column 

chromatography on silica gel with petroleum ether/ethyl acetate (v:v = 1:1 − 3:1) as the eluent.

4-hydroxyquinoline (2a).White solid (89 mg, 57% yield); Mp (°C) 200.1 – 202.4; IR v (cm-1): 2775, 1501, 

1472, 1200; 1H NMR (400 MHz, DMSO-d6) δ 11.80 (s, 1H), 8.11 (d, J = 9.2 Hz, 1H), 7.91 (d, J = 6.8 Hz, 1H), 7.64 
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– 7.61 (m, 2H), 7.55 – 7.28 (m, 1H), 6.06 (d, J = 7.4 Hz, 1H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 177.4, 140.5, 

139.9, 132.1, 126.3, 125.4, 123.5, 118.7, 109.2; HRMS (ESI+) calcd for C9H7NO [M + H]+: 145.0522, found 

145.0519.

3-propylquinolin-4-ol (2b). White solid (75 mg, 63% yield); Mp (°C) 205.5 – 208.1; IR v (cm-1): 2906, 1551, 

1474, 1206; 1H NMR (400 MHz, DMSO-d6) δ 11.60 (s, 1H), 8.10 (d, J = 6.6 Hz, 1H), 7.80 (d, J = 5.7 Hz, 1H), 7.59 

– 7.57 (m, 1H), 7.49 (d, J = 7.3 Hz, 1H), 7.26 (t, J = 7.5 Hz, 1H), 2.43 – 2.37 (m, 2H), 1.57 – 1.49 (m, 2H), 0.89 (t, 

J = 7.3 Hz, 3H); 13C{1H} (100 MHz, DMSO-d6) δ176.2, 139.6, 136.6, 131.0, 125.0, 124.5, 122.5, 120.6, 118.0, 29.5, 

21.7, 13.8; HRMS (ESI+) calcd for C12H13NO [M + H]+: 187.0992, found 187.0990.

3-benzylquionlin-4-ol (2c). White solid (80 mg, 75% yield); Mp (°C) 204.2 – 206.2; IR v (cm-1): 2891, 1549, 

1477, 1203; 1H NMR (400 MHz, DMSO-d6) δ 11.69 (s, 1H), 8.11 (d, J = 7.8 Hz, 1H), 7.85 (s, 1H), 7.59 (d, J = 7.1 

Hz, 1H), 7.52 (d, J = 8.3 Hz, 1H), 7.30 – 7.24 (m, 5H), 7.16 (d, J = 7.1 Hz, 1H), 3.77 (s, 2H); 13C{1H} (100 MHz, 

DMSO-d6) δ 176.4, 141.9, 138.0, 131.7, 129.0, 128.6, 126.1, 125.6, 123.2, 118.6, 33.4; HRMS (ESI+) calcd for 

C16H13NO [M + H]+: 235.0992, found 235.0995.

3-(2-methylbenzyl)quionlin-4-ol (2d). White solid (85 mg, 75% yield); Mp (°C) 205.5 – 207.1; IR v (cm-1): 

2909, 1553, 1501, 1205; 1H NMR (400 MHz, DMSO-d6) δ 11.63 (s, 1H), 8.15 (d, J = 8.1 Hz, 1H), 7.63 – 7.59 (m, 

1H), 7.52 – 7.49 (m, 2H), 7.31 – 7.28 (m, 1H), 7.16 – 7.07 (m, 4H), 3.75 (s, 2H), 2.27 (s, 3H); 13C{1H} (100 MHz, 

DMSO-d6) δ 176.0, 139.6, 138.6, 137.1, 135.9, 131.3, 129.8, 129.1, 125.9, 125.7, 125.1, 124.4, 122.8, 119.4, 118.1, 

30.2, 19.2; HRMS (ESI+) calcd for C17H15NO [M + H]+: 249.1148, found 249.1150.

3-(2-chlorobenzyl)quionlin-4-ol (2e). White solid (100 mg, 72% yield); Mp (°C) 199.7 – 201.2; IR v (cm-1): 

2773, 1554, 1499, 1207; 1H NMR (400 MHz, DMSO-d6) δ11.73 (s, 1H), 8.12 (d, J = 6.6 Hz, 1H), 7.87 – 7.70 (m, 

1H), 7.61 (d, J = 8.6, 7.7 Hz, 1H), 7.53 (d, J = 8.5 Hz, 1H), 7.37 – 7.02 (m, 5H), 3.82 (d, J = 38.2 Hz, 2H); 13C{1H} 

(100 MHz, DMSO-d6) δ 176.4, 159.8, 140.2, 138.1, 131.8, 131.4, 128.3, 127.9, 125.5, 125.1, 124.5, 123.3, 118.9, 

118.6, 115.5, 115.3, 26.6; HRMS (ESI+) calcd for C16H12ClNO [M + H]+: 269.0602, found 269.0600.

3-(2-bromobenzyl)quionlin-4-ol (2f). White solid (82 mg, 75% yield); Mp (°C) 180.0 – 181.4; IR v (cm-1): 

2816, 1549, 1472, 1208; 1H NMR (400 MHz, DMSO-d6) δ 11.71 (s, 1H), 8.10 (d, J = 9.6 Hz, 1H), 7.55 – 7.50 (m, 

2H), 7.30 – 7.18 (m, 5H), 7.15 (d, J = 7.4 Hz, 1H), 3.81 (d, J = 34.8 Hz, 2H); 13C{1H} (100 MHz, DMSO-d6) δ 

141.8, 140.1, 137.9, 131.7, 129.0, 128.5, 126.1, 125.5, 125.2, 123.2, 120.8, 118.6, 40.5, 33.4; HRMS (ESI+) calcd 

for C16H12BrNO [M + H]+: 313.0097, found 313.0100.

3-(3-chlorobenzyl)quionlin-4-ol (2g). White solid (85 mg, 77% yield); Mp (°C) 185.0 – 186.9; IR v (cm-1): 

2918, 1555, 1503, 1204; 1H NMR (400 MHz, DMSO-d6) δ 11.78 (s, 1H), 8.12 (d, J = 8.1 Hz, 1H), 7.99 (s, 1H), 7.63 

– 7.54 (m, 1H), 7.51 (d, J = 8.2 Hz, 1H), 7.36 (s, 1H), 7.31 – 7.23(m, 4H), 3.78 (s, 2H); 13C{1H} (100 MHz, DMSO-

d6) δ 176.4, 144.6, 140.2, 138.3, 133.1, 131.8, 130.3, 128.7, 127.7, 126.1, 125.5, 125.2, 123.3, 120.1, 118.6, 33.3; 

HRMS (ESI+) calcd for C16H12ClNO [M + H]+: 269.0602, found 269.0605.

3-(3-methoxybenzyl)quionlin-4-ol (2h). White solid (69 mg, 70% yield); Mp (°C) 210.0 – 211.8; IR v (cm-1): 

2926, 1556, 1496, 1248; 1H NMR (400 MHz, DMSO-d6) δ 11.71 (s, 1H), 8.14 (d, J = 7.9 Hz, 1H), 7.85 (s, 1H), 7.6 

(t, J = 7.2 Hz, 1H), 7.53 (d, J = 8.2 Hz, 1H), 7.3 (t, J = 7.4 Hz, 1H), 7.17 (t, J = 7.8 Hz, 1H), 6.87 (d, J = 8.3 Hz, 

2H), 6.72 (d, J = 6.9 Hz, 1H), 3.75 (s, 2H), 3.42 (s, 3H); 13C{1H} (100 MHz, DMSO-d6) δ 176.4, 159.6, 143.4, 140.1, 

138.0, 131.7, 129.55, 125.6, 125.1, 123.2, 121.3, 120.8, 118.6, 114.9, 111.3, 55.3, 33.4; HRMS (ESI+) calcd for 

C17H15NO2 [M + H]+: 265.1097, found 265.1097.

3-(4-chlorobenzyl)quionlin-4-ol (2j). White solid (110 mg, 82% yield); Mp (°C) 202.4 – 203.8; IR v (cm-1): 

2786, 1548, 1474, 1204; 1H NMR (400 MHz, DMSO-d6) δ 11.71 (s, 1H), 8.13 (d, J = 8.1 Hz, 1H), 7.85 (s, 1H), 7.63 

– 7.50 (m, 2H), 7.30 – 7.11 (m, 5H), 3.72 (s, 2H); 13C{1H} (100 MHz, DMSO-d6) δ176.4, 159.6, 143.4, 140.11, 

138.0, 131.7, 129.6, 125.6, 125.2, 123.2, 121.3, 120.8, 118.6, 115.0, 111.3, 55.3, 33.4; HRMS (ESI+) calcd for 

C16H12ClNO [M + H]+: 269.0602, found 269.0599.

3-(4-bromobenzyl)quionlin-4-ol (2k). White solid (78 mg, 84% yield); Mp (°C) 192.4 – 194.1; IR v (cm-1): 

2893, 1553, 1504, 1206; 1H NMR (400 MHz, DMSO-d6) δ 11.71 (s, 1H), 8.13 (d, J = 8.1 Hz, 1H), 7.85 (s, 1H), 7.62 
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– 7.58 (m, 1H), 7.50 (d, J = 8.1 Hz, 1H), 7.30 – 7.21 (m, 5H), 3.78 (s, 2H); 13C{1H} (100 MHz, DMSO-d6) δ176.4, 

141.8, 140.1, 138.0, 131.7, 129.0, 128.6, 126.1, 125.6, 125.2, 123.2, 120.9, 118.6, 33.5; HRMS (ESI+) calcd for 

C16H12BrNO [M + H]+: 313.0097, found 313.0095.

3-(2,6-dimethylbenzyl)quinolin-4-ol (2m).White solid (80 mg, 72% yield); Mp (°C) 210.3 – 212.5; IR v (cm-1): 

2909, 1551, 1503, 1366; 1H NMR (400 MHz, DMSO-d6) δ 11.45 (s, 1H), 8.20 (d, J = 8.1 Hz, 1H), 7.64 (t, J = 7.6 

Hz, 1H), 7.50 (d, J = 8.1 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.07 (s, 3H), 6.78 (s, 1H), 3.77 (s, 2H), 2.17 (s, 6H); 

13C{1H} (100MHz, DMSO-d6) δ 176.7, 139.9, 137.1, 136.5, 135.0, 131.8, 128.5, 126.6, 125.5, 124.5, 123.3, 118.6, 

27.2, 20.0; HRMS (ESI+) calcd for C18H17NO [M + H]+: 263.1305, found 263.1309.

3-(2-chloro-5-methoxybenzyl)quionlin-4-ol (2n). White solid (105 mg, 86% yield); Mp (°C) 220.1 – 222.4; IR 

v (cm-1): 2786, 1549, 1471, 1210; 1H NMR (400 MHz, DMSO-d6) δ 11.69 (s, 1H), 8.12 (d, J = 8.1 Hz, 1H), 7.85 (s, 

1H), 7.60 (t, J = 6.9 Hz, 1H), 7.51 (d, J = 8.3 Hz, 1H), 7.32 – 7.25 (m, 1H), 7.15 (t, J = 7.7 Hz, 1H), 6.85 (s, 2H), 

3.72 (d, J = 21.3 Hz, 5H); 13C{1H} (100 MHz, DMSO-d6) δ 175.9, 159.1, 143.0, 139.6, 137.5, 131.2, 125.1, 124.7, 

122.7, 120.8, 120.3, 118.1, 114.5, 110.8, 54.9, 33.0; HRMS (ESI+) calcd for C17H14ClNO2
 [M + H]+: 299.0708, 

found 299.0710.
3-(furan-2-ylmethyl)quionlin-4-ol (2o). Flaxen solid (78 mg, 74% yield); Mp (°C) 175.3 – 176.9; IR v (cm-1): 

2897, 1498, 1250; 1H NMR (400 MHz, DMSO-d6) δ 11.72 (s, 1H), 8.10 (d, J = 6.6 Hz, 1H), 7.79 (d, J = 6.0 Hz, 

1H), 7.62 (t, J = 7.6 Hz, 1H), 7.52 (d, J = 8.2 Hz, 1H), 7.27 (m, 2H), 7.15 – 7.04 (m, 2H), 3.79 (s, 2H); 13C{1H} (100 

MHz, DMSO) δ176.4, 162.2, 159.8, 140.2, 138.0, 131.8, 130.7, 130.6, 125.5, 125.2, 123.2, 120.8, 118.6, 115.2, 

115.0, 32.7.; HRMS (ESI+) calcd for C14H11NO2 [M + H]+; 225.0784, found 225.0782.

3-(thiophen-2-ylmethyl)quionlin-4-ol (2p). White solid (99 mg, 66% yield); Mp (°C) 168.4 – 171.1; IR v (cm-

1): 2891, 1477, 1203; 1H NMR (400 MHz, DMSO-d6) δ 11.74 (s, 1H), 8.143 – 8.11 (m, 1H), 7.92 (s, 1H), 7.65 – 

7.60 (m, 1H), 7.52 (d, J = 7.3 Hz, 1H), 7.31 – 7.23 (m, 2H), 6.90 (d, J = 3.7 Hz, 2H), 3.96 (s, 2H); 13C{1H} (100 

MHz, DMSO) δ 175.6, 144.2, 139.7, 137.5, 131.4, 126.6, 125.1, 124.8, 123.7, 122.9, 119.9, 118.2, 27.2; HRMS 

(ESI+) calcd for C14H1NOS [M + H]+: 242.0634, found 242.0631

3-(naphthalene-2-ylmethyl)quinolin-4-ol (2q). White solid (89 mg, 69% yield); Mp (°C) 190.3 – 195.1; IR v 

(cm-1): 2898, 1553, 1494, 1202; 1H NMR (400 MHz, DMSO-d6) δ 11.83 (s, 1H), 8.21 (d, J = 7.8 Hz, 1H), 7.94 (s, 

1H), 7.78 (d, J = 5.9 Hz, 4H), 7.60 – 7.27 (m, 6H), 3.99 (s, 2H); 13C{1H} (100 MHz, DMSO-d6) δ 176.6, 140.2, 

139.5, 138.3, 133.6, 131.9, 128.0, 126.8, 126.3, 125.6, 125.3, 123.3, 120.8, 118.7, 33.7; HRMS (ESI+) calcd for 

C20H15NO [M + H]+: 285.1148, found 285.1149.

3-(naphthalene-1-ylmethyl)quinolin-4-ol (2r). Flaxen solid (75 mg, 72% yield); Mp (°C) 195.6 – 197.0; IR v 

(cm-1): 2912, 1520, 1471, 1196; 1H NMR (400 MHz, DMSO-d6) δ 11.62 (s, 1H), 8.21 (d, J = 7.4 Hz, 1H), 8.12 – 

7.91 (m, 1H), 7.90 – 7.78 (m, 1H), 7.62 (d, J = 6.1 Hz, 1H), 7.53 (t, J = 7.0 Hz, 1H), 7.49 – 7.32 (m, 8H), 4.27 (s, 

2H); 13C{1H} (100 MHz, DMSO-d6) δ 176.2, 140.0, 138.0, 137.3, 133.9, 132.0, 131.8, 128.9, 127.1, 126.5, 126.1, 

125.7, 125.0, 124.6, 123.4, 120.1, 118.6, 30.0; HRMS (ESI+) calcd for C20H15NO [M + H]+: 285.1148, found 

285.1140.

6-methylquinolin-4-ol (2s). Flaxen solid (110 mg, 83% yield); Mp (°C) 189.4 – 191.2; IR v (cm-1): 2768, 1511, 

1499, 1216; 1H NMR (400 MHz, DMSO-d6) δ11.71 (s, 1H), 7.90 – 7.83 (m, 2H), 7.45 (s, 2H), 6.00 (d, J = 7.3 Hz, 

1H), 2.39 (s, 3H); 13C{1H} (100 MHz, DMSO-d6) δ 177.2, 139.4, 138.6, 133.4, 132.8, 126.2, 124.6, 118.6, 108.8, 

21.2; HRMS (ESI+) calcd for C10H9NO [M + H]+: 159.0679, found 159.0676.
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The syntheses and characterization of compounds 2h, 2k, 2m, and 2q were repeated 

and checked by Jing-Hao Li in our group.
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