

Carbohydrate Research 337 (2002) 459-465

CARBOHYDRATE RESEARCH

www.elsevier.com/locate/carres

Note

Stereospecific synthesis of (+)-oxybiotin from D-xylose^{\ddagger}

Velimir Popsavin,* Goran Benedeković, Mirjana Popsavin, Dušan Miljković

Faculty of Sciences, Institute of Chemistry, University of Novi Sad, Trg D. Obradovica 3, YU-21000 Novi Sad, Yugoslavia

Received 22 October 2001; accepted 14 December 2001

Abstract

A new 14-step synthesis of (+)-oxybiotin, an oxygen analogue of (+)-biotin, was achieved starting from D-xylose by use of selected 2,5-anhydro sugar derivatives as key intermediates. \bigcirc 2002 Elsevier Science Ltd. All rights reserved.

Keywords: (+)-Oxybiotin; Protected 2,5-anhydro pentoses; 2,3,4-Trisubstituted tetrahydrofuranes; D-Xylose

Oxybiotin, a biotin analogue in which oxygen replaces sulfur, was synthesized by Hofmann² and shown to exhibit a high biotin-like activity towards some microorganisms.³ Accordingly, it was assumed that the biologically active oxybiotin has the same absolute configuration as that of the natural biotin. This assumption was definitely proved by a stereospecific synthesis of (+)-oxybiotin (18, Scheme 3) from D-glucose.⁴ Apart of this 19-steps sequence, no further attempts were made directed towards more efficient preparations of the enantiopure (+)-18. Herein we report a new 14-step stereospecific synthesis of (+)-oxybiotin, based on D-xylose as a chiral precursor,¹ by way of selected 2,5-anhydro sugars[†] as convenient intermediates.

Earlier we have described^{6,7} the five-step conversion of D-xylose to the 2,5-anhydro-D-xylose ethylene acetal derivative **1** (Scheme 1). The key step of the sequence (stereospecific formation of the trisubstituted tetrahydrofuran system) has been achieved according to the methodology similar to that developed by Defaye and Hildesheim.⁸ Compound **1** has the correct stereochemistry at C-2, as well as the functionalities suitable for further introduction of the carboxyalkyl side chain, as well as for building the final (+)-oxybiotin ureido system.

Hydrolytic removal of the dioxolane protective group in 1 gave a hydrated form of the corresponding aldehyde 2. Due to its instability,^{\ddagger} the intermediate 2 was promptly treated with 3-methoxycarbonyl-2-propenylidene triphenylphosphorane,⁹ (generated in situ from the corresponding phosphonium bromide), to afford the α,β -unsaturated ester 3 as a mixture of E and Z isomers. Subsequent catalytic hydrogenation of 3 over PtO_2 gave the corresponding saturated ester 4 (32%) from 1). Solvolysis of 4 in wet N,N-dimethylformamide, in the presence of calcium carbonate as a proton acceptor, gave a mixture of regioisomers 5 with inverted configuration at C-3. O-Debenzoylation of 5 with sodium methoxide in methanol afforded the expected diol 6. Reaction of 6 with mesyl chloride in dichloromethane, in the presence of triethylamine, gave the corresponding di-O-mesyl derivative 7 (15.3% from 1), a potential intermediate for the further introduction of two azide functions with inversion of configuration at C-3 and C-4.

An alternative six-step sequence for the preparation of intermediate 7 is presented in Scheme 2. Solvolysis of 1 in wet N,N-dimethylformamide, under the same reac-

[☆] For a preliminary account, see Ref. 1.

^{*} Corresponding author. Fax: + 381-21-54065.

E-mail address: popsavin@ih.ns.ac.yu (V. Popsavin).

[†] For a review on 2,5-anhydro sugars, see Ref. 5.

[‡] Compound **2** decomposes slowly on prolonged standing at room temperature turning into tar.

Scheme 1. Reagents and conditions: (a) TFA, 6 M HCl, rt, 12 h, 60%; (b) $[Ph_3PCH_2CH:CHCO_2Me]^+$ Br⁻, CH₂Cl₂, NaOH, H₂O, rt 1 h, 59%; (c) H₂/PtO₂, AcOH, rt, 20 h, 90%; (d) CaCO₃, 95% aq DMF, 150 °C, 10 h, 65%; (e) NaOMe, MeOH, rt, 1 h, 81%; (f) MsCl, Et₃N, CH₂Cl₂, -10 °C, 0.5 h, 91%.

Scheme 2. Reagents and conditions: (a) CaCO₃, 95% aq DMF, 150 °C, 10 h; (b) KOH/MeOH, 60 °C, 0.5 h; (c) MsCl, Py, rt, 24 h, 64% from 1; (d) TFA, 6 M HCl, rt, 24 h; (e) 2,4-DNPH, MeOH, H₂SO₄, rt, 0.5 h, 72%; (f) [Ph₃PCH₂CH:CHCO₂Me]⁺ Br⁻, CH₂Cl₂, NaOH, H₂O, rt 45 min; (g) H₂/PtO₂, AcOH, rt, 18 h, 54% from 10.

tion conditions already used for the preparation of 5 (Scheme 1), afforded a mixture of regioisomers 8. Subsequent *O*-debenzoylation of 8 with potassium hydroxide gave the corresponding diol 9, which was finally converted into the known^{7,10} di-*O*-mesyl derivative 10 by treatment with mesyl chloride in pyridine. All three steps concerning the conversion of 1 to 10 were carried out by a one-pot procedure, whereupon the intermediates 8 and 9 were used without any purification or separation from accompanying inorganic impurities. Pure 10 was isolated by short-column chromatography in an overall yield of 64% with respect to the starting compound 1. Hydrolysis of 10 with a mixture of hydrochloric and trifluoroacetic acid afforded the unstable hydrated aldehyde 11, which was fully characterized after its conversion to the corresponding 2,4-dinitrophenylhydrazone 12. Wittig olefination of 11, under the conditions as described above, yielded 13 as an inseparable mixture of *E* and *Z* isomers, which were then converted to the desired intermediate 7 (54% from 10) by catalytic hydrogenation over PtO₂. Obviously the six-step sequence realized via the 3,4-di-*O*-mesyl deriva-

Scheme 3. Reagents and conditions: (a) NaN₃, HMPA, 80 °C, 5 h, 71%; (b) NaN₃, NH₄Cl, DMF, 150 °C, 20 h, 47%; (c) H₂/PtO₂, AcOH, Ac₂O, rt, 23 h, 85%; (d) Ph₃P, BnOCOCl, THF, rt, 5 h, then NH₄OH, H₂O, rt, 18 h, 24%; or H₂/PtO₂, CH₂Cl₂, rt, 6 h, then Et₃N, triphosgene, 0 °C, 1 h, rt 18 h, 68%; (e) Ba(OH)₂, H₂O, 100 °C, 1.5 h, 98%.

tive 10 (Scheme 2) represents a more convenient procedure for the preparation of 7, since it provided a considerably higher overall yield (34.6% from 1), compared to the six-step route presented in Scheme 1 (15.3% from 1).

Conversion of the intermediate 7 into the (+)-oxybiotin (18) is outlined in Scheme 3. In 1975 Ohrui and Emoto¹¹ described a solvolytic reaction of a thiophane analogue of 7 (NaN₃, HMPA, 80 °C) whereupon the corresponding 3,4-diazido derivative was obtained in high yield. The same reaction conditions were therefore applied to the intermediate 7, but instead of the expected 3,4-diazido derivative 15, the 4-monoazide 14 was exclusively formed in 71% yield. However, a reaction of 7 with sodium azide in N,N-dimethylformamide at 150 °C for 20 h, in the presence of ammonium chloride, gave the key intermediate 15 (37%) along with 14 (26%) as a byproduct.§ Compound 14, under similar reaction conditions gave the same yield of 15 (37%). Accordingly, by combining the last two procedures, the desired product 15 can be prepared in 47% total yield, which is comparable to that achieved earlier¹ from the triflic analogue of 7. Catalytic hydrogenation of 15 over PtO₂ in a mixture of glacial acetic acid and acetic anhydride gave the corresponding diacetamido derivative 16, that can be converted to (+)-oxybiotin (18) according to the reported procedure.⁴ Although the preparation of 16 formally represents a new stereospecific synthesis of (+)-oxybiotin (18) from D-xylose, alternative procedures for the conversion of 15 into 18 were also considered, in order to avoid the hazards of handling of phosgene.⁴ At first, we have checked up if the Staudinger reaction[¶] in the presence of a chloroformate¹³ could be used for the direct conversion of 15 into the imidazolidinone 17, analogously to the one-pot conversion of vicinal azido alcohols to oxazolidinones.¹⁴ Treatment of **15** with triphenylphosphine and benzyl chloroformate, under reaction conditions similar to those recently reported,¹³ afforded a low yield of the desired imidazolidinone 17 (24%). However, one-pot catalytic reduction of 15 followed by a subsequent triphosgene treatment provided the desired intermediate 17 in 68% yield. Compound 17 was finally converted to (+)-oxybiotin (18) by hydrolysis with barium hydroxide in an almost quantitative yield. The physical constants (mp and $[\alpha]_D$) of (+)-18 thus obtained were in excellent agreement with those already reported.4

In summary, a new stereospecific synthesis of (+)oxybiotin has been developed starting from D-xylose, by utilizing cheap and readily available reagents and by applying simple experimental procedures. Although this new synthesis of **18** contains some low-yielding steps $(7 \rightarrow 15, 14 \rightarrow 15)$, it consists of less synthetic steps (14) then the earlier preparation from D-glucose (19 steps).⁴ In addition, the new approach provided a convenient one-pot procedure for the (+)-oxybiotin ureido system building utilizing triphosgene, a safe and stable replace-

[§] Prolongation of the reaction time did not increase the yield of the desired product **15** presumably due to its instability under the applied reaction conditions.

[¶] For a review on the Staudinger reaction, see Ref. 12.

ment of phosgene.¹⁵ Novel and more efficient approaches towards the key intermediate **15** and to the target **18** itself are currently being investigated, and the results will be reported in due course. Moreover, appropriate C-1 functionalization of the 2,5-anhydro derivatives **2** or **11**, may provide access to potential divergent intermediates for the preparation of (+)-oxybiotin analogues with the side chain containing an additional heteroatom (e.g., O or S) instead of the C-2' methylene group.¹⁶

1. Experimental

General methods.—Melting points were determined on a Büchi 510 apparatus and were not corrected. Optical rotations were measured on a Polamat A (Carl-Zeiss, Jena) polarimeter at rt. IR spectra were recorded with a Specord 75IR spectrophotometer and band positions (v_{max}) are given in cm⁻¹. NMR spectra were recorded on a Bruker AC 250 E instrument and chemical shifts are expressed in ppm downfield from tetramethylsilane. Mass spectra were recorded on Finnigan-MAT 8230 (CI), VG AutoSpec (FAB) and Micromass LCT KA111 (ES+) mass spectrometers. TLC was performed on DC Alufolien Kieselgel 60 F254 (E. Merck). Short-column chromatography was carried out using Kieselgel 60 (under 0.063 mm; E. Merck). Typical sample/adsorbent ratio was 1:30. Flash-column chromatography was performed using ICN silica 32-63. All organic extracts were dried with anhyd Na_2SO_4 . Organic solutions were concentrated in a rotary evaporator under diminished pressure at a bath temperature below 35 °C.

2S-(4'-Methoxycarbonyl-1'-butyl)-3R-p-toluenesulfonyloxy-4R-benzoyloxy-tetrahydrofuran (4).—A suspension of 1 (2.12 g, 4.88 mmol) in a mixture of trifluoroacetic acid (20 mL) and 6 M HCl (2 mL) was kept at rt for 12 h. The mixture was concentrated to one third of the initial volume, treated with satd aq NaHCO₃ (to pH 9), and extracted with CH₂Cl₂. The extract was washed successively with satd aq NaHCO₃ and water, dried and evaporated. Column chromatography (PhMe) of the residue gave pure 2 (1.2 g, 60%) as a pale yellow oil: $[\alpha]_{D} - 76.04^{\circ}$ (c 0.89, CHCl₃); v_{max} (film): 3480, 1730, 1600, 1370, 1195 cm⁻¹. To a solution of 2 (1.17 g, 2.86 mmol) in CH_2Cl_2 (25 mL) was added a solution of (3-methoxycarbonyl-2-propenyl)triphenylphosphonium bromide9 (2.02 g, 4.58 mmol) in water (105 mL). To this mixture, a solution of NaOH (0.19 g, 4.75 mmol) in water (11 mL) was added dropwise while stirring for 15 min at rt. The reaction mixture was stirred under nitrogen at rt for 1 h, and then transferred into a separatory funnel. The organic phase was separated, washed with water, dried and evaporated. Column chromatography (PhMe) of the

residue gave 3 (0.804 g, 59%) as a bright-yellow syrup: $[\alpha]_{\rm D} = 9.78^{\circ}$ (c 0.87, CHCl₃); $\nu_{\rm max}$ (film): 1725, 1655, 1600, 1375, 1200–1180 cm⁻¹. A solution of **3** (0.74 g, 1.57 mmol) in glacial AcOH (15 mL) was hydrogenated over PtO₂ (0.08 g, 0.35 mmol) for 20 h at rt. The mixture was filtered and the catalyst washed with CH₂Cl₂ (20 mL). The organic solution was washed successively with satd aq NaHCO₃ (5 \times 20 mL) and water $(3 \times 20 \text{ mL})$, dried and evaporated. Chromatographically homogenous 4 (0.67 g, 90%) was thus obtained as a white solid. Recrystallization from MeOH afforded an analytical sample 4: mp 102–103 °C; $[\alpha]_D$ -65.7° (c 1.04, CHCl₃); v_{max} (KBr): 1735, 1600, 1360, 1200–1185 cm⁻¹; ¹H NMR (CDCl₃): δ 1.32–1.75 (m, 6 H, $3 \times CH_2$), 2.30 (t, 2 H, CH₂CO₂Me), 2.38 (s, 3 H, MeC₆H₄SO₂), 3.66 (s, 3 H, CO₂Me), 3.70 (dd, 1 H, $J_{5a,5b}$ 10.5, $J_{4,5a}$ 3 Hz, H-5a), 4.04 (ddd, 1 H, $J_{1a',2}$ 7.2, J_{1b',2} 5.1, J_{2,3} 3.5 Hz, H-2), 4.32 (dd, 1 H, J_{4,5b} 5.2 Hz, H-5b), 5.05 (dd, 1 H, J_{3.4} 1.5 Hz, H-3), 5.29 (ddd, 1 H, H-4), 7.28-7.98 (m, 9 H, C₆H₅CO and MeC₆H₄SO₂); ¹³C NMR (CDCl₃): δ 21.73 (MeC₆H₄SO₂), 24.95, 25.67 and $28.26 (3 \times CH_2)$, $33.99 (CH_2CO_2Me)$, 51.62(CO₂Me), 71.22 (C-5), 78.00 (C-4), 80.19 (C-2), 83.33 (C-3), 127.92, 128.18, 128.45, 129.71, 129.95 and 133.45 (aromatic), 165.14 (PhC=O), 174.05 (CO₂Me); FABMS: m/z 499 [MNa⁺], 477 [MH⁺]. Anal. Calcd for C₂₄H₂₈O₈S: C, 60.50; H, 5.91; S, 6.72. Found: C, 60.77; H. 6.03; S. 6.39.

2S-(4'-Methoxycarbonyl-1'-butyl)-3S,4R-dihydroxytetrahydrofuran (6).—To a solution of 4 (0.50 g, 1.05 mmol) in 95% aq N,N-dimethylformamide (20 mL, 5%) of water) was added CaCO₃ (0.33 g, 3.3 mmol). The mixture was stirred for 10 h at 150 °C, then concentrated in vacuo, and the remaining residue was extracted with boiling CH₂Cl₂ (20 mL). The suspension was filtered and evaporated to a brown syrup. Shortcolumn chromatography (9:1 toluene-EtOAc) of the residue gave oily 5 (0.22 g, 65%): $[\alpha]_{\rm D} - 47.8^{\circ}$ (c 1.17, CHCl₃); v_{max} (film): 3430, 1720–1710 cm⁻¹. To a solution of 5 (0.20 g, 0.62 mmol) in dry MeOH (1 mL) was added the solution of 0.1 M NaOMe in MeOH (0.4 mL). The mixture was stirred for 1 h at rt, then acidified with glacial AcOH (to pH 5) and evaporated by co-distillation with toluene (30 mL). The remaining oily residue (0.16 g) was purified by short-column chromatography (4:1 toluene-Me₂CO) to afford pure 6 (0.11 g; 81%) as a colorless syrup: $[\alpha]_{\rm D} = 37.6^{\circ}$ (c 0.95, CHCl₃); v_{max} (film): 3380, 1730 cm⁻¹; ¹H NMR $(CDCl_3 + D_2O): \delta 1.38 - 1.65 \text{ (m, 6 H, 3 × CH}_2), 2.35 \text{ (t,}$ 2 H, CH₂CO₂Me), 3.62 (s, 3 H, CO₂Me), 3.58–3.80 (m, 3 H, H-2, H-3 and H-5a), 4.01 (dd, 1 H, J_{5a,5b} 10, J_{4,5b} 5 Hz, H-5b), 4.21 (m, 1 H $J_{4,5a}$ 4.6 Hz, H-4); ¹³C NMR (CDCl₃): δ 24.85, 25.34 and 32.91 (3 × CH₂), 33.97 (CH₂CO₂Me), 51.65 (CO₂Me), 71.01 (C-4), 72.63 (C-5), 75.84 and 82.09 (C-2 and C-3), 174.57 (CO₂Me); LRMS (CI): m/z 219 [MH⁺]. ES⁺ HRMS: Calcd for $C_{10}H_{18}NaO_5$: 241.1052. Found: m/z 241.1057 [MNa⁺].

2,5-Anhydro-3,4-di-O-methanesulfonyl-D-ribose ethvlene acetal (10).—To a solution of 1 (2.00 g, 4.60mmol) in 95% aq N,N-dimethylformamide (20 mL, 5% of water) was added CaCO₃ (1.00 g, 9.99 mmol), and the mixture was stirred for 4 h at 150 °C. Examination of the reaction mixture by TLC (4:1 toluene $-Me_2CO$) proved a complete conversion of 1 into 8. To the reaction mixture was then added 10% KOH in MeOH (6 mL) and the resulting mixture was stirred at 60 °C for 30 min, whereupon the intermediate 8 was fully converted to the diol 9 as established by TLC (3:2 toluene-Me₂CO). The mixture was concentrated under diminished pressure and dried by co-distillation with 1:1 toluene–EtOH (4×30 mL). The crude residue was dissolved in dry pyridine (15 mL) and treated with MsCl (2 mL). The mixture was stored for 24 h at rt, then poured onto ice (100 g), acidified with 6 M aq HCl (100 mL) and extracted with CH_2Cl_2 (3 × 30 mL). The combined extracts were washed with water, dried and evaporated. Short-column chromatography (CH₂Cl₂) of the residue gave pure 10 (0.98 g, 64% form 1) as a white solid. Recrystallization from EtOH gave an analytical sample 10 as needles: mp 108–109 °C, lit.⁷ 107–108 °C; $[\alpha]_{\rm D} = -46.5^{\circ}$ (c 0.77, CHCl₃); $v_{\rm max}$ (KBr): 1370–1330, 1180–1170 cm⁻¹; ¹H NMR (CDCl₃): δ 3.12 and 3.13 $(2 \times s, each 3 H, 2 \times MeSO_2), 3.88-4.28$ (m, 7 H, $2 \times CH_2$ -dioxolane, $2 \times H$ -5 and H-2), 5.05 (d, 1 H, $J_{1,2}$ 2.5 Hz, H-1), 5.15–5.28 (m, 2 H, H-3 and H-4); ¹³C NMR (CDCl₃): δ 38.55 and 38.65 (2 × MeSO₂), 65.40 and 65.65 (2 × CH₂-dioxolane), 70.48 (C-5), 76.28 (C-4), 76.34 (C-3), 80.98 (C-2), 102.06 (C-1).

2.5-Anhydro-3.4-di-O-methanesulfonyl-D-ribose 2',4'dinitrophenylhydrazone (12).—A solution of 2,5-anhydro derivative 10 (0.66 g, 1.99 mmol) in a mixture of trifluoroacetic acid (10 mL) and concd HCl (1 mL) was kept at rt for 24 h. The solvent was evaporated and traces of acids were removed by co-distillation with toluene $(3 \times 30 \text{ mL})$. The remaining brown oil was purified by short-column chromatography (4:1 toluene-Me₂CO) whereupon pure 11 (0.38 g, 62.5%) was obtained as an unstable colorless syrup: $[\alpha]_{\rm D} - 46.8^{\circ}$ (c 0.65, CHCl₃); v_{max} (film): 3560, 1380–1360, 1180 cm⁻¹. To a solution of compound 11 (0.10 g, 0.33 mmol) in MeOH (2 mL) was added a freshly prepared solution of 2,4-dinitrophenylhydrazine hydrochloride (0.25 g, 1.07 mmol) in MeOH (5 mL) and concd H_2SO_4 (0.5 mL). The reaction mixture was stirred at rt for 0.5 h. The separated yellow precipitate was filtered, washed with cold MeOH and recrystallized from MeOH, to afford pure 12 (0.11 g, 72%) as yellow needles. Short-column chromatography (7:3 toluene-Me₂CO) followed by recrystallization from MeOH, gave an analytical sample **12**: mp 137–138 °C; v_{max} (KBr): 3280, 1595, 1510, 1360–1320, 1175 cm⁻¹; ¹H NMR (CDCl₃): δ 3.18 (s, 6 H, $2 \times \text{MeSO}_2$), 4.21 (dd, 1 H, $J_{5a,5b}$ 11.1, $J_{4,5a}$ 3 Hz, H-5a), 4.33 (dd, 1 H, J_{4.5b} 4.5 Hz, H-5b), 4.81 (dd, 1 H,

 $J_{1,2}$ 4.7, $J_{2,3}$ 6.4 Hz, H-2), 5.36 (ddd, 1 H, $J_{3,4}$ 5 Hz, H-4), 5.41 (dd, 1 H, H-3), 7.50 (dd, 1 H, $J_{1,NH}$ 0.9 Hz, H-1), 8.02 (d, 1 H, $J_{5',6'}$ 9.5 Hz, H-6'), 8.38 (ddd, 1 H, $J_{3',5'}$ 2.4, $J_{5',NH}$ 0.6 Hz, H-5'), 9.13 (d, 1 H, H-3'), 11.30

(bs, 1 H, exchangeable with D₂O, NH); FABMS: m/z491 [MNa⁺], 469 [MH⁺]. Anal. Calcd for C₁₃H₁₆N₄O₁₁S₂ × MeOH: C, 33.60; H, 4.03; N, 11.20; S, 12.81. Found: C, 33.90; H, 3.85; N, 10.83; S, 13.20.

2S-(4'-Methoxycarbonyl-1'-butyl)-3S,4R-dimethanesulfonyloxy-tetrahydrofuran (7).—(a) To a stirred and cooled solution (-10 °C) of **6** (0.103 g, 0.47 mmol) in dry CH₂Cl₂ (5 mL) was added Et₃N (0.20 mL, 1.44 mmol) and MsCl (0.08 mL, 1.03 mmol). Stirring was continued for 0.5 h and the mixture diluted with CH_2Cl_2 (10 mL), washed successively with aq 5% HCl $(2 \times 10 \text{ mL})$, satd aq NaHCO₃ (10 mL) and water (10 mL). The organic solution was dried and evaporated to syrup. Flash-column chromatography а vellow (CH_2Cl_2) of the residue gave pure 7 (0.1615 g, 91%) as a white solid, which upon crystallization from EtOH gave colorless needles, mp 70-71 °C.

(b) A solution of 10 (1.00 g, 3.01 mmol) in triffuoroacetic acid (10 mL) and 6 M aq HCl (1 mL) was kept at rt for 24 h. The solution was concentrated under diminished pressure and traces of acids were removed by co-distillation with toluene (25 mL). To a solution of remaining crude 11 in dry CH₂Cl₂ (20 mL) was added a solution of (3-methoxycarbonyl-2-propenyl)triphenylphosphonium bromide9 (2.02 g, 4.58 mmol) in water (11 mL) and to thus prepared mixture was added a solution of NaOH (0.19 g, 4.75 mmol) in water (11 mL). The reaction mixture was stirred at rt for 45 min, and then transferred to a separatory funnel. The aqueous phase was separated and the organic layer was washed with water (50 mL), dried and evaporated. Short-column chromatography (CH₂Cl₂) of the residue (2.45 g) gave pure 13 (0.68 g, 61% from 10) as a bright-yellow syrup: $[\alpha]_D - 37.5^\circ$ (c 1.52, CHCl₃); v_{max} (film): 1725, 1660, 1630, 1370, 1190 cm⁻¹. A solution of 13 (0.5374 g, 1.45 mmol) in glacial AcOH (3 mL) was hydrogenated over PtO₂ (0.05 g, 0.22 mmol) at rt for 18 h. The suspension was filtered and the catalyst washed with CH₂Cl₂ (15 mL). The combined organic solution was washed with satd aq NaHCO₃ (2×20 mL), dried and evaporated to give chromatographically homogenous 7 (0.4841 g, 89%) as a white solid. Recrystallization from EtOH gave an analytical sample 7 as colorless needles: mp 68–69 °C; $[\alpha]_{D}$ – 62.6° (*c* 1.06, CHCl₃); v_{max} (KBr): 1745, 1350, 1180 cm⁻¹; ¹H NMR $(CDCl_3)$: δ 1.35–1.87 (m, 6 H, 3 × CH₂), 2.34 (t, 1 H, CH₂CO₂Me), 3.13 and 3.15 (2 × s, each 3 H, 2 × MeSO₂), 3.67 (s, 3 H, CO₂Me), 3.99 (dt, 1 H, $J_{2,3} =$ $J_{1a',2} = 7.2, J_{1b',2}$ 4.2 Hz, H-2), 4.01 (dd, 1 H, $J_{5a,5b}$ 11, J_{4,5a} 3.8 Hz, H-5a), 4.28 (dd, 1 H, J_{4,5b} 5.2 Hz, H-5b), 4.70 (dd, 1 H, J_{3,4} 5.2 Hz, H-3), 5.17 (dt, 1 H, H-4); ¹³C NMR (CDCl₃): δ 24.60, 24.80 and 31.91 (3 × CH₂), 33.74 (CH₂CO₂Me), 38.58 (MeSO₂), 51.36 (CO₂Me), 70.36 (C-5), 76.15 (C-4), 78.60 (C-2), 79.43 (C-3), 173.71 (CO₂Me). Anal. Calcd for $C_{12}H_{22}O_9S_2$: C, 38.49; H, 5.92; S, 17.13. Found: C, 38.39; H, 6.06; S, 17.34.

2S-(4'-Methoxycarbonyl-1'-butyl)-4S-azido-3R-methanesulfonyloxy-tetrahydrofuran (14).—To a solution of 7 (0.2231 g, 0.6 mmol) in HMPA (4 mL) was added NaN₃ (0.4582 g, 7.05 mmol). The mixture was stirred at 80 °C for 5 h, then poured into cold water (50 mL) and extracted with 1:1 benzene-hexane $(3 \times 20 \text{ mL})$. The extract was washed with water, dried and evaporated to give crude 14 (0.2289 g) as a yellow oil. Short-column chromatography (9:1 toluene-EtOAc) of the residue afforded pure 14 (0.1356 g, 71%) as a colorless syrup: $[\alpha]_{\rm D}$ + 18.7° (*c* 1.63, CHCl₃); $v_{\rm max}$ (film): 2100, 1735, 1360, 1180 cm⁻¹; ¹H NMR (CDCl₃): δ 1.38–1.82 (m, 6 H, $3 \times CH_2$), 2.34 (t, 2 H, CH₂CO₂Me), 3.09 (s, 3 H, MeSO₂), 3.66 (s, 3 H, CO₂Me), 3.89 (ddd, 1 H, J_{2.3} 4.2, J_{1a',2} 5.5, J_{1b',2} 7.5 Hz, H-2), 3.94 (dd, 1 H, J_{5a,5b} 10.2, J_{4,5a} 2.5 Hz, H-5a), 4.02 (dd, 1 H, J_{4,5b} 4.5 Hz, H-5b), 4.20 (ddd, 1 H, J_{3,4} 2 Hz, H-4), 4.66 (dd, 1 H, H-3); ¹³C NMR (CDCl₃): δ 24.55, 25.14 and 31.91 (3 × CH₂), 33.77 (CH₂CO₂Me), 38.54 (MeSO₂), 51.36 (CO₂Me), 65.78 (C-4), 70.25 (C-5), 83.18 (C-2), 86.19 (C-3), 174.00 (CO₂Me); FABMS: m/z 322 [MH⁺]. ES⁺ HRMS: Calcd for $C_{11}H_{20}N_3O_6S$: 322.1073. Found: m/z322.1079 [MH+].

2S - (4' - Methoxycarbonyl - 1' - butyl) - 3S,4R - diacetamido-tetrahydrofuran (16).-To a solution of 7 (0.1605 g, 0.43 mmol) in DMF (10 mL) was added NaN₃ (0.3890 g, 5.98 mmol) and NH₄Cl (0.0320 g, 0.6 mmol). The mixture was stirred at 150 °C for 20 h, and then evaporated under diminished pressure. Flash-column chromatography of the residue (4:1 light petroleum-EtOAc) gave pure 15 (0.0430 g, 37.4%) as colorless oil. Further elution afforded pure 14 (0.036 g, 26%). Compound 14 was dissolved in DMF (3.5 mL), and to the solution was added NaN₃ (0.0736 g, 1.13 mmol) and NH₄Cl (0.0064 g, 0.12 mmol). The mixture was stirred at 150 °C for 24 h. After the workup as described above, and flash purification on a column of silica, an additional amount of pure 15 (0.0112 g) was obtained. Total yield: 0.0542 g (47%) of 15: $[\alpha]_{\rm D}$ + 35.5° (c 1.79, CHCl₃); v_{max} (film): 2100, 1740 cm⁻¹; LRMS (CI): m/z269 [MH⁺]. A solution of 15 (0.1214 g, 0.54 mmol) in glacial AcOH (3 mL) and Ac₂O (3 mL) was hydrogenated over PtO₂ (0.04 g, 0.18 mmol) at rt for 23 h. The suspension was filtered and the catalyst washed with CHCl₃ (20 mL) and MeOH (10 mL). The combined filtrates were concentrated and residual AcOH removed by co-distillation with a 1:2 mixture of toluene-MeOH (4×15 mL), whereupon crude 16 remained as a white solid. Recrystallization from a mixture of CH₂Cl₂-hexane gave an analytical sample **16** (0.1160 g, 85%): mp 151–152 °C; $[\alpha]_{D}$ + 8.8° (c 1.17, CHCl₂); v_{max} (KBr): 3290–3080, 1730, 1550 cm⁻¹; ¹H

NMR (CDCl₃): δ 1.35–1.64 (m, 6 H, 3 × CH₂), 1.97 and 2.06 (2 × s, each 3 H, 2 × MeCONH), 2.31 (t, 2 H, CH₂CO₂Me), 3.58 (dd, 1 H, $J_{5a,5b}$ 9.2, $J_{4,5a}$ 6.6 Hz, H-5a), 3.66 (CO₂Me), 3.82 (ddd, 1 H, $J_{1a,2}$ 6.9, $J_{1b,2}$ 6, $J_{2,3}$ 3.9 Hz, H-2), 4.05 (dd, 1 H, $J_{4,5b}$ 8.1 Hz, H-5b), 4.55 (ddd, 1 H, $J_{3,NH}$ 9, $J_{3,4}$ 6.1 Hz, H-3), 4.62 (m, 1 H, $J_{4,NH}$ 7 Hz, H-4), 6.71 (bs, 2 H, D₂O exchangeable, 2 × NH); ¹³C NMR (CDCl₃): δ 22.27 (2 × MeCONH), 24.29, 24.99 and 28.76 (3 × CH₂), 33.23 (CH₂CO₂Me), 50.69 (CO₂Me), 51.09 (C-4), 52.11 (C-3), 69.00 (C-5), 80.36 (C-2), 169.85 and 170.27 (2 × MeCONH), 173.19 (CO₂Me); FABMS: m/z 323 [MNa⁺], 301 [MH⁺]. Anal. Calcd for C₁₄H₂₄N₂O₅: C, 55.98; H, 8.05; N, 9.33. Found: C, 55.64; H, 8.00; N, 9.71.

(+)-Oxybiotin (18).—(a) To a solution of 15 (0.1860 g, 0.69 mmol) in dry THF (5 mL) was added Ph₃P (0.4550 g, 1.73 mmol) and benzyl chloroformate (0.3 mL of 50% solution in toluene, 1.19 mmol). The mixture was stirred at rt for 5 h, and then treated with concd aq NH₄OH (0.5 mL) while stirring at rt for the additional 18 h. The mixture was evaporated, and the residue partitioned between water (10 mL) and CH₂Cl₂ (5 mL). The aqueous solution was washed with CH₂Cl₂ (5 mL) to remove the Ph₃PO and concentrated by co-distillation with 1:1 toluene–EtOH (2 × 20 mL). Flash chromatography (9:1 EtOAc–MeOH) of the residue gave pure methyl ester 17 (0.040 g, 24%).

(b) A solution of 15 (0.1 g, 0.37 mmol) in dry CH_2Cl_2 (6 mL) was hydrogenated over PtO₂ (0.03 g, 0.13 mmol) for 6 h at rt, and then to the stirred and cooled (0 °C) mixture was added Et₃N (0.1 mL, 0.87 mmol) in one portion. A solution of triphosgene (0.054 g, 0.19)mmol) in dry CH₂Cl₂ (3 mL) was added dropwise while stirring the mixture at 0 °C for 1 h. After stirring at rt for additional 18 h, the suspension was filtered and the catalyst washed with CH₂Cl₂. The combined organic solution was concentrated and the residue purified by flash chromatography (9:1 EtOAc-MeOH) to afford pure 17 (0.061 g, 68%) as a colorless solid: v_{max} (KBr): 3410–3120, 1750, 1710 cm⁻¹; ¹H NMR (CDCl₃); δ 1.21-1.80 (m, 6 H, $3 \times CH_2$), 2.32 (t, 2 H, CH₂CO₂Me), 3.40 (m, 1 H, J_{2.3} 3.6, J_{1',2} 6.4 Hz, H-2), 3.49 (dd, 1 H, J_{5a,5b} 10.1, J_{4,5a} 4.2 Hz, H-5a), 3.63 (s, 3 H, CO₂Me), 3.86 (d, 1 H, H-5b), 4.17 (dd, 1 H, J_{3,4} 8.4 Hz, H-3), 4.34 (dd, 1 H, H-4), 5.98 and 6.18 ($2 \times bs$, each 1 H, 2 × NH); ¹³C NMR (CDCl₃): δ 24.81, 25.52 and 28.36 $(3 \times CH_2)$, 33.67 (CH₂CO₂Me), 51.42 (CO₂Me), 57.52 (C-4), 58.98 (C-3), 75.23 (C-5), 82.58 (C-2), 163.62 (NHCONH), 174.14 (CO₂Me). To a solution of 17 (0.0550 g, 0.23 mmol) in water (1.5 mL) was added $Ba(OH)_2 \times 8$ H₂O (0.080 g, 0.25 mmol). The mixture was stirred at 100 °C for 1.5 h, then acidified to Congo red with 1 M H_2SO_4 , and then centrifuged to remove BaSO₄. The solution was concentrated by codistillation with 1:1 toluene-MeOH to afford pure 18 (0.0517 g, 98%) as a white powder. Recrystallization

from water gave pure **18** as silky needles: mp 187–188 °C, lit.⁴ 187–188 °C; $[\alpha]_D$ + 57.8° (*c* 0.65, 1 M aq NaOH); lit.⁴ + 57.7°; ¹H NMR (Me₂SO-*d*₆): δ 1.18–1.58 (m, 6 H, 3 × CH₂), 2.20 (t, 2 H, CH₂CO₂Me), 3.33 (m, 1 H, *J*_{2,3} 4 Hz, H-2), 3.39 (dd, 1 H, *J*_{5a,5b} 9.8, *J*_{4,5a} 4.6 Hz, H-5a), 3.65 (d, 1 H, H-5b), 4.07 (dd, 1 H, *J*_{3,4} 8.7 Hz, H-3), 4.21 (dd, 1 H, H-4), 6.36 and 6.40 (2 × bs, 1 H each, 2 × NH); ¹³C NMR (Me₂SO-*d*₆): δ 25.29, 25.99 and 28.83 (3 × CH₂), 34.35 (CH₂CO₂Me), 57.53 (C-4), 59.01 (C-3), 74.34 (C-5), 82.85 (C-2), 163.80 (NHCONH), 176.09 (CO₂H).

Acknowledgements

This work was supported by a research grant from the Ministry of Science, Technologies and Development of the Republic of Serbia. The authors are grateful to Mrs T. Marinko-Covell (University of Leeds, UK) and to Mr D. Djoković (Faculty of Chemistry, University of Belgrade, Yugoslavia), for recording the mass spectra.

References

1. Miljković, D.; Popsavin, V.; Harangi, J. Tetrahedron Lett. 1987, 28, 5733-5736.

- Hofmann, K. J. Am. Chem. Soc. 1945, 67, 1549– 1562.
- Dyke, S. F. In *Chemistry of Natural Products*; Bentley, K. W., Ed.; Interscience: London, 1964; Vol. 6, pp. 161–181.
- 4. Ohrui, H.; Kuzuhara, H.; Emoto, S. Agric. Biol. Chem. 1971, 35, 752-755.
- 5. Defaye, J. Adv. Carbohydr. Chem. Biochem. 1970, 25, 181–228.
- Miljković, D.; Popsavin, V.; Hranisavljević, J. Bull. Soc. Chim. Beograd. 1983, 48, 211–218.
- Miljković, D.; Popsavin, V.; Slavica, B. Bull. Soc. Chim. Beograd. 1983, 48, 219–227.
- 8. Defaye, J.; Hildesheim, J. Tetrahedron Lett. 1968, 3, 313–317.
- 9. Buchta, E.; Andree, F. Chem. Ber. 1959, 92, 3111-3115.
- Miljković, D.; Popsavin, V.; Harangi, J.; Batta, Dy. J. Serb. Chem. Soc. 1989, 54, 163–165.
- 11. Ohrui, H.; Emoto, S. Tetrahedron Lett. 1975, 32, 2765–2766.
- 12. Golobov, Y. G.; Kasukhin, L. F. Tetrahedron 1992, 48, 1459–1462.
- Ariza, X.; Urpí, F.; Vilarrasa, J. Tetrahedron Lett. 1999, 40, 7515–7517.
- 14. Ariza, X.; Pineda, O.; Urpí, F.; Vilarrasa, J. Tetrahedron Lett. 2001, 42, 4995–4999 and references therein.
- 15. Eckert, H.; Foster, B. Angew. Chem., Int. Ed. Engl. 1987, 26, 894–895.
- Miljković, D.; Velimirović, S.; Csanádi, J.; Popsavin, V. J. Carbohydr. Chem. 1989, 8, 457–467.