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Abstract: The Stille cross-coupling reaction between a vinylcyclo-
propylstannane and iodobenzene or phenol triflate provides an ex-
pedious route to 1,2-phenylvinylcyclopropanes. However, similar
coupling reactions using ortho-substituted aromatic substrates also
lead to butylaromatic products, resulting from competitive sp3–sp2

coupling reactions.
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Palladium-catalysed cross-coupling reactions involving a
wide variety of saturated and unsaturated organostannane
precursors are ubiquitous in organic synthesis.1 In connec-
tion with a specific synthetic objective, that is, the synthe-
sis of 1,2-arylvinyl-substituted cyclopropanes 1, it came
as a surprise to us therefore that the Stille coupling reac-
tion between vinylcyclopropylstannanes, for example, 3
and aryl derivatives 2 (Scheme 1), had not been de-
scribed.2–4 We surmise that the absence of such a descrip-
tion in the literature may have its origins in the propensity
for vinylcyclopropanes to undergo Pd(II)-catalysed ring-
opening reactions, and/or for the arylvinylcyclopropane
products to undergo 6p-electrocyclisation in situ, leading,
in both cases, to cyclic byproducts, namely 4 and 5, re-
spectively. We have therefore evaluated the scope for
cross-coupling reactions involving the vinylcyclopropyl-
stannane 3 and a series of substituted aryl triflate and ha-
lides. Here we present the outcome of this study and draw
attention to an interesting dichotomous reaction pathway
followed by the stannane 3.

The trans-vinylcyclopropylstannane 3 was easily accessi-
ble from propargyl alcohol using four straightforward
steps (Scheme 2). Thus, treatment of propargyl alcohol
with Bu3SnH–AIBN first led to the known (E)-vinylstan-
nane 6 in 89% yield.5 A Simmons–Smith reaction be-

tween 6 and diiodomethane in the presence of diethylzinc
at –50 °C next gave the cyclopropane methanol 7a (74%).
Oxidation of 7a to the corresponding aldehyde 7b, using
IBX and DMSO, followed by a straightforward Wittig
reaction with methyltriphenylphosphoranylid then gave
the trans-vinylcyclopropylstannane 3.6

Scheme 2 Reagents and conditions: i, Bu3SnH, AIBN, 100 °C, 5 h,
89%; ii, CH2I2, Et2Zn, CH2Cl2, –50 °C, 74%; iii, IBX, DMSO, 25 °C,
20 h, 96%; iv, MePPh3Br, NaHMDS, –78 °C, 97%; v, Pd(OAc)2,
Ph3As, CuI, LiCl, NMP, 24 h, 40–70%, ratios of 9/10 = ~ 1:2.

After examining a range of reaction conditions and cata-
lytic systems, we found that when a solution of the vinyl-
cyclopropylstannane 3 and phenoltriflate in NMP was
added to palladium acetate (10 mol%) which had been
premixed with triphenylarsine (60 mol%), and the result-
ing mixture was stirred and heated at 80 °C for 24 hours
in the presence of CuI (20 mol%) and LiCl (6 equiv), a
reproducible 70% yield of the phenylvinylcyclopropane 1
(R = H) could be realised. A similar outcome was seen
using iodobenzene in place of phenoltriflate.7 What came
as a surprise to us was that when we examined the cross-
coupling reactions between 3 and the phenoltriflates 8,
substituted at their ortho positions with oxy and carbon
groups, we obtained the corresponding n-butylaromatic
compounds 10 as major products.

Thus, a palladium-catalysed coupling reaction between
the vinylcyclopropylstannane 3 and catechol monotriflate
(8a) led to a 2:1 mixture of o-butylphenol (10a) and the
phenolvinylcyclopropane (9a). Likewise, separate similar
coupling reactions between 3 and the ortho-substituted
triflates 8b, 8c, and 8d gave approximately 2:1 mixtures
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of the corresponding substituted butylbenzenes 10b, 10c,
and 10d, and phenylvinylcyclopropanes 9b, 9c, and 9d,
respectively, in combined yields of approximately 40%.

Although deliberate sp3–sp2 cross-coupling reactions be-
tween butylstannanes and aryl iodides/triflates have been
used in synthesis,8 the preferential migration of the sp3-
butyl group within vinyl- and aryltributylstannanes in
Stille cross-coupling reactions is quite rare.9 This feature,
of course, is the main reason why the Stille sp2–sp2 cross-
coupling reaction has been so revered in synthesis! In the
specific cases of the coupling reactions involving the
vinylcyclopropylstannanes 3 and the ortho-substituted
triflates 8, the Stille reaction is clearly limited. We suggest
that this limitation is associated with steric impedance be-
tween the stannane 3 and the ortho substituents within the
arylpalladium species at the stage of triflate–cyclopropyl/
butyl exchange in the catalytic cycle, favouring butyl
group over cyclopropane ring migration.
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