

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 62 (2006) 226-235

Trapping of carbamic acid species with (trimethylsilyl)diazomethane

Yoshikatsu Ito* and Hiromi Ushitora

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan

Received 18 August 2005; accepted 21 September 2005

Available online 20 October 2005

Abstract—Methoxycarbonylation of a variety of amines into the corresponding methyl carbamates was accomplished by allowing them to react with (trimethylsilyl)diazomethane TMSCHN₂ under bubbling of CO₂. The reaction was performed at room temperature for a period of ca. 2 h in benzene–MeOH (4/1 v/v), which was the solvent of choice. In this mixed solvent, undesirable bicarbonate is formed in equilibrium along with carbamate anion. Owing to the irreversibility in the esterification step by TMSCHN₂, however, the yield of methyl carbamate can reach very high.

© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

We and others have recently reported studies on the solvent dependence of the carbamic acid formation from ω -(1-naphthyl)alkylamines **1a–c** and carbon dioxide.^{1,2} On the basis of NMR and IR analyses in situ after bubbling of CO₂ through solutions of these amines in DMSO, DMF or pyridine, it is concluded that they are completely converted to the corresponding carbamic acids in the protophilic, highly dipolar, aprotic solvents (see Scheme 1).¹ In dioxane (protophilic, dipolar, aprotic solvent), the carbamic acid and a small amount of the ammonium carbamate are formed. By contrast, in MeCN (protophobic, dipolar, aprotic solvent), in

benzene or CHCl₃ (apolar, aprotic solvent), or in 2-PrOH or MeOH (dipolar, amphiprotic solvent), ammonium carbamates rather than carbamic acids are formed, although the ammonium bicarbonates/carbonates are competitively formed in hydrous MeOH. Not only solvent polarity and protic character but also its protophilicity was found to be a crucial factor. The selective generation of the undissociated carbamic acids in preference to the ammonium carbamates in protophilic, dipolar, aprotic solvent (DMSO, DMF, pyridine, or dioxane) was ascribed to the larger pK_a values³ for the carbamic acids than for the amines 1a-c in this class of solvent, that is, the equilibrium reaction 1 is shifted far to the left.

Scheme 1.

Keywords: Amine; Carbon dioxide; Carbamic acid; (Trimethylsilyl)diazomethane; Methyl carbamate. * Corresponding author. Tel./fax: +81 75 383 2718; e-mail: yito@sbchem.kyoto-u.ac.jp

0040–4020/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2005.09.116

$$\frac{\text{RNHCO}_2\text{H} + \text{RNH}_2}{\text{in protophilic, dipolar, aprotic solvent}} = \frac{\text{RNHCO}_2^- + \text{RNH}_3^+}{(1)}$$

The ammonium carbamates often precipitated out from the solution and hence they could be separated. In order to trap unstable carbamic acids as the stable esters, we reacted 3-(1naphthyl)propylamine (1a) in 4:1 v/v benzene/MeOH with (trimethylsilyl)diazomethane TMSCHN₂ under bubbling of CO₂.^{1a} The corresponding methyl carbamate (**1a**-MC) was successfully obtained in essentially quantitative yield (Eq. 2). TMSCHN₂ is a well-known reagent for methylation of carboxylic acids.⁴ In this paper, application of this N-methoxycarbonylation reaction to other amines such as 1–5 is investigated. Lately, amine has been utilized to fix carbon dioxide through various types of chemical reaction.⁵ An example is the formation of carbamate ester (urethane) by using alkyl halide,⁶ alcohol,⁷ carbonate ester,⁸ alkene, alkyne,⁹ or epoxide⁹ as the alkylating agent, but TMSCHN_2 had not been employed to this aim before our previous report.1a

solvents were added at room temperature 2-3equiv of TMSCHN₂ (an Aldrich 2.0 M solution in hexanes was used) with stirring under bubbling of CO_2 . In less than half an hour, a yellow color of TMSCHN₂ disappeared and the corresponding methyl carbamates (MC's) resulted with excellent yields (83-100%) when benzene-MeOH (4/1) or dioxane-MeOH (4/1) was used (Table 1).[‡] However, the vields were much lower in the solvent like pyridine-MeOH (4/1 or 9/1), DMF-MeOH (4/1) or MeOH (22-61%). In the case of pyridine-MeOH, formation of a large amount of brown tar greatly impaired the reaction. When pure MeOH was used, TMSCHN₂ decomposed more rapidly as compared with the benzene-MeOH system. This is probably due to some side reactions. In DMF-MeOH, formamides 6 and 7 were obtained as additional products from 1a and 2a, respectively. From these results, benzene-MeOH (4/1) was employed as the solvent of choice for further experiments.

Solutions of amines 1-5 in 4:1 benzene–MeOH were treated with a TMSCHN₂ solution under bubbling of CO₂, as described above. As summarized in Table 2, primary alkyl amines **1a–c**, **2a–d**, **3a**, **3b** and secondary alkylamine **4** afforded their methyl carbamates (MC's) in excellent to good yields (76–100%). MC was obtained even from dopamine (**2e**), an important neurotransmitter in brain,¹⁰ in

2. Results and discussion

2.1. Methoxycarbonylation with TMSCHN₂

First, we looked for a suitable solvent for the *N*-methoxycarbonylation reaction. Since, according to Shioiri and co-workers,⁴ methanol is indispensable for methylation of acids with TMSCHN₂, we carried out the reaction in benzene, dioxane, pyridine or DMF, each containing 20 (or 10) volume % of MeOH, or in pure MeOH.[†] Thus, to solutions of amines **1a**, **2a**, **2c**, **3a**, and **5a** in one of these a modest yield (17%) by using dopamine $\cdot 3,5$ -dinitrobenzoic acid salt $(2e \cdot dnba)^{11}$ as the starting amine. This methoxycarbonylation reaction is interesting, because 2e itself is easily susceptible to oxidative polymerization to generate melanin, a structurally unelucidated black pigment.^{11,12} Similar treatment of commercially available dopamine hydrochloride $2e \cdot HCl$ with TMSCHN₂ gave a very low yield of the crude MC (6%). MC was also obtained from DL-noradrenaline (2f) in 12% yield. One reason for the low yields of MC from catecholamines 2e and 2f is that their reactions had to be carried out in 4:1 pyridine/MeOH, since

[†] The possibility that the Me group comes from methanol in the methylation reaction was excluded by Shioiri by using methanol–¹³C.⁴

[‡] The use of 1 equiv of TMSCHN₂ instead of 2 equiv decreased the yield of **2a**-MC from 97% (Table 1) to 78% in benzene–MeOH (4/1).

Table 1. Solvent effect on methoxycarbonylation of several an	ines with (trimethylsi	silvl)diazomethane under atmospl	eric pressure of CC	b ₂ at room temperature
---	------------------------	----------------------------------	---------------------	------------------------------------

Amine	Solvent (v/v)	Product yield (%) ^a		Recovered amine (%) ^b
		Methyl carbamate	Others	
1a	Benzene–MeOH (4/1)	99 [#]		Trace
1a	Dioxane-MeOH (4/1)	98#		0
1a	Pyridine–MeOH (9/1)	42#	c	51
1a	Pyridine–MeOH (4/1)	40	c	51
1a	DMF-MeOH (4/1)	22#	6, 52	0
1a	MeOH	38#		55
2a	Benzene–MeOH (4/1)	97#		0
2a	DMF-MeOH (4/1)	25	7 , 7	0
2c	Benzene-MeOH (4/1)	100#		0
2c	MeOH	29		45
3a	Benzene–MeOH (4/1)	83#		10
3a	Pyridine–MeOH (4/1)	61	c	Trace
5a	Benzene-MeOH (4/1)	98 (97 [#])		2
5a	Pyridine–MeOH (4/1)	32	с	50

^a Isolation yield, unless marked with #, where it is the NMR yield. Values are based on the initial amount of amine.

^b Estimated by NMR.

^c A large amount of brown tar was formed.

 $2e \cdot dnba$, $2e \cdot HCl$ and 2f are insoluble in 4:1 benzene/MeOH.

Other significant points found from inspection of Table 2 are that methoxycarbonylation reactions of arylamines 1d, 2g, 2h, 2j, 2k, and 5b are difficult (0–27% yields), although indoline (5a), which is an *N*-alkyl-substituted arylamine whose nitrogen atom is expected to be sterically less hindered than that of 5b or 2h, gave its methyl carbamate (**5a**-MC) in an excellent yield (98%). The MC yields from electron-rich *p*-anisidine (**2j**) and *N*,*N*-dimethyl-*p*-phenyl-enediamine (**2k**) (27 and 19%, respectively) were better than aniline (**2g**) (8%).

Alcohols react with CO_2 to form alkylcarbonic acids in the presence of tertiary amine bases under high-pressure or in the presence of 1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU).¹³ Under our reaction conditions, however,

Fable 2 Methoxycarbonylation of	various amines with	(trimethylsilyl)diazomethane	under atmospheric	pressure of CO ₂	at room temperature
abie internet, earden, factor of	Tarroad annined with	(uninetity for) and connet indire	ander admospherie	pressure or co,	at room temperature

Amine	[Product yield (%) ^a	Recovered amine (%) ^b	
	Methyl carbamate	Others		
Primary alkylamine: RNH ₂	\rightarrow RNH–CO ₂ Me			
1a	99 [#]		Trace	
1b	95		0	
1c	95		0	
2a	97#		0	
2b	88		7	
2c	100#		0	
2d	82		0	
2e ^c	17	d	e,f	
2f ^g	12	d	15	
3a	83#		10	
3b	76		14 ^h	
Secondary alkylamine: RR	$'NH \rightarrow RR'N-CO_2Me$			
4	78		3	
Arylamine: ArRNH \rightarrow ArR	N–CO ₂ Me			
1d	0	1e , 13	82	
2g	8		e,i	
2h	0	2i , 7	>75 ⁱ	
2j	27		52	
2k	19		66	
5a	98 (97 [#])		2	
5b	24 (40 [#])		57	

The solvent employed is benzene-MeOH (4/1 v/v) except for 2e and 2f.

^a Isolation yield, unless marked with #, where it is the NMR yield. Values are based on the initial amount of amine.

^b Estimated by NMR.

^c Dopamine 3,5-dinitrobenzoic acid salt (**2e** dnba)¹¹ dissolved in 4:1 pyridine/MeOH was reacted (**2e** dnba is insoluble in 4:1 benzene/MeOH). The reaction of dopamine hydrochloride (**2e** HCl) under the same conditions gave a lower yield of MC (6%).

^d A large amount of brown tar was formed.

e Not estimated.

^f Polymerized to melanin during the workup.

^g The reaction was carried out in 4:1 pyridine/MeOH, since DL-noradrenaline (2f) is insoluble in 4:1 benzene/MeOH.

h Isolated.

ⁱ The recovered amine was partially lost on evaporation of the solvent.

Figure 1. The 1 H and 13 C NMR spectra of 1b in 4:1 C₆D₆/CD₃OD before and after CO₂ bubbling.

Figure 2. The HMBC spectrum of 1b in 4:1 C₆D₆/CD₃OD after CO₂ bubbling.

Figure 3. The IR spectra of 1b in 4:1 benzene/MeOH before and after CO₂ bubbling.

methylcarbonic acid $CH_3OCO_2^-$ was probably not formed from the following reasons. Dimethyl carbonate, which is a possible product from the reaction of methylcarbonic acid with TMSCHN₂, was undetectable (NMR) in the reaction mixtures. Furthermore, the signals corresponding to $CD_3OCO_2^-$ were none by the in situ ¹³C NMR experiments in C_6D_6 -CD₃OD or in CD₃OD (Section 2.2 and Ref. 1a).

2.2. Carbamate anion formation in 4:1 benzene/MeOH

When we previously studied the solvent dependence of carbamic acid formation,¹ we did not investigate the benzene–MeOH mixed solvent. Therefore, by selecting 2-(1-naphthyl)ethylamine (**1b**) as a typical example, the ¹H and ¹³C NMR, HMBC, and IR spectra in 4:1 benzene–MeOH before and after bubbling CO₂ were measured in situ (Figs. 1–3). It can be seen from these figures that a mixture of ammonium carbamate and bicarbonate was predominantly formed in this mixed solvent. From the ¹H NMR spectrum after CO₂ bubbling (Fig. 1A, right), the molar ratio

between ammonium carbamate and ammonium bicarbonate is estimated as 54:46. The carbamyl carbon appeared at δ 163.5 and the bicarbonate carbon at δ 160.9 (Fig. 1B, right). In the HMBC spectrum (Fig. 2), there is an expected cross peak between the α -methylene proton and the carbamyl carbon, demonstrating the N– Cbond formation between the amine nitrogen and the CO₂ carbon. The IR spectrum (Fig. 3, bottom) showed a broad band at about 1580 cm⁻¹, which is assignable to the NHCOO⁻ group of the carbamate anion.¹⁴ The bands at 1640 and 1312 cm⁻¹ should be attributed to bicarbonate.^{1a} For comparison, the pertinent spectra in DMSO and DMF are displayed in Figures 4–6. As reported previously,¹ **1b** was quantitatively converted to the carbamic acid (1-Naph)CH₂CH₂NHCO₂H in DMSO, DMF or pyridine (e.g., as can be seen from the NMR spectra in Figures 4 and 5).

2.3. Mechanistic consideration

Interconversion reactions among amine, carbamic acid, ammonium carbamate, and ammonium bicarbonate (formed if H₂O is present as a contaminant in MeOH; see Scheme 1) are reversible processes,^{5,15} whereas the formation of methyl carbamate (MC) is irreversible (Eqs. 3-6). It is assumed that TMSCHN₂ can esterify either undissociated or dissociated carbamic acid (Eq. 6). As aforementioned, upon CO₂ bubbling through the solution of **1b** in 4:1 benzene/ MeOH, formation of both ammonium carbamate and bicarbonate (molar ratio 54:46) but no carbamic acid was observed (Figs. 1-3). Of course, there may exist a low concentration of the carbamic acid below the detection limit of the NMR and IR analysis. Apart from the ambiguity about the true species involved in the esterification, however, production of the methyl carbamate 1b-MC in high yield (95%, Table 2) from the ammonium carbamatebicarbonate mixture (carbamate content 54%) in 4:1 benzene/MeOH is feasible owing to the irreversibility of the reaction 6.

$$RR'NH + CO_2 \rightleftharpoons RR'NCO_2H \tag{3}$$

$$RR'NCO_2H + RR'NH \rightleftharpoons RR'NH_2^+ + RR'NCO_2^-$$
(4)

$$RR'NH + CO_2 + H_2O \rightleftharpoons RR'NH_2^+ + HCO_3^-$$
(5)

$$\left\{ \begin{array}{c} \text{RR'NCO}_2\text{H} \\ \parallel \\ \text{RR'NCO}_2^- + \text{H}^+ \end{array} \right\} \xrightarrow{\text{TMSCHN}_2} \text{RR'NCO}_2\text{Me} \qquad (6)$$

In the preceding paper¹ we have mentioned that the in situ yield of carbamic acid in CO₂-saturated DMSO-d₆ is generally much lower for arylamines than for alkylamines. More complete data supporting this statement are shown in Table 3. Many alkylamines underwent nearly complete conversion ($\sim 100\%$) into their respective carbamic acids. Among arylamines, those having an electron-donating group (2j and 2k) and cyclic ones (5a and 5b) exhibit relatively high carbamic acid yields (7-24%). It is interesting to note that the carbamic acid yields in DMSO d_6 for alkyl- and arylamines (Table 3) are roughly correlated with their methoxycarbonylation yields (Table 2). On the assumption that the structural effect by different amines on the formation of either carbamic acid or carbamate anion is similar, it seems that TMSCHN₂ is a good reagent for trapping unstable carbamic acid species (carbamic acid or carbamate anion).

Table 3. Carbamic acid formation from amines in DMSO- d_6 through bubbling of CO₂ at room temperature

Alkylamine	Carbamic acid yield (%)	Arylamine	Carbamic acid yield (%)
1a-c	~100	1d, 1e, 2h	0
2a–d, 2f	~100	2g	1
$2\mathbf{e} \cdot \mathbf{d}\mathbf{n}\mathbf{b}\mathbf{a}$	$12(31^{a})$	2j	11
3a	~100	2k	24
4	82	5a	22
		5b	7

The conversion or the carbamic acid yield was estimated in situ by $^1\!\mathrm{H}\,\mathrm{NMR}$ analysis. Some data are from Ref. 1a.

3. Conclusion

Methoxycarbonylation of a variety of amines into the corresponding methyl carbamates was accomplished by allowing them to react with (trimethylsilyl)diazomethane TMSCHN₂ under bubbling of CO₂ at room temperature. Benzene–MeOH (4/1 v/v) was the solvent of choice. Thus, primary alkyl amines 1a-c, 2a-d, 3a, 3b and secondary alkylamine 4 afforded their methyl carbamates in excellent to good yields (76-100%). On the other hand, methoxycarbonylation of arylamines (1d, 2g, 2h, 2j, 2k and 5b) was difficult (0-27% yield), although indoline (5a), whose nitrogen atom is sterically less hindered, gave its methyl carbamate in an excellent yield (98%). Even oxidatively labile dopamine (2e) and DL-noradrenaline (2f) were successfully methoxycarbonylated, albeit a low yield (17 and 12%, respectively). By selecting 2-(1-naphthyl)ethylamine (1b) as a typical example, the ¹H and ¹³C NMR, HMBC, and IR spectra in 4:1 benzene-MeOH were measured before and after CO₂ bubbling. These spectra have revealed that about an equimolar amount of the ammonium carbamate and the ammonium bicarbonate is formed in equilibrium in this mixed solvent. However, since the methyl esterification step by TMSCHN₂ is irreversible, the conversion of amine to methyl carbamate can be nearly quantitative.

4. Experimental

4.1. General

¹H and ¹³C NMR spectra were measured on a JEOL EX-270J, AL-300, or JUM-A400 spectrometer. Measurements of 2D NMR were carried out with JEOL JUM-A400. Mass and IR spectra were recorded on JEOL JMS-HX 110A and SHIMADZU FTIR-8400 spectrometers, respectively.

The in situ measurements of ¹H and ¹³C NMR, HMBC, and IR spectra in benzene–MeOH (4/1 v/v) before and after bubbling CO₂ were carried out as described previously.^{1a}

4.2. Methoxycarbonylation

4.2.1. A typical procedure: isolation of methyl N-[3-(1naphthyl)propyl]carbamate (1a-MC). Through 5 mL of a 4:1 benzene/MeOH solution containing 73 mg (0.393 mmol) of amine 1a was bubbled CO₂ gas for 15 min. Into this solution was added 0.5 mL (1.0 mmol) of (trimethylsilyl)diazomethane TMSCHN₂ (Aldrich 2.0 M solution in hexanes) in one portion at room temperature with both stirring and CO₂ bubbling. The yellow color of TMSCHN₂ disappeared in 20 min. The mixture was stirred for an additional 2 h under CO₂ bubbling. The resultant colorless solution was rotary-evaporated to afford 93 mg of a colorless viscous oil, which was almost pure 1a-MC containing only a trace of 1a on the basis of the NMR analysis. Further purification was carried out by preparative TLC on silica gel (CHCl₃/MeOH 20:1 v/v) to give 93 mg (97% yield) of 1a-MC as a colorless viscous oil.

4.2.2. Isolation of methyl *N*-[**2**-(**3,4-dihydroxyphenyl**)**ethyl**]**carbamate** (**2e-MC**). Through 12.5 mL of a 4:1 pyridine/MeOH solution containing 150 mg (0.411 mmol) of the salt $2e \cdot dnba^{11}$ was bubbled CO₂ gas for 15 min. Into this solution was added 1.1 mL (2.2 mmol) of TMSCHN₂ in one portion at room temperature with both stirring and CO₂ bubbling. The mixture was stirred at room temperature for 2.5 h under CO₂ bubbling. Then the solvent was rotary-evaporated to leave 452 mg of a dark brown residue, which was dissolved in 10 mL of MeOH and was left overnight. An insoluble black solid (probably melanin) appeared and this was removed by filtration. The filtrate was subjected to repeated preparative TLC on silica gel (CHCl₃/MeOH 10:1 v/v) to afford 14 mg (17% yield) of **2e**-MC as a pale brown semisolid. Methyl 3,5-dinitrobenzoate was undetectable in the reaction mixture (NMR and TLC).

4.2.3. Spectral data for isolated products. Other amines were reacted in a manner similar to that described at Section 4.2.1. The products were separated by preparative TLC on silica gel (CHCl₃–MeOH) and were characterized by ¹H and ¹³C NMR, IR, MS, and HRMS measurements. Further purification of the isolated products by recrystallization or distillation was usually not done. Spectral data for known compounds were well in agreement with the reported data.

4.2.3.1. Methyl *N*-[3-(1-naphthyl)propyl]carbamate (1a-MC). Obtained as a colorless thick oil; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (1H, d, J=8.2 Hz), 7.85 (1H, dd, J=8, 1.7 Hz), 7.71 (1H, d, J=8.1 Hz), 7.53–7.44 (2H, m), 7.38 (1H, t, J=7.6 Hz), 7.31 (1H, d, J=7 Hz), 4.74 (1H, br s), 3.67 (3H, s), 3.28 (2H, quar, J=6.5 Hz), 3.10 (2H, t, J=7.6 Hz), 1.96 (2H, quin, J=7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 157.13, 137.44, 133.91, 131.72, 128.84, 126.83, 125.97, 125.88, 125.53, 125.52, 123.58, 52.06, 40.95, 30.88, 30.11; IR (neat) 3336 (m), 1705 (br s), 1538 (br s), 1258 (s), 778 (s) cm⁻¹; MS (FAB⁺) *m*/*z* 244 (MH⁺, 100), 243 (M⁺, 58), 212 (13), 168 (21); HRMS (FAB⁺) calcd for C₁₅H₁₇NO₂ 243.1259, found 243.1259.

4.2.3.2. N-[3-(1-Naphthyl)propyl]formamide (6). Obtained as a colorless thick oil; ¹H NMR (300 MHz, CDCl₃) δ 8.15 (0.84H, s), 8.05 (0.16H, d, J=12.3 Hz), 8.01-7.95 (1H, m), 7.87-7.83 (1H, m), 7.76-7.70 (1H, m), 7.54-7.28 (4H, m), 5.8 and 5.59 (ca. 0.15 and 0.85H, two br s), 3.41 (1.66H, quar, J = 6.8 Hz), 3.28 (0.34H, quar, J =6.7 Hz), 3.12 (2H, t, J=7.8 Hz), 1.99 (2H, quin, J=7.4 Hz); ¹³C NMR (67.7 MHz, CDCl₃) δ 164.55,[§] 161.09, 137.06, 136.49,[§] 133.84,[§] 133.78, 131.54, 131.47,[§] 129.42,[§] 128.84,[§] 128.77, 127.03,[§] 126.83, 126.00,[§] 125.94, 125.85, 125.57,[§] 125.47, 125.44, 125.40,[§] 123.41, 123.28,[§] 41.41,[§] 38.07, 31.92,[§] 30.40, 30.31, 29.73[§]; IR (neat) 3287 (m), 1666 (s), 1537 (m), 1386 (m), 779 (s) cm⁻¹; MS (EI⁺) m/z213 (M⁺, 89), 168 (100), 153 (71), 141 (95), 115 (48); HRMS (EI⁺) calcd for C₁₄H₁₅NO 213.1154, found 213.1155.

4.2.3.3. Methyl *N*-[2-(1-naphthyl)ethyl]carbamate (1b-MC). Obtained as a pale yellow thick oil; ¹H NMR (300 MHz, CDCl₃) δ 8.08 (1H, d, *J*=7.8 Hz), 7.85 (1H, d, *J*=7.5 Hz), 7.79 (1H, d, *J*=7.8 Hz), 7.55–7.45 (2H, m), 7.39 (1H, t, *J*=7.7 Hz), 7.31 (1H, d, *J*=6.6 Hz), 4.78 (1H, br s), 3.67 (3H, s), 3.54 (2H, quar, *J*=6.6 Hz), 3.28 (2H, t,

 $J=7.1 \text{ Hz}); {}^{13}\text{C} \text{ NMR} (75.5 \text{ MHz}, \text{ CDCl}_3) \delta 157.05, 134.77, 133.90, 131.87, 128.79, 127.31, 126.77, 126.14, 125.66, 125.45, 123.55, 52.04, 41.65, 33.37; IR (neat) 3337 (m), 1705 (s), 1530 (s), 1254 (s), 777 (s) cm⁻¹; MS (EI⁺)$ *m*/*z*229 (M⁺, 31), 154 (83), 141 (100), 115 (58), 88 (52); HRMS (EI⁺) calcd for C₁₄H₁₅NO₂ 229.1103, found 229.1105.

4.2.3.4. Methyl *N*-[(1-naphthyl)methyl]carbamate (1c-MC). Obtained as a pale yellow solid, mp 84–88 °C (lit.¹⁶ mp 66–69 °C); ¹H NMR (300 MHz, CDCl₃) δ 8.01 (1H, d, *J*=7.8 Hz), 7.86 (1H, d,[¶] *J*=8.1 Hz), 7.79 (1H, dd, *J*=6.5, 2.8 Hz), 7.56–7.47 (2H, m), 7.42–7.37 (2H, m), 5.00 (1H, br s), 4.81 (2H, d, *J*=5.4 Hz), 3.69 (3H, s);^{8b 13}C NMR (75.5 MHz, CDCl₃) δ 156.82, 133.82, 133.62, 131.23, 128.77, 128.49, 126.52, 126.13, 125.91, 125.36, 123.29, 52.24, 43.19; IR (neat) 3298 (m), 1695 (s), 1550 (m), 1296 (m), 1259 (m), 799 (m) cm⁻¹; MS (EI⁺) *m*/*z* 215 (M⁺, 100), 200 (72), 156 (61), 141 (77), 129 (85); ^{8b} HRMS (EI⁺) calcd for C₁₃H₁₃NO₂ 215.0946, found 215.0944.

4.2.3.5. Methyl *N*-(**2**-phenylethyl)carbamate (2a-MC). Obtained as a colorless oil; ¹H NMR (270 MHz, CDCl₃) δ 7.38–7.21 (5H, m), 4.75 (1H, br s), 3.70 (3H, s), 3.48 (2H, quar, *J*=6.5 Hz), 2.85 (2H, t, *J*=6.9 Hz);^{6c} ¹³C NMR (67.7 MHz, CDCl₃) δ 156.84, 138.64, 128.68, 128.53, 126.41, 52.07, 42.22, 36.19;^{6c} IR (neat) 3335 (m), 1705 (s), 1532 (s), 1258 (s), 700 (m) cm⁻¹; MS (EI⁺) *m/z* 179 (M⁺, 32), 104 (60), 91 (59), 88 (100); HRMS (EI⁺) calcd for C₁₀H₁₃NO₂ 179.0946, found 179.0944.

4.2.3.6. *N*-(**2**-Phenylethyl)formamide (7). Obtained as a colorless oil; ¹H NMR (270 MHz, CDCl₃) δ 8.07 (0.85H, s), 7.85 (0.15H, d, *J*=11.9 Hz), 7.28–7.09 (5H, m), 5.7 and 5.56 (1H, two br s), 3.52 (1.7H, quar, *J*=6.7 Hz), 3.42 (0.3H, quar, *J*=6.7 Hz), 2.78 (2H, t, *J*=6.9 Hz);¹⁷ ¹³C NMR (67.7 MHz, CDCl₃) δ 164.33,[§] 161.07, 138.31, 137.41,[§] 128.78,[§] 128.75,[§] 128.65 (two peaks), 126.86,[§] 126.60, 43.20,[§] 39.25, 37.73,[§] 35.50;¹⁷ IR (neat) 3283 (m), 1667 (s), 1534 (m), 1384 (m), 1239 (m), 699 (m) cm⁻¹.¹⁷ MS (EI⁺) *m*/*z* 149 (M⁺, 13), 104 (100), 91 (44); HRMS (EI⁺) calcd for C₉H₁₁NO 149.0841, found 149.0842.

4.2.3.7. Methyl *N*-[2-(4-hydroxyphenyl)ethyl]carbamate or *N*-(methoxycarbonyl)tyramine (2b-MC). Obtained as a colorless thick oil; ¹H NMR (270 MHz, CDCl₃) δ 6.99 (2H, d,[¶] *J*=8.5 Hz), 6.76 (2H, d,[¶] *J*= 8.5 Hz), 4.80 and 4.69 (1H, two br s), 3.64 (3H, s), 3.37 (2H, quar, *J*=6.7 Hz), 2.69 (2H, t, *J*=7.0 Hz); ¹³C NMR (67.7 MHz, CDCl₃) δ 157.23, 154.64, 130.03, 129.70, 115.45, 52.27, 42.47, 35.21; IR (neat) 3335 (s), 1700 (s), 1515 (s), 1260 (s), 827 (m) cm⁻¹; MS (EI⁺) *m*/*z* 195 (M⁺, 14), 120 (100), 107 (95); HRMS (EI⁺) calcd for C₁₀H₁₃NO₃ 195.0895, found 195.0896.

4.2.3.8. Methyl *N*-[2-(3,4-dimethoxyphenyl)ethyl]carbamate (2c-MC). Obtained as a colorless thick oil; ¹H NMR (270 MHz, CDCl₃) δ 6.81 (1H, d, *J*=7.9 Hz), 6.74–6.70 (2H, m), 4.69 (1H, br s), 3.87 (3H, s), 3.86 (3H, s), 3.66 (3H, s), 3.42 (2H, quar, *J*=6.6 Hz), 2.76 (2H, t, *J*=6.9 Hz); ¹⁸ ¹³C NMR (75.5 MHz, CDCl₃) δ 156.95, 148.99,

[§] The peaks probably belonging to the minor isomer.

[¶] Each peak is finely split (J = 1-2 Hz).

147.66, 131.21, 120.64, 111.87, 111.32, 55.89, 55.84, 52.03, 42.28, 35.69;¹⁸ IR (neat) 3365 (m), 1710 (s), 1516 (s), 1260 (s), 1236 (s), 1142 (s), 1028 (s) cm⁻¹;¹⁸ MS (FAB⁺) m/z 240 (MH⁺, 87), 239 (M⁺, 100), 165 (59); HRMS (FAB⁺) calcd for C₁₂H₁₇NO₄ 239.1158, found 239.1164.

4.2.3.9. Methyl *N*-(2-hydroxy-2-phenylethyl)carbamate (2d-MC). Obtained as a colorless solid, mp 85–89 °C (lit.^{8a} mp 88–90 °C); ¹H NMR (300 MHz, CDCl₃) δ 7.29–7.19 (5H, m), 5.11 (1H, br s), 4.74 (1H, dd, *J*=8, 3 Hz), 3.60 (3H, s), 3.44 (1H, br d, *J*=14 Hz), 3.21 (1H, br dd, *J*=14, 8 Hz), 2.56 (1H, br s);^{8a 13}C NMR (75.5 MHz, CDCl₃) δ 157.81, 141.52, 128.54, 127.93, 125.84, 73.58, 52.33, 48.53;^{8a} IR (nujol) 3374 (m), 3272 (m), 1689 (s), 1551 (m), 1285 (m), 1277 (m), 704 (m) cm⁻¹;^{8a} MS (EI⁺) *m/z* 195 (M⁺, 11), 177 (20), 120 (29), 107 (58), 89 (100); HRMS (EI⁺) calcd for C₁₀H₁₃NO₃ 195.0895, found 195.0895.

4.2.3.10. Methyl *N*-[2-(3,4-dihydroxyphenyl)ethyl]carbamate or *N*-(methoxycarbonyl)dopamine (2e-MC). Obtained as a pale brown semisolid; ¹H NMR (400 MHz, CD₃OD) δ 6.66 (1H, d, *J*=8.1 Hz), 6.62 (1H, d, *J*=2.0 Hz), 6.50 (1H, dd, *J*=8.0, 2.0 Hz), 3.60 (3H, s), 3.23 (2H, t, *J*= 7.5 Hz), 2.60 (2H, t, *J*=7.5 Hz); ¹³C NMR (100 MHz, CD₃OD) δ 159.54, 146.23, 144.74, 132.04, 121.02, 116.85, 116.33, 52.36, 43.76, 36.57; IR (neat) 3335 (s), 1700 (s), 1525 (s), 1283 (s) cm⁻¹; MS (EI⁺) *m*/*z* 211 (M⁺, 21), 136 (100), 123 (92); HRMS (EI⁺) calcd for C₁₀H₁₃NO₄ 211.0845, found 211.0842.

4.2.3.11. Methyl *N*-[2-hydroxy-2-(3,4-dihydroxyphenyl)ethyl]carbamate or *N*-(methoxycarbonyl)noradrenaline (2f-MC). Obtained as a pale brown semisolid; ¹H NMR (400 MHz, CD₃OD) δ 6.80 (1H, d, *J*=1.8 Hz), 6.72 (1H, d, *J*=8.1 Hz), 6.66 (1H, dd, *J*=8.1, 1.8 Hz), 4.55 (1H, dd, *J*=7.9, 4.9 Hz), 3.61 (3H, s), 3.29–3.17 (2H, m); ¹³C NMR (100 MHz, CD₃OD) δ 159.70, 146.25, 145.89, 135.39, 118.73, 116.12, 114.39, 73.71, 52.49, 49.47; IR (KBr) 3335 (s), 1700 (s), 1535 (m), 1290 (s) cm⁻¹; MS (EI⁺) *m*/*z* 227 (M⁺, 9), 209 (82), 177 (23), 152 (21), 139 (100), 93 (45); HRMS (EI⁺) calcd for C₁₀H₁₃NO₅ 227.0794, found 227.0793.

4.2.3.12. Methyl *N*-phenylcarbamate (2g-MC). Obtained as a colorless thick oil; ¹H NMR (270 MHz, CDCl₃) δ 7.33–7.19 (4H, m), 7.00 (1H, t, [¶] *J*=7.2 Hz), 6.54 (1H, br s), 3.71 (3H, s); ¹⁹ ¹³C NMR (67.7 MHz, CDCl₃) δ 153.91, 137.70, 128.98, 123.41, 118.62, 52.37; ¹⁹ IR (neat) 3318 (m), 1713 (s), 1602 (m), 1544 (s), 1448 (s), 1235 (s), 1070 (m), 755 (m), 691 (m) cm⁻¹; ¹⁹ MS (EI⁺) *m/z* 151 (M⁺, 100), 119 (47), 106 (60); HRMS (EI⁺) calcd for C₈H₉NO₂ 151.0633, found 151.0636.

4.2.3.13. Methyl *N*-(4-methoxyphenyl)carbamate (2j-MC). Obtained as a pale brown semisolid; ¹H NMR (300 MHz, CDCl₃) δ 7.25 (2H, d, *J*=8.2 Hz), 6.82 (2H, d, *J*=8.2 Hz), 6.58 (1H, br s), 3.76 (3H, s), 3.74 (3H, s);^{20 13}C NMR (75.5 MHz, CDCl₃) δ 156.04, 154.49, 130.87, 120.83, 114.23, 55.47, 52.25; ²⁰ IR (neat) 3319 (m), 1710 (s), 1602 (m), 1514 (s), 1298 (m), 1231 (s), 1180 (m), 1073 (m), 1034 (m), 829 (m) cm⁻¹;²⁰ MS (EI⁺) *m/z* 181 (M⁺, 100), 149

(96), 122 (85); HRMS (EI⁺) calcd for $C_9H_{11}NO_3$ 181.0739, found 181.0740.

4.2.3.14. Methyl *N*-[4-(dimethylamino)phenyl]carbamate (2k-MC). Obtained as a dark plates (from benzenehexane), mp 87–99 °C (dec); ¹H NMR (300 MHz, CDCl₃) δ 7.20 (2H, br d, *J*=7.8 Hz), 6.68 (2H, d,[¶] *J*=8 Hz), 6.52 (1H, br s), 3.73 (3H, s), 2.88 (6H, s); ¹³C NMR (75.5 MHz, CDCl₃) δ 154.76, 147.71, 127.67, 121.00, 113.28, 52.11, 40.97; IR (KBr) 3331 (m), 1700 (s), 1536 (s), 1323 (m), 1244 (s), 1074 (m), 811 (m) cm⁻¹; MS (EI⁺) *m/z* 194 (M⁺, 100), 162 (89), 135 (66); HRMS (EI⁺) calcd for C₁₀H₁₄N₂O₂ 194.1055, found 194.1055.

4.2.3.15. Methyl *N*-[2-(3-indolyl)ethyl]carbamate or *N*-(methoxycarbonyl)tryptamine (3a-MC). Obtained as a colorless semisolid; ¹H NMR (270 MHz, CDCl₃) δ 8.11 (1H, br s), 7.62 (1H, d, *J*=7.6 Hz), 7.38 (1H, d, ^{*I*}*J*=7.9 Hz), 7.22 (1H, t, ^{*I*}*J*=7.5 Hz), 7.14 (1H, t, ^{*I*}*J*=7.5 Hz), 7.04 (1H, s^{*I*}), 4.78 (1H, br s), 3.67 (3H, s), 3.53 (2H, quar, *J*=6.8 Hz), 2.98 (2H, t, *J*=6.8 Hz);^{21 13}C NMR (67.7 MHz, CDCl₃) δ 156.89, 136.21, 127.08, 122.03, 121.91, 119.32, 118.57, 112.74, 111.08, 51.97, 41.20, 25.75; IR (neat) 3412 (s), 3334 (s), 1700 (s), 1530 (m), 1454 (m), 1260 (m), 744 (m) cm⁻¹; MS (FAB⁺) *m*/*z* 219 (MH⁺, 73), 218 (M⁺, 100), 144 (69), 130 (72);²¹ HRMS (FAB⁺) calcd for C₁₂H₁₄N₂O₂ 218.1055, found 218.1055.

4.2.3.16. *N* α -Methoxycarbonyl-L-tryptophan methyl ester (3b-MC). Obtained as a colorless semisolid; ¹H NMR (270 MHz, CD₃OD) δ 7.56 (1H, d, *J*=7.9 Hz), 7.38 (1H, d, *J*=7.9 Hz), 7.14 (1H, t, *J*=7.1 Hz), 7.11 (1H, s), 7.05 (1H, t, *J*=7.0 Hz), 4.54 (1H, t, *J*=6.7 Hz), 3.69 (3H, s), 3.64 (3H, s), 3.32 (1H, dd, *J*=14.6, 6 Hz), 3.18 (1H, dd, *J*=14.6, 7.7 Hz);^{22 13}C NMR (67.7 MHz, CD₃OD) δ 174.28, 158.87, 137.90, 128.53, 124.33, 122.33, 119.71, 118.96, 112.22, 110.60, 56.44, 52.63, 28.71;²² IR (neat) 3400 (m), 1733 (s), 1700 (s), 1454 (m), 1356 (m), 1221 (m), 745 (m) cm⁻¹; MS (EI⁺) *m*/z 276 (M⁺, 26), 130 (100); HRMS (EI⁺) calcd for C₁₄H₁₆N₂O₄ 276.1110, found 276.1116.

4.2.3.17. Methyl *N*,*N*-**dibenzylcarbamate** (**4-MC**). Obtained as a colorless oil; ¹H NMR (270 MHz, CDCl₃) δ 7.33–7.15 (10H, m), 4.43 (2H, s), 4.38 (2H, s), 3.79 (3H, s);²³ ¹³C NMR (67.7 MHz, CDCl₃) δ 157.29, 137.26, 128.50, 128.03, 127.31, 52.98, 49.43, 48.90; IR (neat) 1700 (s), 1471 (m), 1454 (m), 1407 (m), 1238 (s), 1119 (m), 699 (m) cm⁻¹;²³ MS (EI⁺) *m*/*z* 255 (M⁺, 21), 164 (93), 121 (25), 91 (100); HRMS (EI⁺) calcd for C₁₆H₁₇NO₂ 255.1259, found 255.1257.

4.2.3.18. 1-(Methoxycarbonyl)indoline (5a-MC). Obtained as a pale yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.9–7.15 (1H, br), 7.07–7.00 (2H, m), 6.81 (1H, t, *J*=7.5 Hz), 3.86 (2H, t, *J*=8.3 Hz), 3.69 (3H, s), 2.97 (2H, t, *J*=8.7 Hz);²⁴ ¹³C NMR (75.5 MHz, CDCl₃) δ 153.68, 142.47, 130.82, 127.41, 124.65, 122.48, 114.66, 52.45, 47.36, 27.46; IR (neat) 1710 (s), 1488 (s), 1444 (s), 1395 (s), 1337 (m), 1317 (m), 1137 (m), 1058 (m), 752 (m) cm⁻¹;²⁴ MS (EI⁺) *m/z* 177 (M⁺, 100), 162 (19), 132 (30), 118 (48), 91 (38); HRMS (EI⁺) calcd for C₁₀H₁₁NO₂ 177.0790, found 177.0787. **4.2.3.19. 1-Methoxycarbonyl-2-methylindoline** (5b-MC). Obtained as a pale brown thick oil; ¹H NMR (300 MHz, CDCl₃) δ 7.6 (1H, very br), 7.07–7.00 (2H, m), 6.82 (1H, t, *J*=7.3 Hz), 4.41 (1H, br quin, *J*=7 Hz), 3.70 (3H, s), 3.22 (1H, dd, *J*=15.9, 9.6 Hz), 2.49 (1H, dd, *J*=15.9, 2.4 Hz), 1.15 (3H, d, *J*=6.3 Hz); ¹³C NMR (75.5 MHz, CDCl₃) δ 153.62, 130.03, 127.42, 125.01, 122.67, 115.32, 55.33, 52.40, 35.83, 21.06; IR (neat) 1708 (s), 1485 (s), 1441 (s), 1390 (s), 1285 (m), 1060 (m), 751 (m) cm⁻¹; MS (EI⁺) *m/z* 191 (M⁺, 83), 176 (100), 132 (40), 117 (76); HRMS (EI⁺) calcd for C₁₁H₁₃NO₂ 191.0946, found 191.0942.

Acknowledgements

We thank Mr. Koji Masuda and Mr. Haruo Fujita for help to take a part of spectral data.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tet.2005.09. 116. The ¹H and ¹³C NMR spectra of **1b** in DMF- d_7 before and after CO₂ bubbling (Fig. 4). The HMBC spectrum of **1b** in DMSO- d_6 after CO₂ bubbling (Fig. 5). The IR spectra of **1b** in DMSO before and after CO₂ bubbling (Fig. 6).

References and notes

- (a) Masuda, K.; Ito, Y.; Horiguchi, M.; Fujita, H. *Tetrahedron* 2005, 61, 213–229. (b) Ito, Y. *Photochemistry* 2002, 33, 205–212.
- 2. (a) Rudkevich, D. M.; Xu, H. J. Chem. Soc. 2005, 2651–2659.
 (b) Hampe, E. M.; Rudkevich, D. M. J. Chem. Soc. 2002, 1450–1451.
- Izutsu, K. *Electrochemistry in Nonaqueous Solutions*; Wiley-VCH: Weinheim, 2002; Chapter 3.
- (a) Hashimoto, N.; Aoyama, T.; Shioiri, T. *Chem. Pharm. Bull.* 1981, 29, 1475–1478. (b) Shioiri, T.; Aoyama, T. *Yuki Gosei Kagaku Kyokai Shi* 1986, 44, 149–159. (c) Shioiri, T.; Aoyama, T. *Yuki Gosei Kagaku Kyokai Shi* 1996, 54, 918–928.
- Dell'Amico, D. B.; Calderazzo, F.; Labella, L.; Marchetti, F.; Pampaloni, G. Chem. Rev. 2003, 103, 3857–3897.
- Esterification of carbamic acid with alkyl halide. (a) Pérez, E. R.; Santos, R. H. A.; Gambardella, M. T. P.; de Macedo, L. G. M.; Rodrigues-Filho, U. P.; Launay, J.-C.; Franco, D. W. J. Org. Chem. 2004, 69, 8005–8011. Also see, Heldebrant, D. J.; Jessop, P. G.; Thomas, C. A.; Eckert, C. A.; Liotta, C. L. J. Org. Chem. 2005, 70, 5335–5338. (b) Prez, E. R.; da Silva, M. O.; Costa, V. C.; Rodrigues-Filho, U. P.; Franco, D. W. Tetrahedron Lett. 2002, 43, 4091–4093. (c) Salvatore, R. N.; Chu, F.; Nagle, A. S.; Kapxhiu, E. A.; Cross, R. M.; Jung, K. W. Tetrahedron 2002, 58, 3329–3347. (d) Salvatore, R. N.; Shin, S. I.; Nagle, A. S.; Jung, K. W. J. Org. Chem. 2001, 66, 1035–1037. (e) Yoshida, M.; Hara, N.; Okuyama, S. J. J. Chem. Soc. 2000, 151–152. (f) McGhee, W.; Riley, D.; Christ, K.; Pan, Y.; Parnas, B. J. Org. Chem. 1995, 60,

2820–2830. (g) Aresta, M.; Quaranta, E. J. Chem. Soc., Dalton Trans. **1992**, 1893–1899. (h) Aresta, M.; Quaranta, E. Tetrahedron **1992**, 48, 1515–1530. (i) Yoshida, Y.; Ishii, S.; Watanabe, M.; Yamashita, T. Bull. Chem. Soc. Jpn. **1989**, 62, 1534–1538. (j) Hori, Y.; Nagano, Y.; Nakao, J.; Fukuhara, T.; Taniguchi, H. Chem. Express **1986**, 1, 224–227. (k) Yoshida, Y.; Ishii, S.; Yamashita, T. Chem. Lett. **1984**, 1571–1572.

- Esterification of carbamic acid with alcohol. (a) Dinsmore, C. J.; Mercer, S. P. Org. Lett. 2004, 6, 2885–2888. (b) Feroci, M.; Gennaro, A.; Inesi, A.; Orsini, M.; Palombi, L. Tetrahedron Lett. 2002, 43, 5863–5865. (c) Abla, M.; Choi, J.-C.; Sakakura, T. J. Chem. Soc. 2001, 2238–2239. (d) Kubota, Y.; Kodaka, M.; Tomohiro, T.; Okuno, H. J. Chem. Soc., Perkin Trans. 1 1993, 5–6. (e) Kodaka, M.; Tomohiro, T.; Okuno, H. J. Chem. Soc., Chem. Commun. 1993, 81–82.
- Esterification of carbamic acid with carbonate ester. (a) Selva, M.; Tundo, P.; Perosa, A.; Dall'Acqua, F. J. Org. Chem. 2005, 70, 2771–2777. (b) Selva, M.; Tundo, P.; Perosa, A. *Tetrahedron Lett.* 2002, 43, 1217–1219. (c) Aresta, M.; Dibenedetto, A. Chem. Eur. J. 2002, 8, 685–690. (d) Aresta, M.; Quaranta, E. *Tetrahedron* 1991, 47, 9489–9502. (e) Ishii, S.; Nakayama, H.; Yoshida, Y.; Yamashita, T. Bull. Chem. Soc. Jpn. 1989, 62, 455–458.
- Addition of carbamic acid to alkene, alkyne, or epoxide.
 (a) Yoshida, Y.; Inoue, S. Chem. Lett. 1977, 1375–1376.
 (b) Zhang, Q.; Shi, F.; Gu, Y.; Yang, J.; Deng, Y. Tetrahedron Lett. 2005, 46, 5907–5911. (c) Shi, M.; Shen, Y.-M. J. Org. Chem. 2002, 67, 16–21. (d) Kayaki, Y.; Suzuki, T.; Noguchi, Y.; Sakurai, S.; Imanari, M.; Ikariya, T. Chem. Lett. 2002, 424–425. (e) Bacchi, A.; Chiusoli, G. P.; Costa, M.; Gabriele, B.; Righi, C.; Salerno, G. J. Chem. Soc. 1997, 1209–1210.
 (f) Bruneau, C.; Dixneuf, P. H. J. Mol. Catal. 1992, 74, 97–107 and references cited therein. (g) Kojima, F.; Aida, T.; Inoue, S. J. Am. Chem. Soc. 1986, 108, 391–395. (h) Yoshida, Y.; Inoue, S. J. Chem. Soc., Perkin Trans. 1 1979, 3146–3150.
 (i) Yoshida, Y.; Inoue, S. Chem. Lett. 1978, 139–140.
 (j) Asano, T.; Saito, N.; Ito, S.; Hatakeda, K.; Toda, T. Chem. Lett. 1978, 311–312. (k) Toda, T. Chem. Lett. 1977, 957–958.
- (a) (Dopamine) Roth, R. H.; Tarazi, F. I.; (Dopamine receptors) Baldessarini, R. J. In Adelman, G., Smith, B. H., Eds.; Encyclopedia of Neuroscience; Elsevier: Amsterdam, 1999; Vol 1, pp 557–561; see also pp 561–565. (b) Ito, Y.; Horie, S.; Shindo, Y. Org. Lett. 2001, 3, 2411–2413.
- 11. Ito, Y.; Arimoto, S. Phys. Org. Chem. 2003, 16, 849-857.
- 12. (a) Manini, P.; Panzella, L.; Napolitano, A.; d'Ischia, M. Tetrahedron 2003, 59, 2215-2221. (b) Napolitano, A.; Palumbo, A.; d'Ischia, M. Tetrahedron 2000, 56, 5941-5945. (c) Napolitano, A.; Pezzella, A.; Prota, G. Chem. Res. Toxicol. 1999, 12, 1090-1097. (d) Palumbo, A.; Napolitano, A.; Barone, P.; d'Ischia, M. Chem. Res. Toxicol. 1999, 12, 1213-1222. (e) Napolitano, A.; Pezzella, A.; Prota, G. Tetrahedron Lett. 1999, 40, 2833-2836. (f) Pezzella, A.; d'Ischia, M.; Napolitano, A.; Misuraca, G.; Prota, G. J. Med. Chem. 1997, 40, 2211-2216. (g) Napolitano, A.; Crescenzi, O.; Pezzella, A.; Prota, G. J. Med. Chem. 1995, 38, 917-922. (h) Crescenzi, O.; Kroesche, C.; Hoffbauer, W.; Jansen, M.; Napolitano, A.; Prota, G.; Peter, M. G. Liebigs Ann. Chem. 1994, 563-567. (i) Prota, G.; d'Ischia, M.; Napolitano, A. In The Pigmentary System; Nordlund, J. J., Boissy, R. E., Hearing, V. J., King, R. A., Ortonne, J. P., Eds.; Oxford University Press: New York, 1998; Chapter 24. (j) Jameson, G. N. L.; Kudryavtsev, A. B.; Linert, W. J. Chem. Soc.,

Perkin Trans. 2 2001, 557–562. (k) El-Ayaan, U.;
Herlinger, E.; Jameson, R. F.; Linert, W. J. Chem. Soc., Dalton Trans. 1997, 2813–2818. (l) Linert, W.; Herlinger, E.; Jameson, R. F.; Kienzl, E.; Jellinger, K.; Youdim, M. B. H. Biochim. Biophys. Acta 1996, 1316, 160–168. (m)
Herlinger, E.; Jameson, R. F.; Linert, W. J. Chem. Soc., Perkin Trans. 2 1995, 259–263. (n) Slivka, A.; Cohen, G. J. Biol. Chem. 1985, 260, 15466–15472. (o) Land, E. J.; Perona, A.; Ramsden, C. A.; Riley, P. A. Org. Biomol. Chem. 2005, 3, 2387–2388. (p) Land, E. J.; Ramsden, C. A.; Riley, P. A. Acc. Chem. Res. 2003, 36, 300–308.

- (a) Jessop, P. G.; Heldebrant, D. J.; Li, X.; Eckert, C. A.; Liotta, C. L. *Nature* 2005, *436*, 1102. (b) Munshi, P.; Main, A. D.; Linehan, J. C.; Tai, C.-C.; Jessop, P. G. *J. Am. Chem. Soc.* 2002, *124*, 7963–7971. (c) West, K. N.; Wheeler, C.; McCarney, J. P.; Griffith, K. N.; Bush, D.; Liotta, C. L.; Eckert, C. A. J. Phys. Chem. A 2001, *105*, 3947–3948.
- Khanna, R. K.; Moore, M. H. Spectrochim. Acta 1999, 55A, 961–967.
- (a) Aresta, M.; Quaranta, E. *Tetrahedron* **1992**, 48, 1515–1530.
 (b) Caplow, M. J. Am. Chem. Soc. **1968**, 90, 6795–6803.
 (c) Johnson, S. L.; Morrison, D. L. J. Am. Chem.

Soc. 1972, 94, 1323–1334. (d) Ewing, S. P.; Lockshon, D.;
Jencks, W. P. J. Am. Chem. Soc. 1980, 102, 3072–3084.
(e) Crooks, J. E.; Donnellan, J. P. J. Chem. Soc., Perkin Trans. 2 1989, 331–333.

- Kozhushko, B. N.; Lomakina, A. V.; Paliichuk, Y. A.; Shokol, V. A. J. Org. Chem. USSR 1984, 20, 654–660.
- 17. Elliott, M. C.; Williams, E. Org. Biomol. Chem. 2003, 1, 3038–3047.
- Kaim, L. E.; Grimaud, L.; Lee, A.; Perroux, Y.; Tirla, C. Org. Lett. 2004, 6, 381–383.
- Aresta, M.; Berloco, C.; Quaranta, E. *Tetrahedron* 1995, *51*, 8073–8088.
- 20. Keillor, J. W.; Huang, X. Org. Synth. 2000, 78, 234-238.
- Verotta, L.; Orsini, F.; Sbacchi, M.; Scheildler, M. A.; Amadorc, T. A.; Elisabetsky, E. *Bioorg. Med. Chem.* 2002, 10, 2133–2142.
- The ¹H and ¹³C NMR spectra are in accord with Aldrich FT NMR, *Vol. 3*, 156B.
- 23. CompareRaucher, S.; Jones, D. S. Synth. Commun. 1985, 15, 1025–1031.
- 24. Boger, D. L.; Coleman, R. S. J. Org. Chem. 1984, 49, 2240–2245.