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A B S T R A C T   

The development of efficient pure-blue emitters is of great significance for achieving high-quality display and 
lighting. Herein, a pure-blue emitter TPA-DPPI comprised of bisphenanthroimidazole and triphenylamine units 
with bipolar carrier transport property is designed and synthesized. For the two phenanthroimidazole units, one 
acts as the electron acceptor moiety, and the other is introduced to twist the molecule in order to suppress the 
intermolecular interactions in neat film. Highly twisted molecular configuration endows the compound with a 
high photoluminescence quantum efficiency yield of 0.56 in neat film. The non-doped device using TPA-DPPI as 
an emissive layer shows a pure-blue emission with a Commission International de l’Eclairage coordinates of 
(0.146, 0.097) and a high external quantum efficiency of 5.20%.   

1. Introduction 

In the past few decades, organic light-emitting diodes (OLEDs) have 
been paid considerable attention owing to their potential applications in 
flat-panel displays and solid-state lighting sources [1]. 
High-performance pure-blue emitters meeting Commission Interna
tional de l’Eclairage (CIE) coordinates (0.14, 0.08) defined by the Na
tional Television System Committee (NTSC) are of particular 
significance for full-color displays and white lighting [2,3]. Phospho
rescent materials based on organic-metal complexes can utilize both the 
singlet and triplet excitons via heavy atoms induced spin-orbit coupling 
and achieve 100% internal quantum efficiency (IQE) theoretically 
[4–6]. However, efficient pure-blue phosphors with CIE coordinates 
around (0.14, 0.08) are extremely rare due to the inherent difficulty in 
molecular design. Furthermore, high cost of phosphorecent materials is 
also disadvantageous for the large-scale practical applications. Ther
mally activated delayed fluorescence (TADF) materials proposed 
recently can also achieve 100% exciton utilization efficiency (EUE) by 
efficient reverse intersystem crossing (RISC), but the significant intra
molecular charge transfer properties of TADF materials usually 
contribute to red-shifted emission spectra, which increases the difficulty 
of designing pure-blue TADF materials [7–10]. Moreover, the severe 

efficiency roll-offs and low highest brightness of pure-blue TADF devices 
are also far away from the manufacture requirements. Hence, efficient 
pure-blue materials used in OLED devices in the industry are still rare 
and developing highly efficient and stable pure-blue emitters is 
extremely urgent. 

The electroluminescence (EL) performance of blue emitting mate
rials is often inferior to that of green and red emitters because of their 
intrinsically wide band gaps which result in poor charge injection and 
transportation in the emitting layer [11,12]. The choice of hosts of blue 
materials is also a nerve-wracking issue, because the host materials must 
possess even larger band gaps and well-matched frontier molecular 
orbital energy levels. Construction of non-doped devices is an efficient 
strategy to solve the above-mentioned issues. On the one hand, the 
configuration of blue materials must be highly twisted for avoiding 
aggregation induced quenching and red shifting of emission. On the 
other hand, the blue materials must be bipolar for enlarging the exciton 
recombination region and suppressing the efficiency roll-off at high 
current density. 

In this contribution, we designed and synthesized a twisted donor- 
acceptor (D-A) type blue emitting molecule, N,N-diphenyl-4’-(1-(4-(2- 
phenyl-1H- phenanthro[9,10-d]imidazole-1-yl)phenyl)-1H-phenanthro 
[9,10-d]imidazole-2-yl)-[1,1′-biphenyl]-4-amine, namely TPA-DPPI. In 
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this molecule, triphenylamine (TPA) is used as the electron donor 
moiety, and the adjacent PPI is chosen as the electron acceptor unit. 
Additional PPI group is introduced to twist the molecule in order to 
suppress the intermolecular interactions in neat film, which can not only 
improve photoluminescence quantum efficiency yield (PLQY), but also 
can lead to blue-shift of the fluorescent emission in neat film. As a result, 
the compound exhibits a high PLQY of 0.56 in neat film and blue 
emission with a peak wavelength at 460 nm. In addition, TPA-DPPI also 
exhibits bipolar carrier transporting characteristic from the results of the 
hole-only and electron-only devices. The non-doped OLED using TPA- 
DPPI as the emitting layer shows pure-blue emission with a CIE co
ordinates (0.146, 0.097) and high device performance with a maximum 
external quantum efficiency (EQE) of 5.20%, which is among the highest 
values reported for non-doped pure-blue OLEDs [13–18]. 

2. Results and discussion 

The synthetic procedures and molecular structure of TPA-DPPI were 
presented in Scheme 1. The intermediate NO2-PPI was prepared from 
phenanthrene-9,10-dione, benzaldehyde, 4-nitroaniline and ammonium 
acetate. The key precursor NH2-PPI was synthesized through reducing 
NO2-PPI using Pd/C and hydrazine hydrate. The final product was 
synthesized through a one-pot cyclizing reaction by refluxing a mixture 
of phenanthrene-9,10-dione, NH2-PPI, TPAPh-CHO and ammonium 
acetate in acetic acid for 5 h [19–21]. TPA-DPPI and the intermediates 
were further characterized by 1H nuclear magnetic resonance (NMR) 
(Fig. S1~Fig. S3), mass spectrometry (Fig. S4~Fig. S6) and elemental 
analysis. 13C NMR spectrum of TPA-DPPI was not available owing to the 
poor solubleness. 

The thermal properties of TPA-DPPI were investigated using thermal 
gravimetric analysis (TGA) and differential scanning calorimetric (DSC) 
measurements (Fig. S7), the corresponding thermal data are summa
rized in Table S1. The compound exhibited excellent thermal stability 
with a thermal decomposition temperature (Td, corresponding to 5% 
weight loss) of 535 ◦C. A high melting point of 355 ◦C and a high glass- 
transition temperature (Tg) of 212 ◦C were also obtained, which were 
high enough for application in OLEDs and should be attributed to the 
high molecular weight and rigid skeleton of DPPI. The excellent thermal 
property of TPA-DPPI is advantageous to form stable thin films upon 
thermal evaporation, and thus improves the operational performance of 
the OLEDs. 

The electrochemical property of TPA-DPPI was measured by cyclic 
voltammetry (CV). As depicted in Fig. S8, TPA-DPPI showed an 

oxidation process with the onset voltage of ca. 0.47 V. Therefore, the 
estimated highest occupied molecular orbital (HOMO) level is − 5.27 eV 
for TPA-DPPI with regard to the energy level of ferrocene (4.8 eV below 
vacuum). No clear reduction wave was observed within the potential 
window of the CV, the lowest unoccupied molecular orbital (LUMO) 
level was deduced from the HOMO energy level and the optical band gap 
(3.05 eV) determined by the onset of the absorption spectrum (Fig. 2a). 
The LUMO level was calculated to be − 2.22 eV for TPA-DPPI. 

To gain insight into the structure-property relationship of TPA-DPPI 
at molecular level, density functional theory (DFT) calculations with a 
B3LYP/6-31G (d,p) basis set were carried out using Gaussian 09 pack
age. The optimized structure and electron density distribution of the 
compound are shown in Fig. 1. Large dihedral angles of 88.93◦ and 
68.10◦ could be observed between each of the two PI moieties and the 
C6H4 linker (P1) between them, respectively. In addition, the dihedral 
angles were 29.39◦ and 33.63◦ between the C6H4 linker (P2) and adja
cent imidazole/TPA units. The highly twisted molecular conformation 
can effectively suppress intermolecular π-π interactions, leading to a 
high PLQY in neat film. According to DFT calculations, the HOMO of 
TPA-DPPI was predominantly located on the TPA moiety, P2 linker and 
partly on the imidazole ring. The LUMO was mainly distributed on P2 
and the adjacent PPI unit. It is worth noting that the LUMO and HOMO 
orbits showed a slight overlap on the imidazole ring and P2, which could 
contribute to highly efficient fluorescence radiative decay. In addition, 
the additional PPI unit scarcely participated in the FMO distributions 
but played a role in twisting the molecule. Theoretical calculation by 
time-dependent DFT (TD-DFT) was also performed. The calculated en
ergy level of S1 was 3.12 eV, which was consistent with the experimental 
results. The natural transition orbitals (NTO) analysis results are shown 
in Fig. S9, the transition from S0 to S1 was also charge transfer (CT) 
dominated with a high oscillator strength of 0.3876, while the transition 
from S0 to T1 was locally excited dominated. 

The ultraviolet–visible (UV–vis) absorption and photoluminescence 
(PL) spectra of TPA-DPPI in dichloromethane (DCM) solution and neat 
thin film are shown in Fig. 2a and the corresponding data are summa
rized in Table S1. The strong absorption band peaked at ca. 260 nm 
could be attributed to the π–π* transition of the benzene rings. While the 
longer wavelength absorption bands around 360 nm could be assigned 
to the intramolecular charge transfer (ICT) transition [20,21]. Benefit
ting from twisted molecular configuration induced weak intermolecular 
interactions, the absorption spectrum of TPA-DPPI in the film state was 
very similar to that measured in DCM solution. TPA-DPPI showed a blue 
emission at 451 nm in DCM and 460 nm in the neat film. The PLQYs in 

Scheme 1. The synthetic routes of TPA-DPPI. (i) phenanthrenequinone, benzaldehyde, ammonium acetate, glacial acetic acid, reflux; (ii) 10% Pd/C, 80% hydrazine 
hydrate, ethanol, reflux; (iii) Pd(PPh3)4, K2CO3, THF, reflux; (iv) ammonium acetate, glacial acetic acid, reflux. 
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DCM solution and film state were measured to be 0.95 and 0.56 by using 
an integrating sphere, respectively. In addition, the PL spectra of 
TPA-DPPI showed an obvious solvatochromic property. The emission 
peaks red-shifted from 413 nm (in hexane) to 473 nm (in dimethyl 
sulfoxide) with increasing solvent polarity (Fig. 2b), indicating the 
excited state of TPA-DPPI is CT-dominated, which is in good agreement 
with DFT calculation results. The phosphorescence spectrum of 
TPA-DPPI in dilute toluene measured at 77 K is showed in Fig. S10, and 
the energy level of the first triplet state was calculated to be 2.68 eV from 
the onset of the phosphorescence spectrum. 

To investigate the hole and electron transporting properties of the 
compound, single-carrier devices with the configurations of [ITO/NPB 
(10 nm)/TPA-DPPI (60 nm)/NPB (10 nm)/Al (100 nm)] for hole-only 
device and [ITO/TPBi (10 nm)/TPA-DPPI (60 nm)/TPBi (10 nm)/LiF 
(1 nm)/Al (100 nm)] for electron-only device were fabricated [22]. For 
the hole-only device, only holes could be injected from the indium tin 
oxide (ITO) anode to the active layer due to a large energy barrier (2.0 
eV) from the Al cathode (work function: 4.3 eV) to the neighbouring 
NPB (LUMO: − 2.3 eV) layer. Similarly, in the electron-only device, hole 
injection from the ITO anode to the neighbouring TPBi layer was pre
vented due to a large difference (1.4 eV) between the work function of 
ITO (4.8 eV) and the HOMO level of TPBi (− 6.2 eV), and only electrons 
could be injected. The current density-voltages (J–V) curves of 
single-carrier devices indicated that TPA-DPPI was a bipolar trans
porting material and was capable of transporting both electrons and 
holes (Fig. 3). The balanced carrier transportation contributes to extend 
exciton recombination region and suppress the efficiency roll off at high 
current density [23,24]. 

To investigate the EL performance of TPA-DPPI as an emitter, non- 
doped device with a configuration of [ITO/NPB (50 nm)/TCTA (5 
nm)/TPA-DPPI (30 nm)/TPBi (25 nm)/LiF (1 nm)/Al (100 nm)] was 
fabricated. The energy-level diagram and molecular structures of the 
used materials are shown in Fig. 4. In this device, 1,4-bis[(1-naphthyl
phenyl)amino]-biphenyl (NPB) was used as the hole-transporting 
layer, 4,4′,4′′-tri(N-carbazolyl)triphenyl-amine (TCTA) was used as the 
electron-blocking layer, 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene 

(TPBi) was utilized as the electron-transporting and hole-blocking layer, 
and LiF served as electron-injecting layer, respectively. The character
istic curves and device data are shown in Fig. 5 and Table 1. The device 
exhibited a pure-blue emission with a CIE coordinates of (0.146, 0.097), 
which is very close to the NTSC blue standard (CIE: 0.14, 0.08) and 
displayed little change over a wide range of driving voltages (Fig. S11). 
The device showed an emission maximum at 460 nm, which was very 
close to that of the thin-film PL spectrum, suggesting that the EL emis
sion came from the intrinsic emission of TPA-DPPI. The device exhibited 
a turn-on voltage (Von) of 3.4 V. High device performance with a 
maximum luminance (Lmax) of 8561 cd m− 2, a maximum current effi
ciency (CEmax) of 4.45 cd A− 1, a maximum power efficiency (PEmax) of 
4.11 lm W− 1, and a maximum external quantum efficiency (EQEmax) of 
5.20% were achieved, which is comparable with the highest value re
ported for non-doped pure blue fluorescent OLEDs (Table S2). In addi
tion, the efficiency of the device was still maintained at a high level (CE: 
3.16 cd A− 1 and EQE: 3.67%) at 1000 cd m− 2, indicating a mild 

Fig. 1. DFT-calculated spatial distributions of the HOMO and LUMO of TPA-DPPI.  

Fig. 2. (a) UV–vis absorption and PL spectra of TPA-DPPI measured in DCM solution (1.0 × 10− 5 M) and neat thin film. (b) PL spectra of TPA-DPPI measured in 
different solvents (10− 5 M) at room temperature. 

Fig. 3. Current density versus voltage characteristics of the hole-only and 
electron-only devices of TPA-DPPI. 
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efficiency roll-off. The small efficiency roll-off was attributed to the bi
polar transport nature of TPA-DPPI. 

3. Conclusions 

In summary, we have designed and synthesized a D-A type pure-blue 
emitting molecule TPA-DPPI. Between TPA and the adjacent PPI charge- 
transfer process exists, the additional PPI moiety makes the whole mo
lecular with a highly twisted configuration, which contributes to sup
press aggregation-induced redshift and quenching of TPA-DPPI in neat 
film. Eventually, TPA-DPPI exhibits a pure-blue emission at 460 nm and 
a high PLQY of 0.56 in neat film. The non-doped OLED using TPA-DPPI 
as the emitting layer shows pure blue emission with a CIE coordinates of 
(0.146, 0.097) and high device performance with a maximum EQE of 
5.20%, which is among the best results reported for non-doped pure blue 
OLEDs. This study provides an efficient strategy to develop highly effi
cient blue emitting materials. 

Fig. 4. Energy level diagrams and the chemical structures of the relevant compounds used in the devices based on TPA-DPPI.  

Fig. 5. (a) Current density–voltage–brightness (J–V–L) characteristics; (b) Current efficiencies and power efficiencies versus current density curves; (c) External 
quantum efficiency versus current density curve; (d) EL spectrum of device based on TPA-DPPI at 100 cd m− 2. 

Table 1 
Electroluminescent performance of the OLED based on TPA-DPPIa.  

Emitter λem/ 
nm 

Von/ 
V 

Lmax/ 
cd m− 2 

CEb/cd 
A− 1 

PEb/lm 
W− 1 

EQEb/ 
% 

CIE (x, 
y)c 

TPA- 
DPPI 

460 3.4 8561 4.45, 
3.16 

4.11, 
1.24 

5.20, 
3.67 

0.146, 
0.097  

a Abbreviation: λem: emission peak of EL spectrum; Von: turn-on voltage 
recorded at the luminance of 1 cd m− 2; Lmax: maximum luminance; CE: current 
efficiency; PE: power efficiency; EQE: external quantum efficiency; CIE: Com
mission Internationale de l’Eclairage coordinates. 

b Values given in the order of maximum and value at 1000 cd m− 2 

c Recorded at a driving voltage of 5 V. 
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4. Experimental section 

Preparation of Materials: All commercially available reagents were 
used as received without further purification. All reactions were carried 
out using Schlenk techniques under a nitrogen atmosphere. 4’-(diphe
nylamino)biphenyl-4-carbaldehyde (TPAPh-CHO) were synthesized 
according to literature methods [25,26]. 

Synthesis of 1-(4-nitrophenyl)-2-phenyl-1H-phenanthro[9,10-d]imid
azole (NO2-PPI): A mixture of phenanthrenequinone (416 mg, 2 mmol), 
benzaldehyde (212 mg, 2 mmol), 4-nitroaniline (1.38 g, 10 mmol), 
ammonium acetate (616 mg, 8 mmol) and glacial acetic acid (20 mL) 
was refluxed for 5 h under nitrogen atmosphere. After cooling to room 
temperature, the reaction mixture was poured into methanol with stir
ring. The separated solid was filtered off, washed with water and dried 
to give a yellow-green solid. The solid was then purified by column 
chromatography on silica gel using DCM as the eluent to give the 
product. Yield: 75%. 1H NMR (300 MHz, DMSO‑d6) δ 8.96 (d, J = 8.2 Hz, 
1H), 8.90 (d, J = 8.2 Hz, 1H), 8.69 (dd, J = 7.9, 1.3 Hz, 1H), 8.54–8.46 
(m, 2H), 8.09–8.01 (m, 2H), 7.79 (dd, J = 10.9, 4.0 Hz, 1H), 7.75–7.67 
(m, 1H), 7.57 (m, 3H), 7.43–7.35 (m, 4H), 7.10 (d, J = 7.4 Hz, 1H), ESI- 
MS (M): m/z: 416.21 [M]+ (calcd: 415.13). 

Synthesis of 4-(2-phenyl-1H-phenanthro[9,10-d]imidazole-1-yl)aniline 
(NH2-PPI): The suspension of NO2-PPI (4.15 g, 10 mmol) and 10% Pd/C 
(250 mg) in 150 mL ethanol was heated to refluxing, and 80% hydrazine 
hydrate(10 mL) was dripped in half an hour. The mixture was stirred for 
6 h, and then cooled to room temperature. The solution was poured into 
distilled water and neutralized with aqueous HCl to give a white pre
cipitate, which was separated by filtration and then recrystallized from 
dimethylformamide (DMF)/water to give white solid. Yield: 94%. 1H 
NMR (500 MHz, DMSO‑d6) δ 8.91 (d, J = 8.4 Hz, 1H), 8.86 (d, J = 8.4 
Hz, 1H), 8.67 (d, J = 7.8 Hz, 1H), 7.76 (t, J = 7.4 Hz, 1H), 7.67 (dd, J =
6.5, 2.4 Hz, 3H), 7.56 (t, J = 7.3 Hz, 1H), 7.47–7.31 (m, 5H), 7.24 (d, J 
= 8.5 Hz, 2H), 6.76 (d, J = 8.5 Hz, 2H), 5.66 (s, 2H). ESI-MS (M): m/z: 
386.11 [M]+ (calcd: 385.16). 

Synthesis of N,N-diphenyl-4’-(1-(4-(2-phenyl-1H-phenanthro[9,10-d] 
imidazole-1-yl)phenyl)-1H-phenanthro[9,10-d]imidazole-2-yl)biphenyl-4- 
amine (TPA-DPPI): A mixture of 9,10-phenanthraquinone (416 mg, 2 
mmol), NH2-PPI (1.16 g, 3 mmol), TPAPh-CHO (0.70 g, 2 mmol), 
ammonium acetate (1.54 g, 20 mmol) and glacial acetic acid (20 mL) 
was refluxed for 5 h under nitrogen atmosphere. After cooling to room 
temperature, the reaction mixture was poured into methanol with stir
ring. The separated solid was filtered off, washed with water and dried 
to give a yellow-green solid. The solid was then purified by column 
chromatography on silica gel using CH2Cl2 as the eluent to give the 
product. Yield: 68%. 1H NMR (500 MHz, DMSO‑d6) δ 9.10–8.83 (m, 5H), 
8.77–8.68 (m, 2H), 8.13–7.97 (m, 4H), 7.88–7.51 (m, 16H), 7.44–7.27 
(m, 6H), 7.27–7.06 (m, 9H), 7.06–7.00 (m, 1H). ESI-MS (M): m/z: 
907.25 [M]+ (calcd: 905.35). Anal. Calcd (%) for C66H43N5: C, 87.49; H, 
4.78; N, 7.73. Found: C, 87.51; H, 5.20; N, 7.43. 
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