Tetrahedron Letters 54 (2013) 573-575

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Tetrahedron Letters

A novel synthesis of 1-aryl-3-piperidone derivatives

Yinan Zhang, Richard B. Silverman*

Department of Chemistry, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Design, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA

ARTICLE INFO

Article history: Received 19 October 2012 Revised 20 November 2012 Accepted 21 November 2012 Available online 29 November 2012

Key words: 3-Piperidone Synthesis Morita-Baylis-Hillman Ring-closing metathesis Heterocycles

ABSTRACT

A novel method to construct the 1-aryl-3-piperidone scaffold is described here. Starting from 3,5-dichloroaniline, a seven-step synthesis, without the use of protecting groups, generates the desired 3-piperidone ring in an overall yield of 30% through a key Morita–Baylis–Hillman reaction and ringclosing metathesis, providing an easy access to diverse and useful heterocycles.

© 2012 Elsevier Ltd. All rights reserved.

The piperidine ring is an ubiquitous structure present in many natural alkaloids¹ and drug candidates;² therefore, its synthesis attracts much interest from organic chemists (Fig. 1). Of the piperidine derivatives, 3-piperidone is an important intermediate because of its easy conversion to other functional groups using various methods for the construction of bioactive heterocycles. For example, the transformation of a 4-carboethoxy-3-piperidone to pyrimidinone RO3203546, a selective α -1 antagonist,³ and the rearrangement of a 2-methyl-3-piperidone to a 2-acetylpyrrolidine⁴ proceed from 3-piperidone intermediates.

A typical procedure to 3-piperidones employs an intramolecular Claisen condensation of two branched esters of a tertiary amine to form a cyclic β -ketoester, followed by decarboxylation.⁵ However, the extra deprotection step, as well as the moderate to low yield in the Claisen condensation, limits its application. Herein we report a novel route to construct 1-aryl-3-piperidone-4-carboxylate analogues without the use of protecting groups.

As a part of an ongoing project in our group to discover a therapeutic for amyotrophic lateral sclerosis (ALS),⁶ the synthesis of the 3-piperidone, 1-(3,5-dichlorophenyl)-4-carboethoxy-3-piperidone (**6**), was a high priority. Initially we tried diethyl carbonate and Mander's reagent,⁷ which was successful in our synthesis of the isomeric 1-aryl-4-piperidone-3-carboxylate **2**, but those reagents gave no β -ketoester from 3-piperidone **5** (Scheme 1). A Dieckmann condensation of diester **3** was shown to be an effective alternative route, but that reaction also failed when applied to **7**. Possibly, the intramolecular enolate attack does not occur because

the planar aniline structure (7) reduces the flexibility of the ester chain and causes a loss of its ability to condense with the other ester. Several other attempts, including the use of a strong lithium base, intramolecular Claisen condensation between the corresponding Weinreb amide and an ester and a Buchwald amination of the corresponding phenyl bromide and 3-piperidone, also failed.

Since two possible bond-breaking positions around the β -ketoester moiety (**6**, a and b, Fig. 2) were fruitless, our focus shifted to position c. Given the wide utilization of Grubbs catalysts to mediate ring closing metathesis reactions,⁸ we decided to replace the single bond at position c with a double bond. The double bond might isomerize from position c to b, which would provide the β -ketoester from the isomeric allylic alcohol in one step. Retrosynthetically, **6** could be derived from **8**, which could come from another key synthon **9** through a Morita–Baylis–Hillman (MBH) nucleophilic addition,⁹ and **9** could be made from commercially available **10**.

The selective reactions of ethyl bromoacetate and allyl bromide with the aniline were performed under standard conditions (Scheme 2) in good yields.

Subsequent conversion to **8** was achieved via DIBAL reduction and then the MBH nucleophilic attack of acrylate mediated by DAB-CO. Standard conditions for ring-closing metathesis with 5% Grubbs II catalyst produced cyclic allyl alcohol **12** in near quantitative yields; the product yield decreased if the loading amount of Grubbs catalyst was reduced (see Supplementary data). With **12** on hand, several redox isomerization reactions of allyl alcohols to carbonyl compounds were explored, including Pd/C, Ru(PPh₃)₂Cl₂,¹⁰ and Cp*Ru(CH₃CN)₃PF₆.¹¹ However, no desired isomeric product was observed. Therefore, **12** was converted to **6** by hydrogenolysis of

^{*} Corresponding author. Tel.: +1 847 491 5653; fax: +1 847 491 7713. *E-mail address:* Agman@chem.northwestern.edu (R.B. Silverman).

^{0040-4039/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2012.11.085

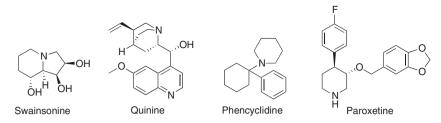
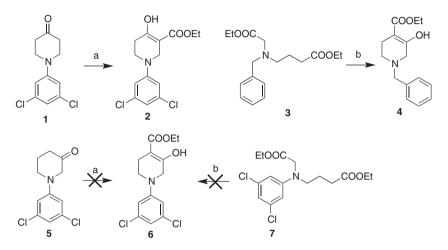



Figure 1. Examples of piperidine-containing alkaloids and drugs.

Scheme 1. Reagents and conditions: (a) (EtO)₂CO or CNCOOMe, NaH, MeOH, toluene, 80 °C, 3 h, 24%; (b) NaH, toluene, reflux, 4 h, 52%.³

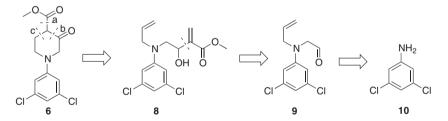
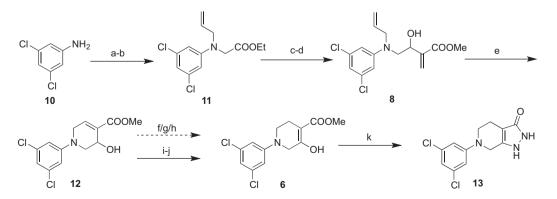



Figure 2. Retrosynthetic analysis of 3-piperidone analogue.

Scheme 2. Reagents and conditions: (a) BrCH₂COOEt, DIPEA, 90 °C, 24 h, 88%; (b) K_2CO_3 , Nal, allyl bromide, CH₃CN, reflux, 2 days, 83%; (c) DIBAL, DCM, -78 °C, 1 h, 86%; (d) DABCO, methyl acrylate, room temp, 3 days, 71%; (e) 5 mol % Grubbs II, DCM, reflux, 5 h, 96%; (f) 5 mol % Pd/C, MeOH, reflux, 16 h; (g) 5 mol % Ru(PPh₃)₂Cl₂ toluene, K_2CO_3 , 100 °C, 16 h; (h) Cp^{*}Ru(CH₃CN)₃PF₆, K_2CO_3 , CH₃CN, 80 °C, 1 h; (i) Pd/C, EtOAc, 1 atm H₂, room temp, 16 h; (j) Dess-Martin periodinane, DCM, room temp, 1 h, 70% for two steps; (k) NH₂NH₂, EtOH, room temp, 16 h, 74%.

the double bond followed by Dess–Martin periodinane oxidation of the alcohol in good yields, giving **6** in an overall yield of 30% for the seven steps. Compound **6** was readily converted to our desired pyrazolone analogue **13** with hydrazine.

The 3-piperidinone analogue (**6**) is a useful intermediate for the synthesis of a variety of heterocycles, such as pyrimidinones,³ quinuclidinones,¹² cyclohexanediamines¹³ and benzomorphans.¹⁴ Furthermore, medium size ring derivatives, such as azepanone and azocanone analogues, could be attainable from homoallylic or γ -propionate anilines using standard RCM conditions.¹⁵

In conclusion, a novel synthesis of 1-aryl-3-piperidone-4-carboxylates has been accomplished without the need for protecting groups. This method should be highly applicable for the synthesis of a variety of diverse heterocyclic compounds.

Acknowledgments

We thank the National Institutes of Health (Grant 1R43NS057849), the ALS Association (TREAT program) and the Department of Defense (AL093052), for their generous support of this research project.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2012. 11.085.

References and notes

- 1. O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435-446.
- (a) Hu, L. Y.; Ryder, T. R.; Rafferty, M. F.; Feng, M. R.; Lotarski, S. M.; Rock, D. M.; Sinz, M.; Stoehr, S. J.; Taylor, C. P.; Weber, M. L.; Bowersox, S. S.; Miljanich, G. P.; Millerman, E.; Wang, Y. X.; Szoke, B. G. J. Med. Chem. **1999**, 42, 4239–4249; (b) Becker, C. K.; Caroon, J. M.; Melville, C. R.; Padilla, F.; Pfister, J. R.; Zhang, X. WO 02/053558 A1, 2002.; (c) Large, C. H.; Bison, S.; Sartori, I.; Read, K. D.; Gozzi, A.; Quarta, D.; Antolini, M.; Hollands, E. J. Pharmacol. Exp. Ther. **2011**, 338, 100–113.
- Connolly, T. J.; Matchett, M.; Sarma, K. Org. Process Res. Dev. 2005, 9, 80–87.
 Zhao, S.; Jeon, H.-B.; Nadkarni, D. V.; Sayre, L. M. Tetrahedron 2006, 62, 6361–
- 6369.
- 5. Scalone, M.; Waldmeier, P. Org. Process Res. Dev. 2003, 7, 418-425.
- (a) Chen, T.; Benmohamed, R.; Kim, J.; Smith, K.; Amante, D.; Morimoto, R. I.; Ferrante, R. J.; Kirsch, D.; Silverman, R. B. *J. Med. Chem.* **2012**, *55*, 515–527; (b) Zhang, Y.; Silverman, R. B. *J. Org. Chem.* **2012**, *77*, 3462–3467.
- 7. Mander, L. N.; Sethi, S. P. Tetrahedron Lett. 1983, 24, 5425-5428.
- For review and recent examples of RCM application in heterocyclic synthesis

 (a) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746–1783;
 (b) Dondas, H. A.; Clique, B.; Cetinkaya, B.; Grigg, R.; Kilner, C.; Morris, J.; Sridharan,
 V. Tetrahedron 2005, 61, 10652–10666;
 (c) Polshettiwar, V.; Varma, R. S. J. Org. Chem. 2008, 73, 7417–7419;
 (d) Sattely, E. S.; Alexander Cortez, G.; Moebius, D.
 C; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 8526–8533.
- (a) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447–5674;
 (b) Masson, G.; Housseman, C.; Zhu, J. Angew. Chem., Int. Ed. 2007, 46, 4614–4628.
- 10. Basavaiah, D.; Muthukumaran, K. Synth. Commun. 1999, 29, 713-719.
- (a) Fagan, P. J.; Ward, M. D.; Clabrese, J. C. J. Am. Chem. Soc. **1989**, 111, 1698– 1719; (b) Bouziane, A.; Carboni, B.; Bruneau, C.; Carreaux, F.; Renaud, J. Tetrahedron **2008**, 64, 11745–11750.
- Da Silva Goes, A. J.; Cave, C.; d'Angelo, J. Tetraheron Lett. **1998**, 39, 1939–1940.
 Wang, L-X.; Zhang, Y.-B.; Liu, M.-L.; Wang, B.; Chai, Y.; Li, S.-L.; Guo, H.-Y. Eur, J.
- Wang, J.-X.; Zhang, Y.-B.; Liu, M.-L.; Wang, B.; Chai, Y.; Li, S.-J.; Guo, H.-Y. Eur. J. Med. Chem. 2011, 46, 2421–2426.
- 14. Khartulyari, A. S.; Maier, M. E. Eur. J. Org. Chem. 2007, 317-324.
- Chattopadhyay, S. K.; Karmakar, S.; Biswas, T.; Majumdar, K. C.; Rahaman, H.; Roy, B. *Tetrahedron* **2007**, 63, 3919–3952.