Accepted Manuscript

Preparation of γ,δ-unsaturated-β-ketoesters: Lewis acid-catalysed C-H insertion of ethyl diazoacetate into α ,β-unsaturated aldehydes

Hirenkumar Gandhi, Timothy P. O'Sullivan

PII:	S0040-4039(17)30964-4
DOI:	http://dx.doi.org/10.1016/j.tetlet.2017.07.095
Reference:	TETL 49177
To appear in:	Tetrahedron Letters
Received Date:	12 June 2017
Revised Date:	25 July 2017
Accepted Date:	28 July 2017

Please cite this article as: Gandhi, H., O'Sullivan, T.P., Preparation of γ , δ -unsaturated- β -ketoesters: Lewis acidcatalysed C-H insertion of ethyl diazoacetate into α , β -unsaturated aldehydes, *Tetrahedron Letters* (2017), doi: http:// dx.doi.org/10.1016/j.tetlet.2017.07.095

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Preparation of γ,δ-unsaturated-β-ketoesters: Lewis acid-catalysed C-H insertion of ethyl diazoacetate into α,β-unsaturated aldehydes

Hirenkumar Gandhi^{1,2}, Timothy P. O'Sullivan^{1,2,3*}

¹School of Chemistry, University College Cork, Cork, Ireland ²Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland ³School of Pharmacy, University College Cork, Cork, Ireland

Abstract: The synthesis of γ , δ -unsaturated- β -keto esters was achieved by the Lewis acid-catalysed direct C-H insertion of an α -diazoester into various α , β -substituted-unsaturated aldehydes. C-H insertion of ethyl diazoacetate into alkyl- and aryl-substituted α , β -unsaturated aldehydes was performed under mild conditions to afford the corresponding γ , δ -unsaturated- β -keto esters in moderate to high yields as a mixture of keto/enol tautomers.

Keywords: γ , δ -Unsaturated- β -ketoesters, C-H insertion, ethyl diazoacetate

1. Introduction

 β -Keto esters are important building blocks in organic synthesis and are used for the construction of a variety of biologically relevant molecules.^{1a, 1b} They are excellent substrates for the synthesis of heterocyclic including dihydroxypyridines, compounds pyrroles, dihydropyrimidines, indoles, and quinolines.^{2,3} As a subfamily of β -keto esters, γ , δ -unsaturated- β -keto esters are important intermediates in the preparation of enantiomerically pure γ,δ -unsaturated- β hydroxy esters that act as chiral building blocks for the synthesis of many biologically active compounds and pharmaceutical products such as (-)-CP₂-disorazole C_1^4 , turnagainolides A and B^5 , epothilones⁶ and seimatopolide A.⁷ Many methods have been developed for the synthesis of β -keto esters using strong bases or alkali metals, e.g. Claisen condensation,^{8a-b} Blaise reaction,^{9a-b} Dieckmann condensation.¹⁰

¹Other methods include the Lewis acidcatalysed C-H insertion of a-diazoesters into aldehydes under mild conditions.^{11a-d} In contrast, the synthesis of γ , δ -unsaturated- β keto esters has traditionally been achieved Wittig¹² and Horner-Wadsworthusing Emmons (HWE) chemistry.^{13a-b} Herein, we report a general process for the Lewis acidcatalysed C-H insertion of a-diazoesters into α,β -unsaturated aldehydes for the preparation of γ , δ -unsaturated- β -keto esters in moderate to high yields.

2. Results and discussion

Several Lewis acids, such as $BF_3 \cdot OEt_2$, MoOCl₄, SnCl₂, TiCl₄, NbCl₅, and ZrCl, have been successfully utilised in the C-H insertion of α -diazoesters into aldehydes.^{14a-f} However, only one, low yielding example involving an α , β -unsaturated aldehyde has previously been reported.¹⁵ Accordingly, we conducted an

^{*} Corresponding author: Tel.: 353 21 4901655; fax: 353 21 4901656; e-mail: tim.osullivan@ucc.ie

initial screen to identify a suitable catalyst for this transformation. Using trans-2-pentenal (1a) as our test substrate, a number of Lewis acids were examined for their ability to insertion catalyse the C-H of ethyl diazoacetate (EDA, Table 1). As the reaction of EDA with the Lewis acids was found to be exothermic, EDA was added at 0-5 °C before subsequent stirring at room temperature to avoid reagent degradation. CuI (Entries 1, 2), $Ti(O-iPr)_4$ (Entries 3, 4), and $Ce(SO_4)_2$ (Entries 5, 6) were each found to be ineffective catalysts. The addition of BF₃·OEt₂ (Entry 7) was accompanied by a vigorous reaction with the liberation of nitrogen gas, however, no product formation was observed. In contrast, CuBr₂ (Entry 8), TiCl₄ (Entry 9), PdCl₂ (Entry 10), and FeCl₃ (Entry 11) did effect the C-H insertion of EDA into trans-2pentenal, but the conversions and yields were low even after prolonged reaction times. Both AlCl₃ (Entry 12) and NbCl₅ (Entry 13) resulted in complete conversion of the starting aldehyde. However, use of AlCl₃ afforded the target γ , δ -unsaturated- β -ketoester with a lower 52% yield in comparison to a 63% yield with NbCl₅. The reaction was further optimised by increasing the equivalents of EDA from 1.1 to 1.2 and the catalyst loading to 7 mol%, leading to an improved yield of 68% and a reduction in reaction time from 10 h to 8 h Higher loadings 14). were (Entry accompanied by a decreased yield (Entry 15). A subsequent solvent and temperature screen identified dichloromethane as the optimal reaction medium (Table 2, Entry 6). No reaction occurred in chloroform (Entry 4) while lower yields were observed in tetrahydrofuran (Entry 1), toluene (Entries 2, 3), and acetonitrile (Entry 4). For the reactions

conducted in dichloromethane, lowering the

temperature to either 0 °C (Entry 7) or -10 °C

(Entry 8), or increasing the temperature to 40 °C (Entry 9) resulted in lower yields.

Table 1. Screening of suitable Lewis acids

\checkmark	O Lewis H H	A acid ₂ , r.t.				
	1a	~	2a			
	Lewis	Loading	EDA	Time	Yield	
Entry	acid	(mol%)	(eq.)	(h)	(%)	
1	CuI	5	1.1	32		
2	CuI	10	1.1	42		
3	Ti(O- <i>i</i> Pr) ₄	5	1.1	28		
4	Ti(O- <i>i</i> Pr) ₄	10	1.1	44		
5	$Ce(SO_4)_2$	5	1.1	32		
6	$Ce(SO_4)_2$	10	1.1	44		
7	$BF_3 \cdot OEt_2$	5	1.1	24		
8	CuBr ₂	5	1.1	28	33	
9	TiCl ₄	5	1.1	24	44	
10	PdCl ₂	5	1.1	24	31	
11	FeCl ₃	5	1.1	24	27	
12	AlCl ₃	5	1.1	24	52	
13	NbCl ₅	5	1.1	10	63	
14	NbCl ₅	7	1.2	8	68	
15	NbCl ₅	10	1.2	8	59	

Reagents and conditions: *trans*-2-pentenal (0.9 mmol), CH₂Cl₂ (5 mL), r.t.

 Table 2. Solvent and temperature study

Entry	Solvent	Temp	Time	Yield
		(°C)	(h)	(%)
1	THF	r.t.	16	54
2	Toluene	r.t.	18	59
3	Toluene	50	14	43
4	CHCl ₃	r.t.	42	
5	MeCN	r.t.	28	36
6	CH_2Cl_2	r.t.	8	68
7	CH_2Cl_2	-10	36	30
8	CH_2Cl_2	0	24	38
9	CH_2Cl_2	40	6	48

Reagents and conditions: *trans*-2-pentenal (0.9 mmol), EDA (1.08 mmol), NbCl₅ (7 mol%), solvent (5 mL).

A series of aliphatic and aromatic α , β unsaturated aldehydes was next subjected to the C-H insertion reaction under the optimised

conditions (Table 3). In general, it was found that longer reaction times were required for the complete conversion of α , β -unsaturated aldehydes compared to their saturated equivalents.^{14e} Yields of the target γ , δ unsaturated-\beta-keto esters were comparable regardless of the aldehyde chain length (Entries 1-12). The C-H insertion with aromatic aldehydes also afforded similar yields, albeit at the cost of longer reaction times (Entries 15-19). Noticeably higher yields were observed with electron-poor aromatic substrates (Entries 17-19) in contrast to aldehydes containing electron-rich rings (Entry 16). The presence of a methyl group at the γ - or δ -positions resulted in lower yields (Entries 10-12) most likely as a result of increased steric hindrance. β-Keto esters with more highly unsaturated side-chains were also tolerated under these conditions (Entry 12).

The mechanism is likely similar to that proposed by Yadav and co-workers whereby

initial attack of the carbene species, generated from ethyl diazoacetate, on the aldehyde is followed by a 1,2-hydride shift and concomitant loss of nitrogen.^{14e}

In conclusion, reaction conditions for the NbCl₅-catalysed C-H insertion of ethyl diazoacetate into α,β -unsaturated aldehydes were successfully optimised to produce γ,δ -unsaturated- β -keto esters in moderate to high yields. The outlined methodology tolerates both aliphatic, aromatic and unsaturated substrates equally well.

Acknowledgments

HG is grateful for funding by way of a Government of Ireland Postgraduate Research Scholarship (GOIPG/2013/113) provided by the Irish Research Council.

Table 3. Synthesis of γ , δ -unsaturated- β -ketoesters under optimised conditions^a

		$R^2 O C$ $R^1 H - R^3$	(1.2 equiv) 5 (7 mol%) H ₂ Cl ₂ r.t.	R^{1} R^{3} R^{3}				
	C	1a-s			2a-s			
Entry	Aldehyde	R ¹	\mathbb{R}^2	R ³	Product	Time (h)	Yield (%)	Keto:enol ^b
1	1a	CH ₃ CH ₂	Н	Н	2a	8	68	60:40
2	1b	CH ₃	Н	Н	2b	8	56 ^c	68:32
3	1c	CH ₃ (CH ₂) ₂	Н	Н	2c	8	71	49:51
4	1d	CH ₃ (CH ₂) ₃	Н	Н	2d	8	72	59:41
5	1e	CH ₃ (CH ₂) ₄	Н	Н	2e	7.5	65	71:29

6	1f	CH ₃ (CH ₂) ₅	Н	Н	2 f	8	63	50:50
7	1g	CH ₃ (CH ₂) ₆	Н	Н	2g	9.5	66	55:45
8	1h	CH ₃ (CH ₂) ₇	Н	Н	2h	10	60	49:51
9	1i	CH ₃ (CH ₂) ₈	Н	Н	2i	10	67	39:61
10	1j	CH ₃ CH ₂	Н	CH_3	2j	6.5	59	85:15
11	1k	(CH ₃) ₂ CH(CH ₂) ₂	CH_3	Н	2k	8	54	n.d. ^c
12	11	Farnesal			21	8	54	n.d. ^c
13	1m	(CH ₃) ₂ CH(CH ₂) ₂ CH(CH ₃)	Н	Н	2m	6	67	45:55
	1111							
14	1n	C ₆ H ₅ (CH ₂) ₂	Н	Н	2n	16	73	58:42
14 15	1n 1n 10	C ₆ H ₅ (CH ₂) ₂ C ₆ H ₅	H H	H H	2n 20	16 5.5	73 69	58:42 49:51
14 15 16	1n 10 1p	$ \begin{array}{c} C_{6}H_{5}(CH_{2})_{2} \\ \hline C_{6}H_{5} \\ \hline 4-MeO-C_{6}H_{4} \end{array} $	H H H	H H H	2n 20 2p	16 5.5 18	73 69 43	58:42 49:51 55:45
14 15 16 17	1n 10 1p 1q	$ \begin{array}{c} C_{6}H_{5}(CH_{2})_{2} \\ \hline C_{6}H_{5} \\ \hline 4-MeO-C_{6}H_{4} \\ \hline 2-NO_{2}-C_{6}H_{4} \\ \end{array} $	H H H	H H H	2n 2o 2p 2q	16 5.5 18 16	73 69 43 69	58:42 49:51 55:45 9:91
14 15 16 17 18	1n 10 1p 1q 1r	$\begin{array}{c} C_{6}H_{5}(CH_{2})_{2} \\ \hline \\ C_{6}H_{5} \\ \hline \\ 4-MeO-C_{6}H_{4} \\ \hline \\ 2-NO_{2}-C_{6}H_{4} \\ \hline \\ 3-NO_{2}-C_{6}H_{4} \end{array}$	H H H H	H H H H	2n 2o 2p 2q 2r	16 5.5 18 16 14	73 69 43 69 73	58:42 49:51 55:45 9:91 26:74

^aReagents and conditions: α , β -unsaturated aldehyde (0.9 mmol), EDA (1.08 mmol), NbCl₅ (7 mol %), CH₂Cl₂ (5 mL), r.t. See Ref 16 and ESI for full experimental procedure and characterisation data.

^bKeto:enol ratio determined by ¹H-NMR. ^cn.d.: not determined due to the presence of (*E*)- and (*Z*)-isomers in the starting material.

References and notes

- (a) Benetti, S.; Romagnoli, R.; De Risi, C.; Spalluto, G.; Zanirato, V. *Chem. Rev.* 1995, 95, 1065-1114.
 (b) Simon, C.; Constantieux, T.; Rodriguez, J. *Eur. J. Org. Chem.* 2004, 24, 4957-4980.
- (a) Ducatti, D. R. B.; Massi, A.; Noseda, M. D.; Duarte, M. E. R.; Dondoni, A. Org. Biomol. Chem. 2009, 7, 1980-1986. (b) Debache, A.; Boulcina, R.; Belfaitah, A.; Rhouati, S.; Carboni, B. Synlett. 2008, 4, 509-512. (c) Chitra, S.; Pandiarajan, K. Tetrahedron Lett. 2009, 50, 2222-2224. (d) Singh, O. M.; Devi, N. S. J. Org. Chem. 2009, 74, 3141-3144. (e) Velezheva, V. S.; Sokolov, A. I.; Kornienko, A. G.; Lyssenko, K. A.; Nelyubina, Y. V.; Godovikov, I. A.; Peregudov, A. S.; Mironov, A. F. Tetrahedron Lett. 2008, 49, 7106-7109. (f) Wang, H.-M.; Hou, R.-S.; Cheng, H.-T.; Chen, L.-C. Heterocycles 2009, 78, 487-493. (g) Thomae, D.; Perspicace, E.; Hesse, S.; Kirsch, G.; Seck, P. Tetrahedron 2008, 64, 9309-9314.
- 3. Sridharan, V.; Menéndez, J. C. Org. Lett. 2008, 10, 4303-4306.

- 4. Hopkins, C. D.; Schmitz, J. C.; Chu, E.; Wipf, P. Org. Lett. 2011, 13, 4088-4091.
- 5. D. Li, G. Carr, Y. Zhang, D. E. Williams, A. Amlani, H. Bottriell, A. L. F. Mui, R. J. Andersen, *J. Nat. Prod.* 2011, 74, 1093-1099.
- Reiff, E. A.; Nair, S. K.; Narayan Reddy, B. S.; Inagaki, J.; Henri, J. T.; Greiner, J. F.; Georg, G. I. *Tetrahedron Lett.* 2004, 45, 5845-5847.
- 7. Schmidt, J. B.; Kunz, O; Petersen, M. H. J. Org. Chem. 2012, 77, 10897-10906.
- (a) Claparede, C. L.; A. Ber. Dtsch. Chem. Ges. 1881, 14, 2460-2468. (b) Claisen, L. Ber. Dtsch. Chem. Ges. 1887, 20, 655-657.
- (a) Rao, H. S. P.; Rafi, S.; Padmavathy, K. *Tetrahedron* 2008, 64, 8037-8043. (b) Wang, F-D.; Yue, J-M. *Synlett.* 2005, 13, 2077-2079.
- 10. Schaefer, J. P.; Bloomfield, J. J. Org. React. 1967, 15, 1-203.
- (a) Yamamoto, H. Lewis Acids in Organic Synthesis, Wiley-VCH: Weinheim, 2000. (b) Anastas, P.T.; Kirchhoff, M. M. Acc. Chem. Res. 2002, 35, 686-694. (c) Martin, R. Org. Prep. Proced. Int. 1992, 24, 369-435. (d) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981-10080.
- 12. Hoffmann, R. W. Angew. Chem., Int. Ed. 2001, 40, 1411-1416.
- 13. (a) Wadsworth, W. Org. React. 1977, 25, 73-253. (b) Wadsworth, W. S., Jr.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733-1738.
- 14. (a) Hirooka, Y.; Ikeuchi, K.; Kawamoto, Y.; Akao, Y. Furuka, T.; Asakawa, T.; Inai, M.; Wakimoto, T.; Fukuyama, T.; Kan, T. Org. Lett. 2014, 16, 1646-1649. (b) Jeyakumar, K.; Chand, D. K. Synthesis, 2008, 11, 1685-1687. (c) Albert, P.; Dean, D. C.; Fairfax, D. J.; Xu, S. L.; J. Org. Chem. 1993, 58, 4646-4655. (d) Clarke, P. A.; Matthew, G.; Ebden, M.; Wilson, C. Chem. Commun. 2003, 13, 1560-1561. (e) Yadav, J. S.; Subba Reddy, B. V.; Eeshwaraiah, B.; Reddy, P. N. Tetrahedron, 2005, 61, 875-878. (f) Nomura, K.; Lida, T.; Hori, K.; Yoshii, E.; J. Org. Chem. 1994, 59, 488-490.
- 15. Kanemasa, S.; Kanai, T.; Araki, T.; Wada, E. Tetrahedron Lett. 1999, 40, 5055-5058.
- 16. NbCl₅ (0.063 mmol, 7 mol%) was added to a solution of the α,β -unsaturated aldehyde (0.9 mmol, 1.0 equiv) in anhydrous dichloromethane (5.0 mL) at 0 °C under an inert atmosphere. EDA (1.08 mmol, 1.2 equiv) was added over period of 10 minutes via syringe at 0 °C before stirring at room temperature until complete consumption of the aldehyde was evident by TLC. The solvent was removed *in vacuo* and the remaining residue was subjected to dry flash chromatography using a mixture of hexane and diethyl ether to afford the target γ,δ unsaturated keto ester in moderate to high yields. Ethyl (E)-3-oxohept-4-enoate (**2a**): The title compound was isolated as a yellow oil in 68% yield as a mixture of keto-enol tautomers. ¹H-NMR (400MHz, CDCl₃) (mixture of keto-enol tautomers): δ 1.08 (m, 6H, CH₃), 1.24-1.33 (m, 6H, CH₃, ester), 2.20-2.30 (m, 4H, CH₂), 3.58 (s, 2H, α-CH₂, keto), $4.\overline{20}$ (m, CH₂, ester), 4.98 (s, 1H, α -CH enol), 5.79 (d, 1H, J = 15.6 Hz, CH), 6.16 (d, 1H, J= 15.6 Hz), 6.70 (m, 1H, CH), 6.94 (m, 1H, CH), 11.90 (d, J = 1.28 Hz, OH); ¹³C-NMR (100MHz, CDCl₃) : δ 192.26, 173.03, 169.68, 167.47, 151.24, 142.39, 128.72, 123.43, 89.95, 61.31, 60.01, 46.93, 25.63, 22.63, 14.26, 14.07, 12.64, 12.05; v_{maz} /(NaCl) cm⁻¹: 734, 802, 861, 979, 1031, 1097, 1159, 1203, 1376, 1670, 1737, 2884, 2943, 2983, 3446; HRMS (ESI+): Exact mass calc for $C_9H_{15}O_3$ (M+H⁺) 171.1016 Found 171.1024.

-We have developed a mild method for the synthesis of γ , δ -unsaturated- β -keto esters

-Niobium chloride was found to be an ideal catalyst for C-H insertions

-Aliphatic and aromatic α , β -unsaturated aldehydes are transformed in good yields

Acception

<u>Graphical Abstract</u> Preparation of γ,δ-unsaturated-β-ketoesters: Lewis acid-catalysed C-H insertion of ethyl diazoacetate into α,β-unsaturated aldehydes

