Food and Beverage Chemistry/Biochemistry

Formation of Samin Diastereomers by Acid-catalyzed Transformation of Sesamolin with Hydrogen Peroxide

Hsin-Ya Tsai, Wei-Ju Lee, I-Hsuan Chu, Wei-Ching Hung, and Nan-Wei Su

J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.0c01616 • Publication Date (Web): 12 May 2020 Downloaded from pubs.acs.org on May 20, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Formation of Samin Diastereomers by Acid-catalyzed Transformation of Sesamolin with Hydrogen Peroxide

Authors: Hsin-Ya Tsai^{1,§}, Wei-Ju Lee^{2,3,§}, I-Hsuan Chu¹, Wei-Ching Hung¹, and Nan-Wei Su^{1*}

¹Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan ²School of Food Safety, Taipei Medical University, Taipei 11042, Taiwan ³Master program in Food Safety, Taipei Medical University, Taipei 11042, Taiwan

[§]Both authors contributed equally to this work

*Corresponding author:

*Nan-Wei Su, Ph.D., Professor Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan Tel: +886-2-33664806 Fax: +886-2-23632714

E-mail: snw@ntu.edu.tw

1 ABSTRACT

2	The conversion of sesame lignans is of interest because the derived products may have potential
3	applications. Here, in investigating the transformation of sesamin and sesamolin in both acidic
4	aqueous and anhydrous systems, 7R,7'S-samin was identified as one of the major products of
5	sesamolin in both systems catalyzed with common inorganic acids, but sesaminol was not generated.
6	In investigating the effect of different oxidizing agents on the acid-catalyzed conversion of sesame
7	lignans, 7R,7'S-samin was still the major product of sesamolin, whereas sesamolin stereo-selectively
8	rendered 7 <i>R</i> ,7' <i>R</i> -samin in the presence of hydrogen peroxide. Hydrogen peroxide may play a role in
9	stabilizing the transitional oxonium ions, derived from acid hydrolysis of sesamolin by forming a
10	seven-membered ring intermediate through hydrogen bonding, to consequently produce
11	7 <i>R</i> ,7' <i>R</i> -samin as the final product.
12	
13	KEYWORDS: sesame oil, furofuran lignans, sesamolin-derivative, acid-catalyzed transformation,

14 samin diastereomers, hydrogen peroxide

16 **INTRODUCTION**

17	Sesame oil produced from seeds of <i>Sesamum indicum</i> is considered a nutritious and stable edible oil.
18	Sesame seed is one of the major plant sources of furofuran lignans, which have numerous
19	physiological activities. The main agluconic lignans in sesame seeds are sesamin and sesamolin.
20	Sesamin and sesamolin have a variety of biological activities, such as anti-oxidation,
21	hypocholesterolemic, hepatoprotective, antihypertension, and neuroprotective properties. ¹⁻⁵
22	Meanwhile, sesame oil is also known for its superior oxidative stability. Despite its high level of
23	unsaturated fatty acids, sesame oil is relatively stable against oil deterioration as compared with other
24	dietary oils. ⁶⁻¹⁰ The resistance of sesame oil to oxidation was mainly attributed to the presence and
25	synergy of minor components including lignans, lignan derivatives, tocopherols, and Maillard
26	reaction products generated when sesame seeds are roasted. ^{6, 10-13} As a result, oil processing may
27	affect the configuration of sesame lignans and play an important role in enhancing sesame oil's
28	oxidative stability.
29	Several studies have reported the changes in lignans composition during each step of the
30	manufacturing process of sesame oil. ¹⁴⁻¹⁷ During the processing, sesamolin was converted to sesamol
31	under thermal conditions or rearranged to sesaminol under acid bleaching treatment. ¹⁵⁻¹⁶ The other
32	main lignan, sesamin, was transformed to episesamin during acid bleaching and deodorization at
33	high temperature. ¹⁵⁻¹⁶ The endogenous lignans, sesamin and sesamolin, are most abundant in sesame
34	oils but possess relatively weak antioxidant activity. ^{10, 13, 18-19} In contrast, sesamol and sesaminol,

35	generated from sesamolin during processing, show strong in vitro antioxidant activity and were
36	therefore considered responsible for the strengthened oxidative stability of roasted and refined
37	unroasted sesame oils ^{10, 15, 18-19} Therefore, studies of the transformation of sesame lignans are of high
38	interest because the relevant derivatives of lignans may possess better antioxidant activities than
39	endogenous lignans in sesame oil or possess physiological activities. The chemical structures of
40	sesame lignans and the derivatives sesamin, sesamolin, sesamol, sesaminol, and samin are illustrated
41	in Figure 1.
42	Studies of the acid-catalyzed transformation of sesame lignans are limited. Most studies focused on
43	the conversion of sesamolin to sesaminol in acidic anhydrous systems. ^{15-16, 20-21} In this work, strong
44	acids and oxidizing agents were used to treat sesame lignans to generate derived compound(s) in
45	aqueous or anhydrous systems. Reaction products of sesame lignans from acid-catalyzed reactions
46	were isolated and identified to elucidate the transformation of sesame lignans. Also, the possible
47	mechanism for formation of the major derivative, $7R$, $7^{2}R$ -samin, from sesamolin treated with

49 MATERIALS AND METHODS

50 Materials

51 The lignan standards sesamin, sesamolin, and sesamol were purchased from Sigma-Aldrich (St.

52 Louis, MO, USA). Sesaminol and (+)-samin (7*R*,7'*S*-samin) were purchased from Nacalai tesque

53	(Kyoto, Japan). Solvents used in this study including acetic acid, acetonitrile, methanol, ethyl acetate
54	were purchased from J. T. Baker (Phillipsburg, NJ, USA). Toluene was purchased from Merck
55	(Darmstadt, Germany). Sulfuric acid and formic acid were purchased from Sigma-Aldrich (St. Louis,
56	MO, USA). Oxidizing agents including hydrogen peroxide 30%, potassium permanganate (KMnO ₄),
57	and potassium dichromate (Kr ₂ Cr ₂ O ₇) were purchased from Echo Chemical (Miaoli, Taiwan),
58	Hayashi Pure Chemical (Osaka, Japan), and Sigma-Aldrich (St. Louis, MO, USA), respectively. All
59	chemicals and reagents used were of reagent or analytical grade.
60	Acid-catalyzed transformation of sesame lignans in aqueous solution
61	According to previous studies, the transformation of sesame lignans was severely affected by the
62	presence of water in the reaction system. For example, sesamolin is decomposed and converted into
63	samin in acidic aqueous solution but into sesaminol under the acidic anhydrous condition. ^{15-16, 20-21}
64	Therefore, a preliminary test for transforming sesame lignans in acidic aqueous solution was first
65	investigated. Briefly, a 10-mg reaction substrate, comprising 6.2 mg sesamin and 3.8 mg sesamolin,
66	was added into 10 mL 2 M sulfuric acid at 60°C with occasional stirring for 0, 5, 15, 30, 60 min.
67	Then, 10 mL ethyl acetate was added to the reaction mixture to extract the reaction products. The
68	ethyl acetate layer was dried under reduced pressure for further lignan analysis.

69 Acid-catalyzed transformation of sesame lignans in anhydrous toluene

The transformation of sesame lignans in the anhydrous system was investigated. In brief, 2 mL of conc. sulfuric acid and formic acid were gently added into 2 mL toluene, containing 0.62 mg sesamin and 0.38 mg sesamolin as a reaction substrate, at room temperature with occasional stirring for 10 min. The organic layer was dried under reduced pressure for further lignan analysis.

74 Acid-catalyzed transformation of sesame lignans with oxidizing agents

75 Under certain conditions, sesame lignans could be transformed to their oxidized forms, which sometimes possess better antioxidant activities than their original forms.²²⁻²³ In this work, sesamin 76 77 and sesamolin were treated with different oxidizing agents to elucidate the effect of oxidizing agents 78 on the transformation of lignans. In brief, a reaction substrate comprising 6.2 mg sesamin and 3.8 mg sesamolin was reacted with 10 mL with 10 mL 180 mM sulfuric acid solution containing oxidizing 79 80 agents including 3 mM potassium permanganate, 3 mM potassium dichromate, or 30% hydrogen 81 peroxide. The reaction mixture was incubated at 60°C with occasional stirring for 30 min and 82 extracted with 10 mL ethyl acetate. The ethyl acetate layer was dried under reduced pressure for further lignan analysis. 83

84 Analysis of sesame lignans and related derivatives by HPLC

The lignan samples from the aforementioned processes were dissolved in methanol, then filtered by a
0.45-µm membrane filter to remove insoluble matters for HPLC analysis. An analytical Shimadzu
LC-10AD HPLC system (Shimadzu, Kyoto, Japan) equipped with a YMC-Pack ODS-AM column

88	(250 x 4.6 mm, 5 µm) (YMC, Kyoto, Japan) and a L-2420 Hitachi UV/vis detector (Hitachi, Tokyo,
89	Japan) was used. The linear mobile phase gradient was obtained with 0.1% (v/v) acetic acid in
90	ultrapure water (solvent A) and 0.1% (v/v) acetic acid in methanol (solvent B). Following the
91	injection of 20 μL sample, solvent B was increased from 45% to 90% over 25 min, then to 100%
92	within 3 min, was isocratic for another 2 min, and finally decreased to 45% within 7 min. Before
93	injection of the next sample, the column was equilibrated with solvent B at 45% for 10 min. The
94	flow rate of 1 mL/min was used and the elute was detected at 290 nm. The data were processed by
95	using the SISC chromatography data station v.3.1 (SISC, Taipei, Taiwan).
96	Isolation and identification of 7 <i>R</i> ,7'S-samin and 7 <i>R</i> ,7' <i>R</i> -samin
97	The separation and isolation of 7 <i>R</i> ,7' <i>S</i> -samin and 7 <i>R</i> ,7' <i>R</i> -samin were performed on a
98	semi-preparative-scale HPLC system equipped with a Hypersil ODS C18 column (250 x 10 mm, 10
99	μ m) (Thermo Fisher Scientific, Waltham, MA, USA). The linear mobile phase gradient was obtained
100	with ultrapure water (solvent A) and methanol (solvent B). Following the injection of 100 μL of
101	sample, solvent B was increased from 30 to 50% over 20 min, then to 75% in 1 min, isocratic for 4
102	min, decreased from 75 to 30% in another 3 min, and equilibrium for 5 min. The flow rate was 5.0
103	mL/min. The eluates were collected and monitored at 290 nm. Fractions containing the desired
104	eluates were further concentrated and lyophilized to obtain a pale amorphous powder for further

106	7 <i>R</i> ,7' <i>S</i> -samin and 7 <i>R</i> ,7' <i>R</i> -samin were identified according to the data from electrospray ionization
107	mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy. The electrospray
108	ionization mass spectrometer (Thermo Q Exactive Plus, Thermo Finnigan LXQ Aadvantag, Thermo
109	Fisher Scientific, CA, USA) included a hybrid quadrupole-Orbitrap analyzer (Thermo Fisher
110	Scientific, CA, USA). The electrospray ionization source (HESI-II) was operated in the positive
111	ionization mode under the following specific conditions: capillary temperature, 262.5 °C; spray
112	voltage, 3.5 kV; sheath gas, 50 L/min; auxiliary gas, 12.5 L/min. The mass spectrometer performed a
113	full scan event (mass range m/z 100-1000) with a resolving power of 70,000 at full width at half
114	maximum (FWHM) at m/z 200 followed by 20 consecutive fragmentation events (variable data
115	independent acquisition [vDIA]) with a resolving power of 35000 at FWHM (m/z 200). NMR
116	spectra were recorded on a Bruker Avance 600 MHz NMR spectrometer (Bruker, Billerica, MA,
117	USA). Chemical shifts (δ) and coupling constants (<i>J</i>) are expressed in ppm and Hz, respectively. ¹ H
118	and ¹³ C chemical shifts were calibrated with CDCl ₃ as internal standard at δ = 7.24 and 77.0,
119	respectively.

120 Statistical analysis

121 All data analyses involved using SPSS 19.0. Data are reported as mean \pm standard deviation (SD). All experiments were performed in triplicate (n=3). 122

8

123 **RESULTS AND DISCUSSION**

124 Acid-catalyzed transformation of sesame lignans in aqueous solution

125	Transformation of sesame lignans is influenced by the acid catalysts and solvents used. In previous
126	studies, sesamolin was supposedly directly degraded into sesamol and samin via acid hydrolysis in
127	the presence of water but converted to sesaminol via rearrangement of sesamol and the oxonium ion
128	in acidic anhydrous systems. ^{15-16, 20-21} Epimerization of sesamin was also observed in acidic
129	anhydrous systems, ^{15-16, 24} but the acidic transformation of sesamin in aqueous solution was not clear.
130	In this work, we studied changes of sesame lignans during acid treatment in aqueous solution.
131	Regardless of treatment with acids or not, peaks representing sesamin were unchanged (Figure 2a-c),
132	so sesamin possesses good stability under acidic aqueous solutions, and no episesamin was observed
133	under both conditions. In contrast, sesamolin was relatively unstable and depleted along with the
134	generation of sesamol and an unidentified compound, designated compound a (peak 4 in Figure
135	2a-c). Fractions containing compound a were further isolated and identified by ESI-MS and NMR
136	analysis.

137 Identification of compound a

The mass spectrum for compound a showed [M+Na]⁺ at 273.29 m/z with close relation to samin.
MS/MS spectrum for protonated ion of compound a was showed in Supplementary Figure 1a.
Analysis of the NMR spectra using HSQC, HMBC, and COSY experiments gave the full

141	assignments of ¹ H and ¹³ C signals. ¹ H-NMR and ¹³ C-NMR spectral data for compound a were
142	corresponded with NMR spectral data for (+)-samin isolated from sesame seeds (Table 1). ²⁵ From
143	the above spectral data, compound a was considered to be $7R,7$ 'S-samin [(+)-samin], with a
144	methylenedioxyphenyl group on C7 and a hydroxyl group on C7' with <i>R</i> and <i>S</i> configurations,
145	respectively. These results agree with that sesamolin is known to be decomposed into sesamol and
146	samin in acidic aqueous solution. Moreover, the hydrolysis of sesamolin catalyzed with sulfuric acid
147	released sesamol and 7 <i>R</i> ,7'S-samin simultaneously in the aqueous system (Figure 2d).
148	Acid-catalyzed transformation of sesame lignans in anhydrous toluene
149	As previously described, the presence of water is one of the important determinants for the
150	transformation of lignans. Sesame lignans were treated with sulfuric acid and formic acid in
151	anhydrous toluene to investigate the conversion of lignans in anhydrous system. Sesamin remained
152	unchanged, and no epimerization was observed (Figure 3). Meanwhile, sesamol and 7R,7'S-samin
153	were still the major products of sesamolin in both cases, whereas no sesaminol was formed (Figure
154	3). According to previous studies, sesamolin should scission into sesamol and the transitional
155	oxonium ion and then undergo rearrangement to form sesaminol in anhydrous solvent systems, such
156	as acid bleaching, toluene with camphorsulfonic acid, and toluene with acidic cation exchange resin
157	which possesses a sulfonic functional group. ^{15-16, 20-21} However, sesaminol was not generated from
158	sesamolin treated with sulfuric acid or formic acid in toluene in our study, so the acid catalysts might
159	be crucial for the specific transformation of sesamolin into sesaminol. Otherwise, sesamolin was 10

prone to be decomposed directly into sesamol and 7*R*,7'*S*-samin with common inorganic acids as
catalysts both in aqueous and anhydrous systems.

162 Acid-catalyzed transformation of sesame lignans with oxidizing agents

163	To generate derived compounds for further investigating the effect of oxidants on the conversion of
164	sesame lignans, sesamin and sesamolin prepared in sulfuric acid aqueous solution were treated with
165	the oxidizing agents potassium permanganate, potassium dichromate, and hydrogen peroxide.
166	Sesamolin was degraded, but sesamin was relatively stable (Figure 4). Also, the main transformation
167	products of sesamolin with different oxidizing agents varied. The main transformation products of
168	sesamolin with acidified potassium permanganate were still sesamol and 7R,7'S-samin, whereas
169	7 <i>R</i> ,7' <i>S</i> -samin was the only major product of sesamolin with acidified potassium dichromate (Figure
170	4b,c). Previous studies have reported that sesamol was relatively heat unstable as compared with
171	sesamin and sesaminol, especially with temperature above 200°C. ^{15, 17} Sesamol seemed to be also
172	more unstable than $7R$, $7'S$ -samin with acidified potassium dichromate treatment, with $7R$, $7'S$ -samin
173	as the main product of sesamolin. In contrast, Figure 4d shows that sesamol and a new compound,
174	designated compound b (peak 5 in Figure 4d), were products after oxidation of sesamolin by
175	acidified hydrogen peroxide. Fractions containing compound b were further isolated and identified
176	by ESI-MS/MS and NMR analysis.

177 Identification of compound b (7R,7'R-samin)

178	Compound b was identified by ESI-MS/MS, UV-Vis and NMR spectra as 7 <i>R</i> ,7' <i>R</i> -samin, the
179	diastereomer of 7 <i>R</i> ,7' <i>S</i> -samin. Mass spectrum of compound b shows compound b has the same
180	molecular weight with $7R$, 7'S-samin. The MS/MS spectra for compound b and $7R$, 7'S-samin show
181	similar fragmentation patterns with 9 identical molecular-weight daughter ions (Supplementary
182	Figure 1). Also, UV-Vis absorption spectrum of compound b shows three major absorption peaks at
183	204, 235, 287 nm, which was close with that of 7 <i>R</i> ,7'S-samin (203, 238, 287 nm), indicating
184	compound b has a high structural similarity with 7 <i>R</i> ,7'S-samin (Supplementary Figure 2). ²⁵ NMR
185	spectral analysis including ¹ H, ¹³ C, HSQC, HMBC, and COSY experiments affords the full
186	assignments for compound b , revealing that compound b and $7R$, $7^{\circ}S$ -samin might be diastereomers
187	(Table 1, Table 2 and Supplementary Figure 3-8). According to Table 1 and Table 2, compound b
188	shows many similar proton or carbon chemical shifts and proton splitting patterns with 7 <i>R</i> ,7'S-samin,
189	but with several different chemical shifts between compound b and $7R$, $7^{\circ}S$ -samin (Table 1 and Table
190	2). Among these differences, the deviation of chemical shifts for C7' was the most marked with
191	102.2 ppm for 7 <i>R</i> ,7' <i>S</i> -samin and 111.7 ppm for compound b (Table 1 and Table 2). Other protons
192	(H7', H8', H9'a, H9'b, H8, H9a and H9b) or carbons (C8' and C8) with slight different chemical
193	shifts for compound b and 7 <i>R</i> ,7'S-samin are all close to C7', implicating compound b may have a
194	different configuration of hydroxyl group on C-7' which causes these differences of chemical shifts
195	between compound b and 7 <i>R</i> ,7'S-samin (Table 1 and Table 2). Therefore, compound b was
196	concluded as 7 <i>R</i> ,7' <i>R</i> -samin. According to the above results, the major transformation product of

197 sesamolin under acidified potassium permanganate and potassium dichromate treatment was 198 7R,7'*S*-samin, whereas sesamolin was preferentially converted into 7R,7'*R*-samin in the presence of 199 hydrogen peroxide.

200 Possible mechanism for formation of 7*R*,7'*R*-samin in acidified hydrogen peroxide

201 This study revealed the specific formation of 7R, $7^{2}R$ -samin catalyzed by hydrogen peroxide for the 202 first time, so we explored the possible role of hydrogen peroxide in forming 7R, 7'R-samin in 203 acidified hydrogen peroxide. Sesamolin was mainly converted to sesamol and 7*R*,7'S-samin in 204 sulfuric acid, whereas 7*R*,7'*R*-samin was the major reaction product of sesamolin with hydrogen 205 peroxide present in the same acid (Figure 2b,c and Figure 4d). Therefore, we speculate that hydrogen 206 peroxide might be related to the epimerization of 7R, 7'S-samin under acidic conditions. To verify whether hydrogen peroxide could catalyze the epimerization of 7R, 7'S-samin to form 7R, 7'R-samin, 207 208 the 7*R*,7'S-samin standard was directly reacted with 30% hydrogen peroxide only and 30% hydrogen 209 peroxide in 180 mM sulfuric acid. 7R,7'R-samin was formed under both conditions, which suggests 210 that hydrogen peroxide alone was capable of converting 7R,7'S-samin into 7R,7'R-samin (Figure 5). 211 However, hydrogen peroxide without sulfuric acid could only catalyze the partial conversion of 212 7R, 7'S-samin into 7R, 7'R-samin, so the presence of acid may enhance the epimerization. Sesamolin 213 and sesamin were treated with hydrogen peroxide under different concentrations of sulfuric acid to 214 investigate the effect of acid on the catalytic efficiency of hydrogen peroxide for epimerization of 215 7R, 7'S-samin. As expected, the formation of 7R, 7'R-samin was increased with increasing 13

216	concentration of sulfuric acid in the reaction system; furthermore, 7R,7'S-samin completely
217	transformed to 7 <i>R</i> ,7' <i>R</i> -samin when the concentration of sulfuric acid reached 50 mM (Figure 6).
218	Therefore, hydrogen peroxide was related to the epimerization of 7 <i>R</i> ,7'S-samin. In addition,
219	increasing sulfuric acid concentration might accelerate the epimerization.
220	We further propose the possible formation mechanism of $7R$, $7^{\circ}R$ -samin catalyzed by hydrogen
221	peroxide according to the stereochemical relationship to elucidate why hydrogen peroxide causes the
222	different configuration of the hydroxyl substituted group of samin. In the absence of hydrogen
223	peroxide, the nucleophilic hydroxyl group was more likely to attack the transitional oxonium ion
224	derived from sesamolin on the same side of the methylenedioxyphenyl group under acidic conditions
225	owing to the steric hindrance caused by the cis-fused furofuran ring (Figure 7a). Therefore, the main
226	product of sesamolin is usually 7R,7'S-samin under general acidic conditions. In contrast, hydrogen
227	peroxide is prone to approach the oxonium ion intermediate derived from acid hydrolysis of
228	sesamolin from the opposite site of the methylenedioxyphenyl group to stabilize a seven-membered
229	ring intermediate structure by forming hydrogen bonds with the oxonium ion, thus resulting in the
230	formation of 7 <i>R</i> ,7' <i>R</i> -samin as the final product (Figure 7b). Because hydrogen peroxide could
231	catalyze the formation of 7 <i>R</i> ,7' <i>R</i> -samin both from sesamolin and 7 <i>R</i> ,7' <i>S</i> -samin (Figure 4d and Figure
232	5), we suggest that sesamolin and 7R,7'S-samin might be transformed into the transitional oxonium
233	ions first, then both be accessible to form hydrogen bonds with hydrogen peroxide and then
234	converted into 7 <i>R</i> ,7' <i>R</i> -samin. Although samin in racemic form has been synthesized via a radical

235	cyclization reaction or an Ireland-Claisen rearrangement of unsaturated oxa-macrolides, ²⁶⁻²⁹ the
236	stereo-selective formation of 7 <i>R</i> ,7' <i>R</i> -samin from sesamolin catalyzed with hydrogen peroxide was
237	first reported in this study.
238	Overall, sesamolin was mainly converted into 7 <i>R</i> ,7'S-samin and sesamol under acidic conditions in
239	both aqueous and anhydrous systems in the present study, whereas the formation of sesaminol, which
240	was reported to be formed from sesamolin in acidic anhydrous systems, was not observed. The acidic
241	conversion of sesamolin into sesaminol may require specific catalysts; otherwise, the formation of
242	sesaminol would be minor even in acidic anhydrous systems. Also, both sesamolin and 7 <i>R</i> ,7'S-samin
243	were found specifically transformed into 7 <i>R</i> ,7' <i>R</i> -samin under catalysis with hydrogen peroxide. The
244	acid-catalyzed transformation pathway for sesamolin is summarized in Figure 8.
245	Our findings broaden the current understanding of acid-catalyzed transformation of sesamolin under
246	different catalytic conditions. Moreover, the study proposes the possible mechanism for formation of
247	$7R$, $7^{\circ}R$ -samin via a stereo-selective reaction catalyzed by hydrogen peroxide under acidic conditions.
248	Characteristics such as the ability to delay oil deterioration and physiological activities of individual
249	stereoisomers of samin require further exploration. Recently, a series of furofuran lignans and
250	flavonolignans synthesized from 7R,7'S-samin as a starting material through a Friedel-Crafts-like
251	reaction were shown to possess β -glucosidase and free radical inhibition activities. ³⁰⁻³¹ The present
252	study may also help in preparing stereoisomers of samin or samin derivatives to further discover their
253	potential applications.

254 FUNDING

- 255 The authors are grateful for the financial support from Flavor Full Foods Inc., Taipei (grant no.
- 256 NTU102E32034).

257 ABBREVIATIONS USED

- 258 HPLC, high-performance liquid chromatography
- 259 ESI-MS, electrospray ionization mass spectrometry
- 260 NMR, nuclear magnetic resonance
- 261 HSQC, heteronuclear single quantum coherence
- 262 HMBC, heteronuclear multiple bond correlation
- 263 COSY, correlation spectroscopy

264 **REFERENCES**

- 265 1. Kiso, Y., Antioxidative roles of sesamin, a functional lignan in sesame seed, and its effect on
- lipid-and alcohol-metabolism in the liver: A DNA microarray study. *Biofactors* 2004, 21 (1-4),
- **267 191-196**.
- 268 2. Rogi, T.; Tomimori, N.; Ono, Y.; Kiso, Y., The mechanism underlying the synergetic
- 269 hypocholesterolemic effect of sesamin and α -tocopherol in rats fed a high-cholesterol diet. J.
- 270 *Pharmaco. Sci.* **2011**, *115* (3), 408-416.

271	3. Lv, D.; Zhu, CQ.; Liu, L., Sesamin ameliorates oxidative liver injury induced by carbon				
272	tetrachloride in rat. Int. J. Clin. Exp. Pathol. 2015, 8 (5), 5733.				
273	4. Miyawaki, T.; Aono, H.; Toyoda-Ono, Y.; Maeda, H.; Kiso, Y.; Moriyama, K.,				
274	Antihypertensive effects of sesamin in humans. J. Nutr. Sci. Vitaminol. 2009, 55 (1), 87-91.				
275	5. Cheng, FC.; Jinn, TR.; Hou, R. C.; Tzen, J. T., Neuroprotective effects of sesamin and				
276	sesamolin on gerbil brain in cerebral ischemia. Int. J. Biomed. Sci. 2006, 2 (3), 284.				
277	6. Choe, E.; Min, D. B., Mechanisms and factors for edible oil oxidation. <i>Compr. Rev. Food Sci.</i>				
278	<i>F</i> . 2006, <i>5</i> (4), 169-186.				
279	7. Fukuda, Y.; Osawa, K.; Kawagishi, S.; Namiki, M., Oxidative stability of foods fried with				
280	sesame oil. J. Jpn. Soc. Food Sci. 1988, 35 (1), 28-32.				
281	8. Kochhar, S. P.; Henry, C. J. K., Oxidative stability and shelf-life evaluation of selected culinary				
282	oils. Int. J. Food Sci. Nutr. 2009, 60 (sup7), 289-296.				
283	9. Gharby, S.; Harhar, H.; Bouzoubaa, Z.; Asdadi, A.; El Yadini, A.; Charrouf, Z., Chemical				
284	characterization and oxidative stability of seeds and oil of sesame grown in Morocco. J. Saudi Soc.				
285	<i>Agric. Sci</i> 2017, <i>16</i> (2), 105-111.				
286	10. Wan, Y.; Li, H.; Fu, G.; Chen, X.; Chen, F.; Xie, M., The relationship of antioxidant				
287	components and antioxidant activity of sesame seed oil. J. Sci. Food Agric. 2015, 95 (13),				
288	2571-2578.				
289	11. Hwang, L. S., Sesame oil. In Bailey's industrial oil and fat products, 2005.				

- 290 12. Tashiro, T.; Fukuda, Y.; Osawa, T.; Namiki, M., Oil and minor components of sesame
- 291 (Sesamum indicum L.) strains. J. Am. Oil Chem. Soc. 1990, 67 (8), 508-511.
- 13. Abou-Gharbia, H.; Shahidi, F.; Shehata, A.; Youssef, M., Oxidative stability of extracted
- sesame oil from raw and processed seeds. J. Food Lipids **1996**, 3 (1), 59-72.
- 14. Fukuda, Y.; Nagata, M.; Osawa, T.; Namiki, M., Chemical aspects of the antioxidative activity
- of roasted sesame seed oil, and the effect of using the oil for frying. Agric. Biol. Chem. 1986, 50 (4),
- **296 857-862**.
- 15. Fukuda, Y.; Nagata, M.; Osawa, T.; Namiki, M., Contribution of lignan analogues to
- antioxidative activity of refined unroasted sesame seed oil. J. Am. Oil Chem. Soc. 1986, 63 (8),
- 299 1027-1031.
- 300 16. Moazzami, A. A.; Haese, S. L.; Kamal-Eldin, A., Lignan contents in sesame seeds and products.
- 301 Eur. J. Lipid Sci. Technol. 2007, 109 (10), 1022-1027.
- 302 17. Wu, W.-H., The contents of lignans in commercial sesame oils of Taiwan and their changes
- 303 during heating. *Food Chem.* **2007**, *104* (1), 341-344.
- 18. Dachtler, M.; van de Put, F. H.; v. Stijn, F.; Beindorff, C. M.; Fritsche, J., On-line
- 305 LC-NMR-MS characterization of sesame oil extracts and assessment of their antioxidant activity.
- 306 *Eur. J. Lipid Sci. Technol.* **2003**, *105* (9), 488-496.
- 307 19. Lee, J.; Choe, E., Extraction of lignan compounds from roasted sesame oil and their effects on
- the autoxidation of methyl linoleate. J. Food Sci. 2006, 71 (7), C430-C436.

309	20. Fukuda, Y.; Isobe, M.; Nagata, M.; Osawa, T.; Namiki, M., Acidic transformation of sesamolin,
310	the sesame-oil constituent, into an antioxidant bisepoxylignan, sesaminol. Heterocycles 1986, 24 (4),
311	923-926.
312	21. Huang, J.; Song, G.; Zhang, L.; Sun, Q.; Lu, X., A novel conversion of sesamolin to sesaminol
313	by acidic cation exchange resin. Eur. J. Lipid Sci. Technol. 2012, 114 (7), 842-848.
314	22. Kumano, T.; Fujiki, E.; Hashimoto, Y.; Kobayashi, M., Discovery of a sesamin-metabolizing
315	microorganism and a new enzyme. Proc. Natl. Acad. Sci. 2016, 113 (32), 9087-9092.
316	23. Murata, J.; Ono, E.; Yoroizuka, S.; Toyonaga, H.; Shiraishi, A.; Mori, S.; Tera, M.; Azuma, T.;
317	Nagano, A. J.; Nakayasu, M., Oxidative rearrangement of (+)-sesamin by CYP92B14 co-generates
318	twin dietary lignans in sesame. Nat. Commun. 2017, 8 (1), 2155.
319	24. Li, CY.; Chow, T. J.; Wu, TS., The epimerization of sesamin and asarinin. J. Nat. Prod.
320	2005, <i>68</i> (11), 1622-1624.
321	25. Kuo, PC.; Lin, MC.; Chen, GF.; Yiu, TJ.; Tzen, J. T., Identification of methanol-soluble
322	compounds in sesame and evaluation of antioxidant potential of its lignans. J. Agric. Food Chem.
323	2011, <i>59</i> (7), 3214-3219.
324	26. Maiti, G.; Adhikari, S.; Roy, S. C., Stereoselective total synthesis of (±)-Samin, the general
325	furofuran lignan precursor. Tetrahedron 1994, 35 (36), 6731-6732.
326	27. Maiti, G.; Adhikari, S.; Roy, S. C., Stereoselective total synthesis of (±)-samin and the
327	dimethoxy analogue, the general furofuran lignan precursors. <i>Tetrahedron</i> 1995 , <i>51</i> (30), 8389-8396.

- 328 28. Hull, H. M.; Knight, D. W., Diastereospecific approach to (±)-samin and 2, 6-diaryl-3,
- 329 7-dioxabicyclo [3.3. 0] octane (furofuran) lignans using the Ireland–Claisen rearrangement of
- unsaturated oxamacrolides. J. Chem. Soc. Perkin Trans. I 1997, (6), 857-864.
- 331 29. Hull, H.; Jones, Ú.; Knight, D., An alternative diastereospecific approach to (±)-samin and 2,
- 6-diaryl-3, 7-dioxabicyclo [3.3. 0] octane [furanofuran] lignans based on the Ireland–Claisen
- rearrangement of unsaturated oxa-macrolides. J. Chem. Soc. Perkin Trans. I 1998, (11), 1779-1788.
- 30. Worawalai, W.; Khongchai, P.; Surachaitanawat, N.; Phuwapraisirisan, P., Synthesis of
- furofuran lignans as antidiabetic agents simultaneously achieved by inhibiting α -glucosidase and free
- 336 radical. Arch. Pharm. Res. 2016, 39 (10), 1370-1381.
- 337 31. Worawalai, W.; Phuwapraisirisan, P., Samin-derived flavonolignans, a new series of
- antidiabetic agents having dual inhibition against α -glucosidase and free radicals. *Nat. Prod. Res.*

2018, 1-7.

TABLES

Ductor	δ/ppm (m, <i>J</i> /Hz)	Correlated carbons		Correlated protons
Proton		HSQC	HMBC	COSY
H8	2.87 (m)	52.8 (C8)	C1	H7, H8', H9a, H9b
Н8'	3.04 (dd, 8.8, 16.4)	53.6 (C8')		H8, H9'a, H9'b
H9'a	3.54 (dd, 7.2, 9.2)	71.2 (C9')	C7, C8	H8, H9'b
H9a	3.88 (d, 9.2)	69.3 (C9)	C7, C8	H8, H9b
H9b	4.14 (dd, 6.0, 9.2)	69.3 (C9)	C7	H8, H9a
H7	4.32 (d, 7.0)	86.9 (C7)	C1, C2, C6, C8', C9	Н8, Н9'а
Н9'b	4.35 (t, 7.0)	71.2 (C9')	C7	H8', H9'a
Н7'	5.36 (s)	102.2 (C7')	C8, C9, C9'	
H10	5.93 (s)	101.0 (C10)	C3, C4	
Н5	6.74 (d, 8.0)	108.2 (C5)	C1, C3, C4	
H6	6.78 (dd, 1.2, 7.8)	119.6 (C6)	C1, C4, C5, C7	
H2	6.83 (d, 1.2)	106.5 (C2)	C3, C4, C6, C7	

 Table 1. 1-D and 2-D NMR results for compound a (7*R*,7'S-samin)

Ducton	δ/ppm (m, <i>J</i> /Hz) -	Correlated carbons		Correlated protons
Proton		HSQC	HMBC	COSY
H8	2.76 (m)	52.5 (C8)	C1, C7, C7'	H7, H8', H9b
Н8'	2.96 (dd, 8.4, 15.9)	49.5 (C8')	C7, C7'	H8, H9'a, H9'b
H9'a	3.62 (dd, 7.2, 9.6)	71.0 (C9')	C7', C8'	Н8', Н9'b,
H9a	3.95 (d, 9)	69.5 (C9)	C7, C7', C8, C8'	H9b
H9b	4.04 (dd, 6, 9.3)	69.5 (C9)	C7	H8, H9a
H7	4.33 (d, 7.8)	86.5 (C7)	C1, C2, C6, C8, C8', C9	H8
Н9'b	4.38 (t, 9)	71.0 (C9')	C7, C7', C8	Н8', Н9'а,
Н7'	5.43 (s)	111.7 (C7')	C8, C8', C9, C9'	
H10	5.93 (d, 10.8)	101.1 (C10)	C3, C4	
Н5	6.75 (d, 8.4)	108.2 (C5)	C1	
H6	6.77 (dd, 1.2, 6.6)	119.6 (C6)	C1, C2, C4, C7,	
H2	6.82 (d, 1.2)	106.4 (C2)	C3, C4, C6, C7	

 Table 2. 1-D and 2-D NMR results for compound b (7R,7'R-samin)

FIGURE LEGENDS

Figure 1. The chemical structures of sesame lignans and their derivatives, including sesamin, episesamin, sesamolin, sesaminol, sesamol, *7R*,*7*'*S*-samin and *7R*,*7*'*R*-samin.

Figure 2. HPLC chromatograms of the transformation of sesamin and sesamolin under treatment with 2 M sulfuric acid at 60°C for 0 min (a), 30 min (b), 60 min (c), and the time course study of relative contents of sesamolin (\blacksquare), sesamol (O) and 7*R*,7'*S*-samin (\diamondsuit) under treatment with 2 M sulfuric acid at 60°C (d). Peak assignment: 1. Sesamin; 2. Sesamolin; 3. 7*R*,7'*S*-samin; 4. Sesamol. The relative content (%) was defined as the peak area ratio of sesamolin, sesamol, or 7*R*,7'*S*-samin to sesamin (n = 3).

Figure 3. HPLC chromatograms of standards of sesamol, sesaminol, sesamin, and sesamolin (a) and the transformation of sesamin and sesamolin under treatment with conc. sulfuric acid (b) and formic acid (c) in toluene (1:1, v/v) at 60°C for 30 min. Peak assignment: 1. Sesamol; 2. Sesaminol; 3. Sesamin; 4. Sesamolin; 5. 7*R*,7'*S*-samin.

Figure 4. HPLC chromatograms of the reaction substrate, sesamin and sesamolin (a), and the transformation of reaction substrate under treatment with 3 mM potassium permanganate (b), 3 mM potassium dichromate (c), and 30% hydrogen peroxide (d) in 180 mM sulfuric acid at 60°C for 30 min. Peak assignment: 1. Sesamin; 2. Sesamolin; 3. Sesamol; 4. 7*R*,7'*S*-samin; 5. 7*R*,7'*R*-samin.

Figure 5. HPLC chromatograms of 7*R*,7'*S*-samin reacted with 30% hydrogen peroxide (a) and 30% hydrogen peroxide in 180 mM sulfuric acid (b) at 60°C for 30 min. Peak assignment: 1. 7*R*,7'*S*-samin; 2. 7*R*,7'*R*-samin.

Figure 6. Effect of the concentration of sulfuric acid on the formation of 7R, 7'*S*-samin and 7R, 7'*R*-samin from sesamolin under treatment with 30% hydrogen peroxide in sulfuric acid (5, 10, 30, 50 mM). Data are mean \pm SD (n=3). The relative peak area was defined as the peak area ratio of 7R, 7'*S*-samin or 7R, 7'*R*- samin to sesamin.

Figure 7. Proposed formation mechanisms of 7R, $7^{\circ}S$ -samin by acid-catalyzed transformation of sesamolin under general acidic conditions (a) and 7R, $7^{\circ}R$ -samin by acid-catalyzed transformation of sesamolin in the presence of hydrogen peroxide (b).

Figure 8. Transformation of sesamolin under general acidic conditions or catalyzed with hydrogen peroxide under acidic conditions.

Sesamolin

Sesaminol

Sesamol

7*R*,7'*R*-samin

Figure 1.

25

Figure 2.

Figure 3.

Figure 4.

(A) 7R,7'S-samin reacted with 30% hydrogen peroxide

Figure 5.

(B) 7*R*,7'*S*-samin reacted with 30% hydrogen peroxide in 180 mM sulfuric acid

Figure 6.

Figure 7.

Figure 8.

