

WILEY-VCH

Reductive Homocoupling of Organohalides *via* the Direct Use of Nickel(II) Chloride and Samarium Metal

Yongjun Liu,*^[a] Shuhuan Xiao,^[a] Yan Qi,^[a] and Feng Du^[a]

Dedication ((optional))

Abstract: Catalyzed by NiCl₂ (5 mol %) directly, the homocoupling of organohalides was efficiently accomplished by the promotion of samarium metal in the presence of HMPA. Various organohalides (benzyl, aryl, heterocyclic, alkenyl and alkyl halides), α -haloacetophenones, and phenyl organosulfonates were compatible with the conditions to afford coupling products with high efficiency. Excellent chemoselectivity was exhibited between halides and other groups, such as –COOH, -NO₂, -X (inerter halogen), heterocyclic ring, ester, and ketone groups. The particular stereoselectivity implied that the reaction mechanism might involve an organosamarium species.

Introduction

Reactions leading to C-C bond formation are considered the cornerstones in organic synthesis, among which the coupling reactions employing organohalides are often the key steps in a wide range of organic processes.^[1-5] Transition metals have been demonstrated as the most powerful catalysts for these transformations,^[1a-e,2-5] such as copper,^[2a] rhodium,^[5a] iron,^[5b] cobalt,^[2b-c,5c] palladium,^[2d-e] and nickel.^[3-4] Due to the versatile catalytic activities and ready availability, nickel-catalyzed couplings played an extremely important role in the development of the methodologies in recent years..^[1a-c,3-4]

Compared with nickel-catalyzed cross-couplings of organohalides which often involve stepwise reactions,^[3] the onestep reductive homocouplings are usually limited due to the varied reactivity and the chemoselectivity of organohalides.[1c,4-5] In most cases complicated ligands or particular Ni-complexes are crucial to the couplings, such as 2,2':6',2"-terpyridine,[4a] diphenylphosphinoferrocene,^[4b] POCOP-nickel pincer complexes,^[4c] 4,4',4"-tri-t-butyl-2,2':6',2"-terpyridine,^[4d] and 1,3bis(diphenylphosphino)propane dichloronickel.[4e] The coupling efficiency usually depends upon the catalytic system, i.e., particular ligands or complexes of nickel salts, rather than the reductive agents which are employed to ensure the success of catalytic cycle, such as Zn,^[4a-d] Mn,^[4e,5c] NH₂NH₂,^[4] R₂Zn,^[5a] and BuLi.^[4f,5b] The types of the bond formation also influence the

 [a] Prof. Dr. Y. Liu, S. Xiao, Y. Qi, Dr. F. Du State Key Laboratory Base of Eco-chemical Engineering Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042, P. R. China Fax: (+86)-532-84023927 E-mail: yongjunliu@qust.edu.cn

Supporting information for this article is given via a link at the end of the document.((Please delete this text if not appropriate))

coupling considerably, commonly involving the bond formation of Csp^2-Csp^2 (alkenylhalides^[4b] or arylhalides^[4f,5b]) and Csp^3-Csp^3 (benzylhalides^[4c,4j,5a,5c] or alkylhalides^[4a,g-i,5c]). It is a challenge to explore a widely applicable homocoupling protocol for organohalides as versatile as possible, and to simplify the catalytic system, especially the direct use of NiCl₂.

Samarium reagents have been extensively exploited in synthetic community^[6-9] since its initial introduction to organic synthesis in 1977 by Kagan.^[6] In contrast to the widespread applications of Sml₂,^[7-8] however, the direct use of samarium metal draws relatively less attention.^[9] Remarkably, the direct use of metallic samarium showed certain advantages over Sml₂, such as more practical and electron-economical.^[9] On the other hand, the incorporation of nickel salts into reducing agents for the achievement of specific purposes is impressive.^[3-4] By virtue of the strong reductive coupling ability of samarium, we assume samarium metal incorporated with nickel salt should exhibit exceptional reactivity upon some classical reactions. It is believed that Sml₂ is capable of readily reducing Ni(II) to Ni(0), and the addition of catalytic amounts of Ni(II) salts was believed to provide enhanced reactivity and selectivity of Sml₂.^[10a]

Results and Discussion

The Sm/NiCl₂ combination was applied in the homocoupling of organohalides herein, and thus provided a versatile homocoupling of organohalides in good efficiency (Scheme 1).

Scheme 1. The Homocoupling of various Organohalides.

Initially, benzyl bromide was chosen as the model substrate to investigate the feasibility of the reaction under various conditions, and the results are summarized in Table 1. First of all, a control with Ni salt was performed (entries 1-6). The presence of NiCl₂ proved to be critical to the coupling (Table 1, entry 1), and 5 mol % amount was suitable to complete the reaction (entries 2-5). Nevertheless, hexahydrated nickel chloride impeded the coupling reaction significantly (entry 6). Among the reducing agents, samarium metal exhibited the most powerful reactivity (compared with entries 7-11). It should be pointed out that only a complex mixture was afforded when Sml₂ was used instead of

FULL PAPER

WILEY-VCH

samarium metal (entry 7), which may also be regarded as a Sml₂/Ni⁽⁰⁾ reaction system considering the catalytic amount of NiCl₂.^{10a} However, to ensure smooth reaction, certain additives were required, among which the use of HMPA proved necessary in establishing and improving the reactions (compared with entries 12-17). As it is known, the extraordinary effects of HMPA may be attributed to its particular interaction with samarium.^[10b-f] It is interesting that no remarkable suppression of the coupling was observed when the coupling was carried out in the presence of 2,6-*di-tert*-butyl-4-methylphenol (entry 18), which may be useful to the further investigation of the mechanism.

Br NiCl ₂ (5 mol%), Reductant							
	THF, reflux						
Entry ^[a]	Reductant	NiCl ₂	Additive	Time	Yield		
		(mol%)		(h)	(%) ^[b]		
1	Sm	0	HMPA	12	[c,d]		
2	Sm	50	HMPA	0.5	95		
3	Sm	100	HMPA	3	93		
4	Sm	5	HMPA	8	93		
5	Sm	1	HMPA	24	74		
6	Sm	10 ^[e]	HMPA	24	31		
7	Sml ₂	5	HMPA	0.5	[†]		
8	Mg	5	HMPA	4	[†]		
9	Zn	5	HMPA	24	[f]		
10	Mn	5	HMPA	24	[†]		
11	Fe	5	HMPA	24	[d]		
12	Sm	10		12	9		
13	Sm	5	TMSCI	8	46		
14	Sm	5	KI	12	61		
15	Sm	5	l2 ^[g]	12	54		
16	Sm	5	1,10-phen	12	71		
17	Sm	5	bipy	12	67		
18	Sm	5	HMPA/BHT ^[h]	12	82		

[a] Table Footnote. [b] Isolated yields. [c] Without the presence of NiCl₂. [d] No desired product detected. [e] NiCl₂·6H₂O was used. [f] Complex mixture. [g] A grain of iodine was added. [h] 2,6-*Di-tert*-butyl-4-

Table 2.	The Versatile	Homocoupling	of Organohalides
----------	---------------	--------------	------------------

(1e)

R-X	1	NiCl ₂ (5 mol %), S THF, HMPA, refl	Sm → R−R			v				
Entry ^[a]		R-X	R-R	t (h)	Yield (%) ^[b]	Entry ^[a]	R-X	R-R	t (h)	Yie (%
1	1a	×	(2a)	8	89	24	MeO	MeO-C-OMe (3f)	12	91
2	1b	X=Cl (1a)	2a	8	93	25	o-√→−Br o (1i')		16	57
3	1c	Br(1b) I (1c)	2a	8	95	26	1i'	оса) Оса) Оса) Оса) Оса) Оса) Оса) Оса) О	48	41
4	_	Br (1d)	(2b)	8	96	27	N Br (1j')		24	80
5		CI		8	92	28	Br	[S S	24	71

For internal use, please do not delete. Submitted Manuscript

(2c)

methylphenol (1 equiv.) was added.

With the optimized conditions in hand, a variety of sterically and electronically diverse substrates were subjected to the reaction to investigate the generality of the protocol, and the results are shown in table 2. The organohalides investigated herein involve the following types: benzyl halides (Table 2, 1a-1p, entries 1-16), aryl halides (1a'-1i', entries 17-26), heterocyclic halides (1j'-1l', entries 27-29), alkyl halides (1a"-1i") including alkenyl halides (1a"-1c", entries 30-38), α-(**1j"-1k"**, haloacetophenones entries 39-40). phenvl alkylsulfonates (11"-1n", entries 41-43). These organohalides were well tolerated, affording the homocoupling products smoothly. The coupling types involved the Csp³-Csp³ (entries 1-16, 32-40) and the Csp²-Csp² (entries 17-31, 41-44).

Benzyl halides were the most reactive to undergo the homocoupling reaction, which featured high yields and shorter reaction times (entries 1-16). Both benzyl chlorides (entries 1, 5, 6, 8, 10-12, 14, 16) and benzyl bromides (entries 2, 4, 7, 9, 13, 15) yielded the corresponding bibenzyls with good efficiency. Excellent chemoselectivity was observed when the substrates **1** carrying -NO₂ (entry 12), –COOH (entry 13), and -X (entries 7-11) were subjected to the reaction.

The results also showed that slightly better yields were obtained for the benzyl halides with electron-donating groups (entries 4-6) than those with electron-withdrawing groups (entries 7-13). No obvious influences could be observed when relatively bulky substrates **1n** and **1o** were used (entries 14-15); neither did the benzylhalides with ortho-substituents (**1e** and **1j**, entries 5 and 10). Interestingly, (\pm) - α -bromoethylbenzene (**1o**) yielded homocoupling product with entire *meso*-selectivity (entry 15). Another unexpected result was also obtained when triphenylmethyl chloride (**1p**) underwent the homocoupling in spite of the lower yield, considering its challenging bulky structure (entry 16).

(**3**j)

(1k')

FULL PAPER

WILEY-VCH

[a] RX (2 mmol), Sm (2 mmol), NiCl₂ (5 mol %), HMPA (2 mmol), THF (10 mL), N₂ atmosphere, reflux. [b] Isolated yields. [c] With 100 % meso-selectivity. [d] About 30 % of substrate remained unreacted. [e] Oligomer was also observed in 8 h. [f] The dimer vanished gradually in next 8 h. [g] Complex mixture. [h] No cross-coupling product was observed, **2a** and **3a** were afforded in their respective yields.

Although longer reaction time was required, aryl halides afforded biaryls with almost similar efficiency compared with benzyl halides (entries 18-26), while chlorobenzene (1a') showed lower reactivity (entry 17). The formation of 4,4'dichlorobiphenyl (entry 21) and 4,4'-difluorobiphenyl (entry 22) indicates the distinct chemoselectivity between active halides (bromo, iodo) and inert halides (chloro, fluoro). The chemoselectivity was also observed when heterocyclic halides (1j'-1l') were compatible with the reaction conditions (entries 27-29), especially 2-bromo-5-methylpyridine (1j', entry 27), which was considered unstable in samarium reagents in some cases.⁸ However, the bromophenylacetate (1i') produced 3g in 16 h 25), (entrv which was then transformed to the monodeacetylation products (3h, entry 26) in 48 h.

(3e)

Among the aliphatic halides (entries 30-38), both configurations of β -bromostyrenes (**1a''** and **1b''**, *E*- and *Z*-) underwent the homocoupling smoothly to afford the single product of *E*,*E*-1,4-diphenylbutadiene (entry 30-31). The coupling of unactivated alkyl chlorides (entries 34-38) without in situ activation with Nal may inspire some interesting development in the field of Ni-catalyzed reductive coupling chemistry other than the known Barbier reactions. However, the reaction efficiency decreased when the molecular chains of the aliphatic halides became longer (entries 34, 37-38).

Further attempts to expand the homocoupling to α bromoacetophenones (1j"-1k") were also successful (entries 39-40). The results showed excellent chemoselectivity between bromo- and ketone groups which cannot tolerate samarium reagents in most cases.^[6-9] An remarkable substrate extension showed that phenyl organosulfonates (11"-1n") were also homocouplings. subjected to the reductive As pseudoorganohalides, phenyl trifluoromethanesulfonate (1n") exhibited good reactivity (entry 43), while both phenylsulfonates (11" and 1m") afforded biphenyl sluggishly (entries 41-42).

Subsequent investigation showed that *p*-dibromobenzene (**1o**") yielded the homocoupling product **4i** in 8 h together with oligomer afforded, while the dimer vanished gradually in next 8 h to afford a great quantity of oligomer (entry 44). However, only complex mixture was obtained when bibenzylchloride (**1p**") was used as the substrate (entry 45). Besides, the cross-coupling between benzyl bromide and bromobenzene was not successful, where only homocoupling products **2a** and **3a** were obtained in their respective yields (entry 46).

The reaction stereoselectivity may play an important role in the clarification of the mechanism (entries 15, 30-31). It probably implies that *via* the process of single-electron transfer (SET), a radical intermediate followed by a carbanion might be firstly

formed during the coupling of Csp³-Csp³ (entries 15),^[8a] and the successively resulting organosamarium species^[11] underwent the transmetallation (Scheme 2). As it is known, a radical or a carbanion actually loses its original configuration,^[12,13] which may be initiated by samarium,^[12a-d,13a-d] magnesium,^[12e,13e] lithium,^[13e-k] and Bu₃SnH.^[12f,13a,g] The stereochemical reaction involved with such intermediates are mainly influenced by the steric effect and the electronic effect. However, in some particular cases, high steroselectivity was thus achieved by appropriate control of these influencing effects.^[12c-d,13d-k]

Scheme 2. The Stereoselectivity of the Homocoupling.

In views of this, the fact that both *R*- and *S*- substrates (**1o**) affording the *meso*-product **2m** (entry 15) may be explained as the stereo adjustment of organosamarium during the transmetallation (Scheme 2), which accommodates the stereo requirement of the Csp³-Csp³ coupling. The steric effect plays an important role here in the control of the stereochemistry through the formation of a stable staggered conformation. With the retention of configuration,^[14] the subsequent *cis*-reductive elimination thus produce an *meso*-configured product. The results that both *cis*-and *trans*- substrates (**1a**" and **1b**", entries 30-31) affording a single *trans-,trans-* product **4a** (Scheme 3)

may also be explained in this manner. Nevertheless, it is also considered that a different process might be involved in such a coupling of Csp^2-Csp^2 type.^[15]

Scheme 3. The Trans-homocoupling of Alkenyl Halides.

However, there still remains a certain doubt for the reaction mechanism. Besides the organosamarium pathway, a potential intermediacy of Ni(I) species^[1a,16] may also be taken into account, which is not considered or ruled out in the present proposal. Further experimental evidence was obtained by the performance of the process in the presence of D_2O (Scheme 4). The results provide crucial information about the intermediacy of organosamarium species, due to D incorporation was observed. As a result, a Ni(I)/Ni(III) cycle may not be considered as an alternative process for the catalytic cycle in this case.

(a) NiCl₂ (5 mol %), Sm, THF, HMPA, reflux (as given in Table 2)

Scheme 4. Deuteration of the Intermediate during the Homocoupling.

Nevertheless, an organosamarium species is usually considered unstable and only formed during an *in-situ* transformation.^[11] Therefore, it is difficult to realize the stepwise cross-coupling at current stage (Table 2, entry 46).

Based on these results, a plausible mechanism of the homocoupling was proposed as shown in Scheme 5. Nickel(II) may play two roles in this reaction. Firstly, Ni(II) is reduced by samarium, which is believed to activate samarium metal to initiate its reducing ability. Secondly, the resulting Ni(0) undergoes oxidative addition of R-X to furnish complex **A**. Meanwhile, the resulting activated samarium instantly promotes R-X to generate an organosamarium species **B** *via* the single-electron transfer process. Accompanied with the reduction by samarium, the transmetallation of **A** with **B** then occurs to afford R₂Ni (**C**), followed by the reductive elimination to yield the coupling product. Simultaneously Ni(0) species is regenerated, furnishing the catalytic cycle.

Conclusions

In summary, a novel coupling agent of Sm/Ni(II) is demonstrated which shows the extraordinary homocoupling reactivity for widespread organohalides and pseudo-organohalides in the presence of HMPA. With excellent chemoselectivity and stereoselectivity, the reductive homocoupling reaction provides an efficient method for the synthesis of biphenyls, bibenzyls, 1,4diketones and long-chain hydrocarbons from readily available materials.

Experimental Section

Typical procedure for the preparation of bibenzyl from benzyl bromide

To a mixture of Sm powder (0.3 g, 2 mmol), NiCl₂ (0.013 g, 0.1 mmol) in anhydrous THF (10 mL) under a nitrogen atmosphere, HMPA (0.35 ml, 2mmol) and benzyl bromide (0.24 mL, 2 mmol) were added at reflux with magnetic stirring. After completion of the reaction (about 4 h, monitored by TLC), dilute hydrochloric acid (2 M, 5 mL) was added and the resulting mixture was extracted with ethyl acetate (3 × 10 mL). The combined organic layer was washed with brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude product was purified with flash chromatography (silica/petroleum ether - ethyl acetate 100 : 1 v/v) to afford 169.5 mg of bibenzyl with 93% yield.

Acknowledgements

The project sponsored by the Research Fund for Excellent Young and Middle-Aged Scientists of Shandong Province (BS2011CL019).

Keywords: homocoupling • organohalide • nickel(II) chloride • samarium • organosulfonate

[1] For recent reviews: a) B. M. Rosen, K. W. Quasdorf, D. A. Wilson, N. Zhang, A.-M. Resmerita, N. K. Garg, V. Percec, Chem. Rev. 2011, 111,

1346-1416; b) F.-S. Han, *Chem. Soc. Rev.* **2013**, *42*, 5270-5298; c) V. P. Mehta, E. V. Van der Eycken, *Chem. Soc. Rev.* **2011**, *40*, 4925-4936; d) R. Jana, T. P. Pathak, M. S. Sigman, *Chem. Rev.* **2011**, *111*, 1417-1492; e) T. Sperger, I. A. Sanhueza, I. Kalvet, F. Schoenebeck, *Chem. Rev.* **2015**, *115*, 9532-9586; f) D. Ravelli, S. Protti, M. Fagnoni, *Chem. Rev.* **2016**, *116*, 9850–9913; g) S. Roscales, A. G. Csákÿ, *Chem. Soc. Rev.* **2014**, *43*, 8215-8225.

- [2] a) S. K. Gurung, S. Thapa, B. Shrestha, R. Giri, Org. Chem. Front.
 2015, 2, 649-653; b) C. E. I. Knappke, S. Grupe, D. Gartner, M. Corpet, C. Gosmini, A. J. von Wangelin, Chem. Eur. J. 2014, 20, 6828-6842; c)
 A. Moncomble, P. L. Floch, C. Gosmini, Chem. Eur. J. 2009, 15, 4770-4774; d) C. C. C. J. Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, Angew. Chem. Int. Ed. 2012, 51, 5062-5085; e) S. Nadri, E. Azadi, A. Ataei, M. Joshaghani, E. Rafiee, J. Organomet. Chem. 2011, 696, 2966-2970.
- [3] a) J. Gu, X. Wang, W. Xue, H. Gong, Org. Chem. Front. 2015, 2, 1411-1421; b) D. B. Biradar, H.-M. Gau, Chem. Commun. 2011, 47, 10467-10469; c) M. S. Oderinde, A. Varela-Alvarez, B. Aquila, D. W. Robbins, J. W. Johannes, J. Org. Chem. 2015, 80, 7642-7651; d) S. Biswas, D. J. Weix, J. Am. Chem. Soc. 2013, 135, 16192-16197; e) X. Hu, Chem. Sci. 2011, 2, 1867-1886; f) B. L. H. Taylor, E. R. Jarvo, J. Org. Chem. 2011, 76, 7573-7576; g) A. H. Cherney, N. T. Kadunce, S. E. Reisman, J. Am. Chem. Soc. 2013, 135, 7442-7445; h) J. Zhang, G. Lu, J. Xu, H.Sun, Q. Shen, Org. Lett. 2016, 18, 2860-2863.
- [4] a) S. M. Goldup, D. A. Leigh, R. T. McBurney, P. R. McGonigal, A. Plant, *Chem. Sci.* 2010, *1*, 383-386; b) J. Hashim, C. O. Kappe, *Adv. Synth. Catal.* 2007, *349*, 2353-2360; c) T. Chen, L. Yang, L. Li, K.-W. Huang, *Tetrahedron* 2012, *68*, 6152-6157; (d) L.-Y. Liao, X.-R. Kong, X.-F. Duan, *J. Org. Chem.* 2014, *79*, 777-782; e) M. R. Prinsell, D. A. Everson, D. J. Weix, *Chem. Commun.* 2010, *46*, 5743-5745; f) S. B. Jhaveri, K. R. Carter, *Chem. Eur. J.* 2008, *14*, 6845-6848; (g) H. Xu, C. Zhao, Q. Qian, W. Deng, H. Gong, *Chem. Sci.* 2013, *4*, 4022 4029; (h) W. Xue, H. Xu, Z. Liang, Q. Qian, H. Gong, *Org. Lett.* 2014, *16*, 4984-4987; (i) X. Yu, T. Yang, S. Wang, H. Xu, H. Gong, *Org. Lett.* 2011, *13*, 2138-2141; (j) S. Khan, A. Ghatak, S. Bhar, *Tetrahedron Lett.* 2015, *56*, 2480 -2487; (k) Y. Peng, L. Luo, C.-S. Yan, J.-J. Zhang, Y.-W. Wang, *J. Org. Chem.* 2013, *78*, 10960–10967; (l) Y. Masuda, N. Ishida, M. Murakami, *Eur. J. Org. Chem.* 2016, 5822-5825.
- [5] a) K. Sato, Y. Inoue, T. Mori, A. Sakaue, A. Tarui, M. Omote, I. Kumadaki, A. Ando, *Org. Lett.* **2014**, *16*, 3756-3759; b) D. Toumcanmini, F. Ouazzani, M. Taillefer, *Org. Lett.* **2013**, *15*, 4690-4693; c) Y. Cai, X. Qian, C. Gosmini, *Adv. Synth. Catal.* **2016**, *358*, 2427-2430.
- [6] a) J. L. Namy, P. Girard, H. B. Kagan, *Nouv. J. Chim.* **1977**, *1*, 5-7; b) P. Girard, J. L. Namy, H. B. Kagan, *J. Am. Chem. Soc.* **1980**, *102*, 2693-2698.
- [7] For books on Sml₂, see: a) S. C. Coote, R. A. Flowers II, T. Skrydstrup, D. J. Procter in Organic Synthesis Using Samarium Diiodide: Synthetic Strategies, Applications, RSC Publishing, Cambridge, 2012; b) D. J. Procter, R. A. Flowers II, T. Skrydstrup in Organic Synthesis using Samarium Diiodide: A Practical Guide, RSC Publishing, Cambridge, 2009; c) X. Just-Baringo, I. Yalavac, D. Procter in Overcoming synthetic challenges in target synthesis using Sml₂: recent advances, Vol. 40, RSC Publishing, Cambridge, Organomet. Chem., 2016, 1-32.
- [8] For recent reviews on Sml₂, see: a) M. Szostak, N. J. Fazakerley, D. Parmar, D. J. Procter, *Chem. Rev.* 2014, *114*, 5959-6039; b) M. Szostak, M. Spain, D. J. Procter, *Chem. Soc. Rev.* 2013, *42*, 9155-9183; c) C. Beemelmanns, H.-U. Reissig, *Chem. Soc. Rev.* 2011, *40*, 2199-2210; d) K. Gopalaiah, H. B. Kagan, *Chem. Rec.* 2013, *13*, 187-208; e) J. M. Concellón, H. Rodríguez-Solla, C. Concellón, V. del Amo,

Chem. Soc. Rev. 2010, 39, 4103-4113; f) T. Nakata, Chem. Soc. Rev. 2010, 39, 1955-1972.

- a) B. K. Banik, *Eur. J. Org. Chem.* 2002, 2431-2444; b) G. A. Molander, *Chem. Rev.* 1992, 92, 29-68; c) S. Talukdar, J.-M. Fang, *J. Org. Chem*, 2001, 66, 330-333; d) C. Yu, B. Liu, L. Hu, *J. Org. Chem.* 2001, 66, 919-924.
- [10] a) K. A. Choquette, D. V. Sadasivam, R. A. Flowers II, *J. Am. Chem. Soc.* 2011, *133*, 10655-10661; b) A. C. Kimberly, V. S. Dhandapani, A. F. Robert II, *J. Am. Chem. Soc.* 2010, *132*, 17396-17398; c) D. V. Sadasivam, P. K. S. Antharjanam, E. Prasad, R. A. Flowers II, *J. Am. Chem. Soc.* 2008, *130*, 7228-7229; d) J. B. Shotwell, J. M. Sealy, R. A. Flowers II, *J. Org. Chem.* 1999, *64*, 5251-5255; e) H. Farran, S. Hoz, *Org. Lett.* 2008, *10*, 865-867; f) S. Halder, S. Hoz, *J. Org. Chem.* 2014, *79*, 2682-2687.
- [11] a) D. Curran, M. J. Totleben, J. Am. Chem. Soc. 1992, 114, 6050-6058;
 b) F. Hélion, J.-L. Namy, J. Org. Chem. 1999, 64, 2944-2946; c) P. Wipf
 S. Venkatraman, J. Org. Chem. 1993, 58, 3455-3459; d) M. C. Joséand
 R.-S. Humberto, Chem. Soc. Rev. 2004, 33, 599-609; e) K. C. Nicolaou
 P. E. Shelby, S. C. Jason, Angew. Chem. Int. Ed. 2009, 48, 7140-7165.
- [12] a) G. A. Molander, L. S. Harring. J. Org. Chem. 1990, 55, 6171-6176;
 b) J. E. Baldwin, S. C. M. Turner, M. G. Moloney, Tetrahedron 1994, 50
 9425-9438; c) M. Inui, A. Nakazaki, S. Kobayashi, Org. Lett. 2007, 9,
 469-472; d) K. Takahashi, T. Honda, Org. Lett. 2010, 12, 3026-3029; e)
 B. Méchin, N. Naulet, J. Organomet. Chem. 1972, 9, 229-236; f) C.-K.
 Sha, Z.-P. Zhan, F.-S. Wang, Org. Lett. 2000, 2, 2011-2013.
- a) C. F. Sturino, A. G. Fallis, J. Org. Chem. 1994, 59, 6514-6516; b) T. [13] Mittag, K. L. Christensen, K. B. Lindsay, N. C. Nielsen, T. Skrydstrup, J. Org. Chem. 2008, 73, 1088-1092; c) J. Saadi, D. Lentz, H.-U. Reissig, Org. Lett. 2009, 11, 3334-3337; d) J. M. Concellón, P. L. Bernad, E. Bardales, Org. Lett. 2001, 3, 937-939; e) H. M. Walborsky, A. E. Young J. Am. Chem. Soc. 1964, 86, 3288-3296; f) I. Coldham, S. Raimbault, P T. Chovatia, J. J. Patel, D. Leonori, N. S. Sheikha, D. T. E. Whittakerb. Chem. Commun. 2008, 4174-4176; g) E. A. Mitchell, A. Peschiulli, N. Lefevre, L. Meerpoel,, B. U. W. Maes, Chem. Eur. J. 2012, 18, 10092-10142; h) I. Coldham, D. Leonori, T. K. Bengb, R. E. Gawley, Chem. Commun. 2009, 5239-5241; i) T. K. Beng, R. E. Gawley, J. Am. Chem. Soc. 2010, 132, 12216-12217; j) I. Coldham, J. J. Patel, S. Raimbaulta, D. T. E. Whittaker, Chem. Commun. 2007, 4534-4536; k) I. Coldham, S Raimbault, D. T. E. Whittaker, P. T. Chovatia, D. Leonori, J. J. Patel, N. S. Sheikh, Chem. Eur. J. 2010, 16, 4082-4090.
- [14] a) T. Hu, J. S. Panek, *J. org. chem.* **1999**, *64*, 3000-3001; b) J. S. Panek, C. E. Masse, *J. Org. Chem.* **1997**, *62*, 8290-8291; c) A. K. Mapp C. H. Heathcock, *J. Org. Chem.* **1999**, *64*, 23-27; d) K. Yuki, M. Shindo, K. Shishido, *Tetrahedron Lett.* **2001**, *42*, 2517-2519.
- [15] A possible zwitterionic C(carbene)–Ni complex might be involved: (a) J.
 Liu, Q. Ren, X. Zhang, H. Gong, *Angew. Chem. Int. Ed.* 2016, *55*, 15544-15548; (b) C. Clarke, C. A. Incerti-Pradillos, H. W. Lam, *J. Am. Chem. Soc.* 2016, *138*, 8068-8071; (c) J. M. Huggins, R. G. Bergman, *J. Am. Chem. Soc.* 1981, *103*, 3002-3011.
- [16] a) X. Wang, Y. Dai, H. Gong, *Top. Curr. Chem. (Z)*, **2016**, 374:43, doi:10.1007/s41061-016-0042-2; b) T. Moragas, A. Correa, R. Martin, *Chem. Eur. J.* **2014**, *20*, 8242-8258; c) J. Cornella, E. Gómez-Bengoa, R. Martin, *J. Am. Chem. Soc.* **2013**, *135*, 1997-2009; d) A. Velian, S. Lin, A. J. M. Miller, M. W. Day, T. Agapie, *J. Am. Chem. Soc.* **2010**, *132* 6296–6297; e) G. D. Jones, J. L. Martin, C. McFarland, O. R. Allen, R. E. Hall, A. D. Haley, R. J. Brandon, T. Konovalova, P. J. Desrochers, P. Pulay, D. A. J. Vicic, *J. Am. Chem. Soc.* **2006**, *128*, 13175-13183.

WILEY-VCH

Entry for the Table of Contents (Please choose one layout)

Layout 1:

FULL PAPER

Catalyzed by NiCl₂, the homocoupling of organohalides or organosulfonates was accomplished with high efficiency *via* the promotion of samarium metal and HMPA. Excellent chemoselectivity was exhibited between halides and – COOH, -NO₂, -X (inerter halogen), heterocyclic ring, ester, and ketone groups. The particular stereoselectivity implied that the reaction mechanism might involve an organosamarium species.

Csp³-Csp³

25 examples

up to 96 %

Csp²-Csp² 19 examples up to 91 % Yongjun Liu,* Shuhuan Xiao, Yan Qi, and Feng Du

Page No. – Page No.

Reductive Homocoupling of Organohalides via the Direct Use of Nickel(II) Chloride / Samarium Metal

Layout 2:

FULL PAPER

((Insert TOC Graphic here; max. width: 11.5 cm; max. height: 2.5 cm))

Author(s), Corresponding Author(s)*

Page No. – Page No. Title

Text for Table of Contents

anusci scepte