

# Cobalt-Catalyzed Diastereoselective Cross-Couplings between Alkynylzinc Pivalates and Functionalized Cyclic lodides or Bromides

Lucie Thomas, Ferdinand H. Lutter, Maximilian S. Hofmayer, Konstantin Karaghiosoff, and Paul Knochel\*<sup>®</sup>

Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, 81377 München, Germany

**Supporting Information** 



**ABSTRACT:** Various 1,2-, 1,3-, and 1,4-substituted cyclic iodides or bromides undergo highly diastereoselective cross-couplings (diastereoselectivity (dr) up to 99:1) with a range of alkynylzinc pivalates, using  $CoCl_2$  (20 mol%) and *trans-N,N,N',N'*-tetramethylcyclohexane-1,2-diamine as a catalytic system.

ransition-metal-catalyzed diastereoselective cross-couplings represent an excellent way for the stereoselective synthesis of organic molecules.<sup>1</sup> Although palladium has been employed for such stereoselective cross-couplings,<sup>2</sup> the use of alternative, less-expensive, and less-toxic metals, such as iron<sup>3</sup> or cobalt,<sup>4</sup> has recently attracted a lot of attention. In most crosscoupling reactions, organomagnesium reagents, including alkynylmagnesium halides, are the preferred nucleophiles.  $^{2e,3e,4g,h,5}$  Recently, we have shown that the use of organozinc reagents can be advantageous for such cross-couplings, because of the high tolerance of functional groups of these organometallics.<sup>6</sup> Particularly, the use of organozinc pivalates of the type RZnOPiv·MgX<sub>2</sub><sup>7</sup> enables fast and efficient cobalt-catalyzed cross-couplings.<sup>8</sup> We have also reported that alkynylzinc pivalates are readily prepared from the corresponding alkynes. After solvent evaporation, solid organozinc pivalates are obtained with enhanced air and moisture stability.<sup>9</sup> Also, these organozinc pivalates undergo convenient cobalt-catalyzed cross-couplings with aryl halides and heteroaryl halides.<sup>10</sup> Herein, we report a new, diastereoselective cross-coupling between alkynylzinc pivalates of type 1 and various functionalized cyclic iodides or bromides of type 2. In preliminary experiments, 3-isopropylcyclohexyl iodide (2a) was treated with 2-phenylethynylzinc pivalate (1a) at 0 °C under various conditions (Table 1). First, we tested some low-cost transitionmetal salts. NiCl<sub>2</sub>, <sup>5c,11</sup> MnCl<sub>2</sub>, <sup>12</sup> FeCl<sub>2</sub>, <sup>3e,5a,b</sup> and CuCl<sub>2</sub>, <sup>13</sup> without any additive or in the presence of TMEDA (N,N,N',N')-tetramethylethylendiamine), were unsuitable metal catalysts for this coupling (entries 1-4 in Table 1). However, using 20 mol % of CoCl<sub>2</sub> and TMEDA as an additive provided 3a in 67% yield, but with moderate diastereoselectivity (dr = 85:15, entry 6 in Table 1).

Other cobalt sources, such as  $CoBr_2$  or  $CoCl_2$ ·2LiCl, did not have beneficial effects (see entries 7 and 8 in Table 1). The

Table 1. Optimization of the Conditions for theDiastereoselective Cross-Coupling of 1,3-DisubstitutedCyclohexyl Iodide (2a) with Alkynylzinc Pivalate (1a)

|                                                | i-Pr<br>2a                | Ph——ZnOPiv<br>1a (1.5 equiv)<br>catalyst (20 mol %)<br>additive (2.0 equiv)<br>THF, 0 °C, 8 h | i-Pr<br>3a             | Ph                       |
|------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------|------------------------|--------------------------|
| entry                                          | catalyst                  | additive                                                                                      | yield <sup>a</sup> (%) | dr <sup>a</sup>          |
| 1                                              | NiCl <sub>2</sub>         |                                                                                               | $0(0)^{b}$             | n.d. (n.d.) <sup>b</sup> |
| 2                                              | $MnCl_2$                  |                                                                                               | $0 (0)^{b}$            | n.d. (n.d.) <sup>b</sup> |
| 3                                              | FeCl <sub>2</sub>         |                                                                                               | $0 (0)^{b}$            | n.d. (n.d.) <sup>b</sup> |
| 4                                              | CuCl <sub>2</sub>         |                                                                                               | $0 (0)^{b}$            | n.d. (n.d.) <sup>b</sup> |
| 5                                              | CoCl <sub>2</sub>         |                                                                                               | 5                      | 80:20                    |
| 6                                              | CoCl <sub>2</sub>         | TMEDA                                                                                         | 67                     | 85:15                    |
| 7                                              | CoBr <sub>2</sub>         | TMEDA                                                                                         | 11                     | 85:15                    |
| 8                                              | CoCl <sub>2</sub> ·2LiCl  | TMEDA                                                                                         | 62                     | 85:15                    |
| 9                                              | CoCl <sub>2</sub>         | L1                                                                                            | 2                      | n.d.                     |
| 10                                             | CoCl <sub>2</sub>         | L2                                                                                            | 38                     | 88:12                    |
| 11                                             | $CoCl_2$                  | L3                                                                                            | 86 (78) <sup>c</sup>   | 92:8                     |
| 12                                             | $\operatorname{CoCl_2}^d$ | L3                                                                                            | 85                     | 92:8                     |
| $a_{A_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_$ |                           |                                                                                               |                        |                          |

<sup>*a*</sup>As determined by GC analysis. Tetradecane  $(C_{14}H_{30})$  was used as internal standard. Only the major diastereomer is shown. <sup>*b*</sup>2.0 equiv of TMEDA were used. <sup>*c*</sup>Isolated yield. <sup>*d*</sup>CoCl<sub>2</sub> (99.99% purity).

diastereoselectivity was improved by screening various *N*-ligands (entries 9–11 in Table 1). Clearly, *trans-N,N,N',N'*-tetramethylcyclohexane-1,2-diamine (L3) gave the best results (entry 11 in Table 1). Also, varying the solvent system did not improve the reaction outcome.<sup>14</sup> At this point, we verified that

Received: March 9, 2018

no other metal contaminations are responsible for this catalysis. Thus, using  $CoCl_2$  (99.99% purity) led to **3a** in 85% yield (dr = 92:8, entry 12 in Table 1). With these optimized reaction conditions in hand, we performed a range of coupling reactions of various alkynylzinc pivalates of type **1** with 1,3-substituted cyclic alkyl iodides of type **2**, furnishing the thermodynamically favored *cis*-isomer (see Table 2).<sup>15</sup>

Table 2. Products (3) Obtained by the Diastereoselective Cross-Coupling of 1,3-Disubstituted Cyclohexyl Iodides (2) with Various Alkynylzinc Pivalates (1)



"Isolated yield. The diastereoselectivity (dr) was determined by GC analysis. The major diastereomer is shown. <sup>b</sup>dr = 99:1. <sup>c</sup>dr = 85:15.

The coupling of 2a with bulky alkynes, such as zinc pivalates 1b or 1c, resulted in the corresponding coupling products (3b or 3c) in 91%–95% yield and high diastereoselectivity (dr = 95:5-98:2, entries 1 and 2 in Table 2). Also, the propargylic alcohol derivative 1d was successfully coupled with cyclic iodides bearing a trifluoromethyl 2b and an aryl group 2c, to provide 3d and 3e in 62%-78% yield, respectively, with a dr up to 98:2 (entries 3 and 4 in Table 2). Pyran 3f was obtained by coupling of the heterocyclic iodide 2d with 1a in 76% yield and dr = 93.7 (entry 5 in Table 2). Remarkably, the cross-coupling of iodide 2e, derived from the natural product (+)-nootkatone,<sup>16</sup> proceeded smoothly with alkynylzinc pivalate 1e, leading to the coupling product 3g in 60% yield (dr = 96:4, entry 6 in Table 2). In addition, this cobalt-catalyzed crosscoupling was applied to 1,4-disubstituted cyclohexyl halides, leading to trans-coupling products (see Table 3).<sup>17</sup> Thus, 4Table 3. Products (3) Obtained by the Diastereoselective Cross-Coupling of 1,4-Disubstituted Cyclohexyl Halides (2) with Various Alkynylzinc Pivalates (1)



<sup>*a*</sup>Isolated yield. The diastereoselectivity (dr) was determined by GCanalysis. The major diastereomer is shown. <sup>*b*</sup>dr = 92:8. <sup>*c*</sup>dr = 68:32. <sup>*d*</sup>dr = 90:10. <sup>*e*</sup>dr = 99:1.

phenyl cyclohexyl iodide (2f) reacted smoothly with various alkynylzinc pivalates (1b, 1f, 1g, 1h), resulting in the products 3h-3k in 68%-96% yield (dr = 90:10-99:1, entries 1-4 in Table 3). Also, an ester function was tolerated in these couplings, and the iodoester 2g was converted to the *trans*-alkyne 3l in 71% yield (dr = 90:10, entry 5 in Table 3).

Furthermore, pyrrole derivative 2h was coupled with 1j, furnishing the *trans*-pyrrole-substituted cyclohexane derivative 3m in 83% yield and a dr of 95:5 (entry 6 in Table 3). 4-(*tert*-Butyl)cyclohexyl bromide (2i) reacts readily with the silylated alkynylzinc pivalate 1k, leading to the *trans*-1,4-cyclohexane derivative 3n (71%, dr = 90:10, entry 7 in Table 3). Also, the corresponding cyclohexyl iodide 2j undergoes such couplings with alkynylzinc pivalates 1k and 1l, providing the products 3n and 30 in 73%–84% yields and a dr up to 94:6 (entries 8 and 9 in Table 3).

In addition, this cross-coupling was performed with 1,2substituted cyclic halides and bromo-glycosides (see Table 4).<sup>3f,4e</sup> TBS-protected iodo or bromohydrins **2k** and **2l** were

## Table 4. Products (3) Obtained by the Diastereoselective Cross-Coupling of 1,2-Disubstituted Cyclic (Hetero)alkyl Halides (2) with Alkynylzinc Pivalates (1)





successfully coupled with alkynylzinc pivalate **1b**, leading to the thermodynamically preferred *trans*-substituted product **3p** in 60%–78% yield (dr = 99:1, entry 1 in Table 4).<sup>18</sup> Similarly, iodohydrin **2k** reacted with **1a** to give the *trans*-1,2-disubstituted cyclohexane derivative **3q** in 72% yield (dr = 94:6, entry 3 in Table 4). Bicyclic bromide **2m** was converted to the alkynylated product **3r** in 62% yield (dr = 99:1, entry 4 in Table 4). This cobalt-catalyzed cross-coupling was further extended to five-membered heterocyclic halohydrins **2n** and **2o** (entries 5 and 6 in Table 4). The coupling of the TBS-protected cyclic iodohydrin **2n** with alkynylzinc pivalate **1n** 

affords the desired substituted tetrahydrofuran 3s in 63% yield (dr = 99:1, entry 5 in Table 4). Coupling of the iodopyrrolidine derivative 20 with 11 affords the trans-1,2-disubstituted heterocycle 3t in 75% yield and high diastereoselectivity (dr = 99:1, entry 6 in Table 4). Remarkably, this diastereoselective cross-coupling could also be performed using the bromoglycoside 2p. Thus, galactose derivative 2p was successfully cross-coupled under cobalt catalysis with alkynylzinc pivalates 1k and 1l, furnishing the  $\alpha$ -C-glycosides 3u and 3v in 52%-54% yields and high  $\alpha/\beta$ -selectivity ( $\alpha/\beta = 94:6-95:5$ , entries 7 and 8 in Table 4). The stereochemical outcome of these cobaltcatalyzed cross-couplings with bromo-glycosides could be explained with the formation of an anomeric  $\alpha$ -radical intermediate.<sup>3e,f,4a,e,19</sup> The reaction between the allyl-protected iodohydrin **2q** and the alkynylzinc pivalate **1k** led to the bicyclic product 3w in 68% yield (dr = 95:5; see Scheme 1).<sup>20</sup> This result confirms a radical pathway for this cross-coupling.

# Scheme 1. Diastereoselective Cyclization of Iodide 2q with Alkynylzinc Pivalate 1k









(2r) led to the alkynylated steroid 3x in 75% yield (dr = 98:2).<sup>21</sup> Remarkably, the use of an iodo epiandrosterone derivative containing a ketone moiety also proceeded smoothly in 84% yield (dr = 92:2).

In conclusion, we have shown that a cobalt-catalyzed crosscoupling reactions of 1,2- 1,3-, and 1,4-substituted 5- and 6membered cyclic (hetero)alkyl halides with alkynylzinc pivalates proceed with high and predictable diastereoselectivity. Also, alkynyl-substituted glycosides were prepared with excellent  $\alpha$ -selectivity. Further mechanistic studies and applications to more functionalized ring systems and heterocycles are currently underway in our laboratories.

# ASSOCIATED CONTENT

#### **Supporting Information**

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.8b00784.

Full experimental details and <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra (PDF)

# **Accession Codes**

CCDC 1826096 and 1826097 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data\_request/cif, or by emailing data\_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, U.K.; fax: +44 1223 336033.

# AUTHOR INFORMATION

#### Corresponding Author

\*E-mail: Paul.Knochel@cup.uni-muenchen.de. ORCID ©

Paul Knochel: 0000-0001-7913-4332

#### Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENTS

We thank the DFG (SFB 749) for financial support. We also thank Albemarle (Hoechst, Germany) for the generous gift of chemicals.

### REFERENCES

(1) (a) Chemler, S. R.; Trauner, D.; Danishefsky, J. Angew. Chem., Int. Ed. 2001, 40, 4544. (b) Powell, D.; Maki, T.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 510. (c) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656. (d) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Chem. Rev. 2015, 115, 9587.

(2) (a) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442. (b) Thaler, T.; Haag, B.; Gavryushin, A.; Schober, K.; Hartmann, E.; Gschwind, R.; Zipse, H.; Mayer, P.; Knochel, P. Nat. Chem. 2010, 2, 125. (c) Thaler, T.; Guo, L.; Mayer, P.; Knochel, P. Angew. Chem., Int. Ed. 2011, 50, 2174. (d) Seel, S.; Thaler, T.; Takatsu, K.; Zhang, C.; Zipse, H.; Straub, B.; Mayer, P.; Knochel, P. J. Am. Chem. Soc. 2011, 133, 4774. (e) Knappke, C. E. I.; von Wangelin, A. J. Chem. Soc. Rev. 2011, 40, 4948. (f) Li, L.; Wang, C.-Y.; Huang, R.; Biscoe, M. Nat. Chem. 2013, 5, 607–612.

(3) (a) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217. (b) Sherry, B. D.; Fürstner, A. Acc. Chem. Res. 2008, 41, 1500. (c) Bauer, I.; Knölker, H.-J. Chem. Rev. 2015, 115, 3170. For diastereoselective reactions, see: (d) Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 3686. (e) Steib, A.; Thaler, T.; Komeyama, K.; Mayer, P.; Knochel, P. Angew. Chem., Int. Ed. 2011, 50, 3303. (f) Adak, L.; Kawamura, S.; Toma, G.; Takenaka, T.; Isozaki, K.; Takaya, H.; Orita, A.; Li, H.; Shing, T.; Nakamura, M. J. Am. Chem. Soc. 2017, 139, 10693.

(4) (a) Cahiez, C.; Moyeux, A. Chem. Rev. 2010, 110, 1435.
(b) Hammann, J. M.; Hofmayer, M. S.; Lutter, F. H.; Thomas, L.; Knochel, P. Synthesis 2017, 49, 3887. For stereoselective reactions, see: (c) Ohmiya, H.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2006, 128, 1886. (d) Ohmiya, H.; Yorimitsu, H.; Oshima, K. Org. Lett. 2006, 8, 3093. (e) Nicolas, L.; Angibaud, P.; Stansfield, I.; Bonnet, P.; Meerpoel, L.; Reymond, S.; Cossy, J. Angew. Chem., Int. Ed. 2012, 51, 11101. (f) Nicolas, L.; Izquierdo, E.; Angibaud, P.; Stansfield, I.; Meerpoel, L.; Reymond, S.; Cossy, J. J. Org. Chem. 2013, 78, 11807. (g) Hammann, J. M.; Steib, A.; Knochel, P. Org. Lett. 2014, 16, 6500.

(h) Hammann, J.; Haas, D.; Tüllmann, C.-P.; Karaghiosoff, K.; Knochel, P. Org. Lett. 2016, 18, 4778.

(5) (a) Hatakeyama, T.; Okada, Y.; Yoshimoto, Y.; Nakamura, M. Angew. Chem., Int. Ed. 2011, 50, 10973–10976. (b) Cheung, C.; Ren, P.; Hu, X. Org. Lett. 2014, 16, 2566. (c) Vechorkin, O.; Godinat, A.; Scopelliti, R.; Hu, X. Angew. Chem., Int. Ed. 2011, 50, 11777.

(6) Haas, D.; Hammann, J. M.; Greiner, R.; Knochel, P. ACS Catal. 2016, 6, 1540.

(7) (a) Bernhardt, S.; Manolikakes, G.; Kunz, T.; Knochel, P. Angew. Chem., Int. Ed. 2011, 50, 9205. (b) Manolikakes, S.; Ellwart, M.; Stathakis, C.; Knochel, P. Chem.—Eur. J. 2014, 20, 12289. (c) Chen, Y.-H.; Ellwart, M.; Malakhov, V.; Knochel, P. Synthesis 2017, 49, 3215.

(8) Hammann, J. M.; Lutter, F. H.; Haas, D.; Knochel, P. Angew. Chem., Int. Ed. 2017, 56, 1082.

(9) Chen, Y.; Tüllmann, C.; Ellwart, M.; Knochel, P. Angew. Chem., Int. Ed. 2017, 56, 9236.

(10) Hammann, J. M.; Thomas, L.; Chen, Y.-H.; Haas, D.; Knochel, P. Org. Lett. 2017, 19, 3847.

(11) (a) Gong, H.; Gagné, M. R. J. Am. Chem. Soc. 2008, 130, 12177.

(b) Caeiro, J.; Perez-Sestelo, J.; Sarandeses, L. Chem.—Eur. J. 2008, 14, 741. (c) Xu, G.; Li, X.; Sun, H. J. Organomet. Chem. 2011, 696, 3011.

(12) Cahiez, G.; Duplais, C.; Buendia, J. Angew. Chem. 2009, 121, 6859.

(13) Thapa, S.; Shrestha, B.; Gurung, S. K.; Giri, R. Org. Biomol. Chem. 2015, 13, 4816.

(14) See the Supporting Information for more details.

(15) The stereochemistry of **3a** and **3b** was confirmed by literature NMR data. See: Thaler, T.; Guo, L.; Mayer, P.; Knochel, P. Angew. Chem., Int. Ed. **2011**, 50, 2174.

(16) Mu, X.; Shibata, Y.; Makida, Y.; Fu, G. C. Angew. Chem., Int. Ed. 2017, 56, 5821.

(17) The stereochemistry of the product **30** was determined by crystal structure analysis.

(18) The stereochemistry of **3p** was confirmed by literature NMR data. Hammann, J.; Haas, D.; Tüllmann, C.-P.; Karaghiosoff, K.; Knochel, P. *Org. Lett.* **2016**, *18*, 4778.

(19) (a) Adlington, R. M.; Baldwin, J. E.; Basak, A.; Kozyrod, R. P. J. Chem. Soc., Chem. Commun. 1983, 944. (b) Dupuis, B.; Giese, D.; Rüegge, D.; Fischer, H.; Korth, H. G.; Sustmann, R. Angew. Chem., Int. Ed. Engl. 1984, 23, 896. (c) Abe, H.; Shuto, S.; Matsuda, A. J. Am. Chem. Soc. 2001, 123, 11870. (d) Li, G.; Xiong, D. C.; Ye, X. S. Synlett 2011, 2011, 2410. (e) Wakabayashi, K.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2001, 123, 5374. (f) Tsuji, T.; Yorimitsu, H.; Oshima, K. Angew. Chem., Int. Ed. 2002, 41, 4137.

(20) The stereochemistry of **3w** was determined by NOESY-NMR spectroscopy.

(21) The stereochemistry of 3x was determined by crystal structure analysis.