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Titanium tetraiodidesilyl-mediated pinacol coupling reac-
tion of (Z)-3-iodo-3-trimethylsilylpropenal is used for the prep-
aration of trans-4,5-bis[(Z)-2-iodo-2-(trimethylsilyl)vinyl]-2,2-
dimethyl-1,3-dioxolane, which is utilized for the subsequent
C–C bond-forming reactions.

We have been interested in the reaction using TiI4 and have
already reported the pinacol coupling reaction of aromatic alde-
hydes.1 However, TiI4 could not sufficiently promote the pinacol
coupling reaction of aliphatic aldehydes due to its mild reducing
ability. During these investigations �,�-unsaturated aldehydes
possessing a halogen have been found to serve as excellent sub-
strates for pinacol coupling, and the subsequent hydrogenation
furnished saturated 1,2-diols in good overall yields.1b For further
functional group manipulations, introduction of a silicon moiety
attracted us, since silyl groups could be transformed into a
variety of functionalities.2 This paper describes TiI4-mediated
stereoselective pinacol coupling of (Z)-3-iodo-3-trimethylsilyl-
propenal (1a)3 and the subsequent reactions of the coupling
product 2a (Scheme 2).

The pinacol coupling reaction was conducted under the
reported conditions using TiI4

1 (Table 1).
As shown in Table 1, (Z)-3-bromo-3-TMS-substituted pro-

penal gave a moderate dl-selectivity, whereas its E derivative al-
so recorded a slightly decreased dl-selectivity (Entries 1 and 2).
No diastereoselectivity was observed using the TBDPS deriva-
tive (Entry 5). In terms of the product yield, (Z)-3-iodo-3-

TMS-substituted derivative gave the best result, although a per-
fect dl-selectivity was obtained using the TBS analogue (Entries
3 and 4). For further functional group manipulations and due to
the ease to separate each diastereomer, (Z)-3-iodo-3-TMS deriv-
ative was chosen as the substrate for the present study. For puri-
fication and functional group manipulations, the diol dl-2a was
transformed into the acetonide 3 in good yield (Me2C(OMe)2,
cat. PPTS, PhMe, 80 �C, 4 h, 95%), and the dl isomer 3 was read-
ily separated from its meso-counterpart by simple silica gel col-
umn chromatography. The alkyne and aryl coupling reactions
were carried out to check the reactivity of the iodovinyl moiety.
Both the Sonogashira5 and the Suzuki6 coupling reactions gave
the products 4 and 5 (Chart 1) in good yields without affecting
the geometry of the starting olefins.

For the C–C bond formation using the trimethylsilylvinyl
moiety, we have tried several reaction conditions, and found that
the fluoride-catalyzed reaction7 gave the addition products most
efficiently. Table 2 summarizes the results.

Although TBAF effected the addition reaction to give the
adduct in low yield, use of TASF increased the product yield
(Entries 1 and 2). The reaction carried out at low temperature
considerably improved the product yields, where the presence
of MS 4A and quenching the reaction at �70 �C made possible
the isolation of the product as its bis(silyl ether) (Entries 4 and 5).
This addition reaction was also carried out in the presence of a
catalytic amount of TASF. The reaction could proceed even in

Table 1. Pinacol coupling reaction of the enal 1 promoted by
TiI4

a
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R2

H

O
TiI4 (2.0 equiv.)

R1R1

R2

R1R1

R2

HOR2 HO

OHR2OHdl-2 meso-2

EtCN 
-88 °C − rt, Time

+

1

Entry R1 R2 Time/h Yield/%b dl:mesoc

1 TMS Br 15 84 82:18
2 Br TMS 16 84 79:21
3 TMSd I 16.5 88 92:8
4 TBS I 18 78 >99:1
5 TBDPSe I 11 33 50:50

aThe reaction was carried out according to the typical procedure (Ref 4).
bIsolated yield. cDetermined by 1HNMR and/or HPLC, and for the explan-

ation of the high dl-selectivity, see Ref. 1. dCarried out at �88 to �20 �C.
eCarried out at �78 to �10 �C.
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CuI (1.2 equiv.),Et3N, 60 °C, 16.5 h

Pinacol Phenylboronate (6.0 equiv.)
Pd(PPh3)4 (5 mol %), K2CO3 (5.0 equiv.)
DME / H2O, 90 °C, 16 h

Chart 1.

Table 2. Fluoride-mediated C–C bond-forming reaction of 3a

TMS

I I

TMS

O O

F− reagent (equiv.)

MS 4A (dry)
I IO O

RO

4-ClC6H4

OR

4-ClC6H4(2.5 equiv.)

+

3 6
THF, Temp. 
Time

4-ClC6H4 H

O

Entry F� Source/equiv. Temp/�C Time/h R = H/%c R = TMS/%c

1b TBAF (2.5)d rt 18 15 0
2b TASF (2.2)e rt 18 31 0
3b TASF (2.2) �78 to rt 15 77 0
4 TASF (2.2) �78 to rt 15 84 0
5 TASF (2.2) �78 to �70 1 0 84
6 TASF (1.0) �78 to rt 16 75 0
7 TASF (0.5) �78 to rt 16 27 60
8 TASF (0.1) �78 to rt 16 6 84
9 TASF (0.05) �78 to rt 16 6 85
10 TASF (0.02) �78 to rt 16 9 0

aCarried out according to the typical procedure (Ref. 8). bIn the absence of MS

4A. cIsolated yield. dn-Bu4NF.
e[(Me2N)3S](Me3SiF2).
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Scheme 1. The present strategy.
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the presence of 5mol% of the fluoride source (Entries 7–9).
Under the optimized conditions a variety of aldehydes were
subjected to the addition reaction (Table 3).

The reaction proceeded well with aromatic aldehydes
(Entries 1 and 2). Although use of cinnamaldehyde gave the
adduct in moderate yield, those of chlorovinyl, phenylethynyl,
and aliphatic aldehydes recorded better yields (Entries 3–7).
The use of dibromo derivative as substrate gave essentially the
same results as in the case with the diiodinated starting material
(Entries 8 and 9). The bis-TBS derivative was not as reactive as
its TMS counterpart (Entries 10 and 11). The products were
obtained after desilylation with TBAF in the work-up process.
For further C–C bond-forming reaction with the adduct, we
carried out the following Suzuki coupling reaction.

The adduct was first oxidized with MnO2 to give the dike-
tone 8, which was treated with pinacol phenylboronate in the
presence of Pd0 to give the diphenylated product 9 in moderate
yield, making a useful addition to the synthesis of this class of
compounds (Scheme 2).9

In conclusion, we have shown that (Z)-3-iodo-3-trimethyl-
silylpropenal (1a) is an excellent substrate for the dl-selective
pinacol coupling under the influence of TiI4. The trimethyliodo-
vinyl moiety of the coupling product was in turn efficiently
utilized for the C–C bond-forming reactions.
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Table 3. Addition reaction using various aldehydesa
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1) R1CHO (2.5 equiv.)

2) TBAF (1 M in THF)
 0 °C, 10 min3 7

Entry R3Si X Time/h R1 Yield/%b

1 TMS I 16 Ph 65
2 TMS I 16 4-MeOC6H4 50
3 TMS I 16 (Z)-t-Bu(Cl)C=C 78
4 TMS I 16 (E)-PhC=C 37
5 TMS I 16 (E)-n-PrC=C 54
6 TMS I 16 PhC�C 77
7 TMS I 16 cyclo-C6H11 57
8 TMS Br 14 4-ClC6H4 75
9 TMS Br 14 Ph 64

10 TBS I 16 4-ClC6H4 21
11 TBS I 11 Ph 16

aReaction was carried out according to the typical procedure (Ref. 8).
bIsolated yield as a mixture of diastereomers.
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Scheme 2. Functional group transformations.
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