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Thermoresponsive polymers with simultaneous biodegradability and signal “self-reporting” outputs that meet for advanced applica-
tions are hard to obtain. To address this issue, we developed fluorescence signal “self-reporting” biodegradable thermoresponsive 
polycarbonates through the immortal copolymerization of CO2 and oligoethylene glycol monomethyl ether-functionalized epoxides in 
the presence of hydroxyl-modified tetraphenylethylene (TPE-OH). TPE-OH was used as chain transfer agent to afford well-defined 
polycarbonates with controlled molecular weight (6000 ~ 17000 g mol-1) and aggregation-induced emission characteristics. Through 
temperature-dependent fluorescence intensity study, low critical solution transition of TPE-labeled polycarbonates were determined 
and the fine details of thermal-induced phase transition process were monitored. Further research indicated that tempera-
ture-controlled aggregation and dissociation of TPE moieties are the main reason for fluorescence intensity variations. We anticipate 
that this work could offer a method to visualize the thermal transition process of thermoresponsive polycarbonates and broaden their 
application fields as smart materials. 
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Background and Originality Content 

Stimuli-responsive polymers are capable of responding “smartly” 
with rapid physical or chemical transition to the external stimuli, 
such as temperature, light, pH, electric field and ionic strength.[1-2] 
Among them, thermoresponsive polymers with lower critical solu-
tion temperature (LCST) close to the body temperature have 
shown a wide range of biomedical applications as drug delivery, 
tissue engineering, and gene therapy due to their unique proper-
ties.[3] For this purpose, many thermoresponsive polymers have 
been developed such as poly(N-isopropylacrylamide) (PNIPAM),[4-7] 
poly(N-vinyl caprolactam) (PNVCL),[8-9] poloxamers[10] and polyox-
azolines,[11-13] etc. However, the non-biodegradability issue hin-
ders the in vivo applications. Despite strategies such as copoly-
merization with biodegradable monomers[14-15] or 
post-polymerization modification[16-17] partially improve the bio-
degradability, the main architecture of the resulting materials still 
suffers from incomplete degradation.[18] Therefore, it is of great 
significance to develop thermoresponsive polymers with com-
plete biodegradability. 

Copolymerization of carbon dioxide (CO2) and epoxides into 
polycarbonates is regarded as a valid way to synthesize biode-
gradable polymers.[19-22] On the basis of the breakthrough in cata-
lyst design, various polycarbonates derived from different types of 
epoxides have been successfully developed.[23-30] Through copol-
ymerization of a hydrophilic oligoethylene glycol monomethyl 
ether (OEG) functionalized epoxide (a thermoresponsive unit) 
with CO2, Wang and coworkers successfully synthesized biode-
gradable thermoresponsive polycarbonates.[31] However, the top-
ological architecture and molecular weight of the resulting poly-
mers are hard to control, owing to the incorporation of the third 
epoxide monomer.[32] Moreover, just like common thermorespon-
sive polymers, the as-prepared biodegradable polycarbonates lack 
accessible methods to rapidly and facilely reflect the microscopic 
changes into visible or detectable signals, which make them diffi-
cult to become high value-added materials.[33] Therefore, it re-
mains challenging to prepare biodegradable thermoresponsive 
polycarbonates with well-defined architecture and self-reporting 
signal outputs.  

Herein, to address the above issues, we developed fluorescence 

signal “self-reporting” biodegradable thermoresponsive polycar-
bonates through the copolymerization of CO2 and 
OEG-functionalized epoxides in the presence of hydroxyl-modified 
tetraphenylethylene (TPE-OH) (Scheme 1). The binary 
(salen)Co(III)Cl/PPNCl complex was utilized to afford polycar-
bonates with completely alternating structure which assures bio-
degradability.[34-35] The role of TPE-OH is of key importance. On 
the one hand, it possesses unique aggregation-induced emission 
(AIE) attributes,[36-37] which can change the fluorescence intensity 
through the restriction of intramolecular motion (RIM) mecha-
nism subjected to thermal stimulus.[38] On the other hand, TPE-OH 
acts as chain transfer agent (CTA) to give polycarbonates good 
adjustability of molecular weight via the mechanism of immortal 
polymerization.[39] Therefore, the molecular weight of TPE-labeled 
thermoresponsive polymer can be well controlled in the range of 
6000 ~ 17000 g mol-1. The thermoresponsive process of 
TPE-labeled polycarbonates is reflected by fluorescence signal in 
real time. Most importantly, through the derivative analysis of the 
fluorescence curves, the fine temperature variation which re-
sponses to the microstructure’s transformation of the polymer 
can be facilely visualized. Collectively, the present study provides a 
new strategy to design fluorescence self-reporting thermorespon-
sive polymers. 

Results and Discussion 

Synthesis and Characterization of TPE-Labeled Ther-
moresponsive Polycarbonates.  

 

 Table 1. The copolymerization of epoxide/CO2 catalyzed by SalenCoCl/PPNCl using TPE-OH as CTA 

Entry
a
 monomer feed

b
 

polymer 

(%)
 c
 

CU
 

(%)
 d

 

Mn 

(g mol
-1

)
e
 

Đ 

1 ME2GE 400/1/1/1 94 99 17100 1.21 

2 ME2GE 400/1/1/2 93 99 11300 1.24 

3 ME2GE 400/1/1/5 93 99 8100 1.23 

4 ME2GE 400/1/1/10 93 99 6400 1.17 

5 ME3GE 400/1/1/1 93 99 17900 1.20 

6 ME3GE 400/1/1/2 93 99 15400 1.18 

7 ME3GE 400/1/1/5 89 99 9700 1.18 

8 ME3GE 400/1/1/10 89 99 7500 1.15 

a 
The polymerization reactions were carried out in 2.0 mL of epoxides in 10 mL autoclaves, at 25°C and 3.0 MPa CO2. Note: to make sure the complete 

conversion of epoxide monomer (> 99%), the reaction time of all polymerizations was set as 12h.  
b
 The molar ratio of monomer: salenCoCl: PPNCl: 

TPE-OH. 
c 
Selectivity of polycarbonate over cyclic carbonate. 

d 
Determined by 

1
H NMR spectroscopy. 

e 
Determined by gel-permeation chromatography in 

√ thermoresponsive

√ fluorescence

√ biodegradable

Scheme 1. Preperation of TPE-labeled thermoresponsive polycarbonates 
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CH2Cl2 at35 °C calibrated with polystyrene standards.  

TPE-labeled thermoresponsive polycarbonates are synthesized 
by immortal copolymerization of CO2/OEG-functionalized epox-
ides using SalenCo(III)Cl/PPNCl catalyst system in the presence of 
TPE-OH CTA. As illustrated in Scheme 1, to improve the hydro-
philicity, two kinds of epoxides, ME2GE and ME3GE, bearing dif-
ferent length of OEG were utilized to prepare thermoresponsive 
polycarbonates P-MEnGE (n = 2, 3), where n represents the num-
ber of repeating units in the pendent OEG chains. The results of 
immortal copolymerizations of CO2/MEnGE (n = 2, 3) are summa-
rized in Table 1. All the reactions were carried out with [epox-
ides]/[Co center] molar ratio of 400:1 at 25℃ under CO2 pressure 
of 3.0 MPa. To ensure the complete monomer conversion (＞
99%), the reaction time was optimized to 12 h. A series of 
P-MEnGE (n=2, 3) with different number-average molecular 
weight (Mn) and relatively narrow molar mass dispersity (Đ) were 
prepared by adjusting monomer-to-initiator (TPE-OH + salenCoCl 
+ PPNCl) ratios (M/I). As shown in entries 1~4 in Table 1, with the 
variation of M/I from 400: 1 to 400: 10, Mn of P-ME2GE reduced 
gradually from 17100 g mol-1 to 6400 g mol-1 with a narrow Đ of 
~1.2 (Figure S1). Similarly, in entries 5~8, the Mn of P-ME3GE was 
controllable in the range of 17900 g mol-1 to 7500 g mol-1. It's 
worth noting that the carbonate units (CU) content remained at 
99% in all reactions suggesting the nearly complete alternating 
structure. Moreover, the Mn of P-ME2GE and P-ME3GE displayed 
good linear relationships with of M/I (Figure 1), demonstrating 
the effective controllability of TPE-OH on the Mn of the resulting 
polymers.[40] Altogether, well-defined TPE-labeled polycarbonates 
with OEG side chains were successfully obtained.  
 

Figure 1. The relationship of Mn of the as-prepared polymer with M/I. (a) 

P-ME2GE, (b) P-ME3GE. 

 
Chemical structures of intermediates and polymers were con-

firmed by 1H NMR spectra (Figure 2 and Figure S2~S12) and ma-
trix-assisted laser desorption/ionization time-of-flight mass spec-
troscopy (MALDI-TOF). The characteristic peaks at 3.39, 3.56, and 
3.60–3.75 ppm which corresponded to CH3 and CH2, respectively 

in ME2GE and ME3GE (Figure 2a, b), were clearly observed in pol-
ycarbonate P-MEnGE (Figure 2d, e), indicating that the OEG chains 
were incorporated into the polymer backbone. In addition, char-
acteristic peaks of TPE-OH (6.55-7.22 ppm in Figure 2c) were ap-
peared in P-MEnGE. Moreover, the strong signals at 5.04 and 
4.15–4.55 ppm were ascribed to CH and CH2 in carbonate units. 
Meanwhile, the absence of characteristic peaks of ether linkage 
(homopolymer of epoxides, at 3.30–3.60 ppm) suggested that the 
backbone of P-MEnGE was completely alternating (CU content > 
99%).[41] MALDI-TOF spectroscopy showed the signals of two spe-
cies, [TPE-O(P-ME2GE)]Na+ (n = 9~24) and [TPE-O(P-ME3GE)]Na+ (n 
= 8~26), again demonstrating the incorporation of TPE-OH into 
the polymer (Figure S13, S14). Altogether, the above results 
demonstrated the successful incorporation of TPE unit into the 
backbone of polycarbonates. 
 

Thermoresponsive properties of fluorescent P-MEnGE in 
Aqueous Solution.  

The relationship between fluorescence properties and temper-
ature response of P-MEnGE (n = 2, 3) in aqueous solution was 
studied using temperature-dependent fluorescence spectrometer. 
Due to the hydrophilicity of OEG side chains, both of P-ME2GE and 
P-ME3GE could disperse into tiny micelles in aqueous solution at 
room temperature. The relationship between fluorescence prop-
erties and temperature response of P-MEnGE (n = 2, 3) in aqueous 
solution was studied using temperature-dependent fluorescence 
spectrometer. Due to the hydrophilicity of OEG side chains, both 
of P-ME2GE and P-ME3GE exhibited good water solubility at room 
temperature. P-ME2GE (Mn = 6400 g mol-1) and P-ME3GE (Mn = 
7300 g mol-1) with comparable molecular weight were chosen as 
examples to investigate their fluorescence-temperature proper-
ties. The aqueous solution of P-MEnGE (0.5 mg mL

-1
) exhibited 

obvious fluorescence emission, owing to the presence of TPE unit. 
Normally, P-MEnGE tended to form micelles in aqueous solution 
where hydrophilic OEG chains stretched on the outside while 
hydrophobic TPE and carbonate units aggregated into cores. The 
hydrophobic aggregates trigger the RIM mechanism of TPE to give 
strong fluorescence.[42-43] As shown in Figure 3, the two polymers 
showed fluorescence emission peak at ~464 nm in aqueous solu-
tion at room temperature under excitation of 321 nm (Figure S15). 
For P-ME2GE (Figure 4a), fluorescence intensity generally showed 
a downward trend with the increase of temperature from 25 to 
70 °C. The fluorescence intensity remained almost invariable at 
low temperature (25 to 32 °C), but showed an abrupt decrease in 
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Figure 2. 
1
H NMR spectra of samples (300 MHz, CDCl3). (a) ME2GE, (b) 

ME3GE, (c) TPE-OH, (d) P-ME2GE (Mn = 6400 g mol
-1

), (e) P-ME3GE (Mn = 

7300 g mol
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). 

Figure 3. Temperature-dependent fluorescence spectra of aqueous solu-

tion of (a) P-ME2GE (Mn = 6400 g mol
-1

) and (b) P-ME3GE (Mn = 7300 g 

mol
-1

). Concentration: 0.5 mg mL
-1

. λex=321 nm. 
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the range of 32 to 45°C. Further increase to 60 °C led to the fluo-
rescence quenching of P-ME2GE. Therefore, upon phase transition, 
the self-reporting output is triggered and made visible by varia-
tions in fluorescence. Similar phenomena were also observed in 
P-ME3GE aqueous solution and the rapid transition temperature 
range was 40-56 °C (Figure 4b). Presumably, these phenomena 
were caused by two reasons. On the one hand, the active intra-
molecular motion of TPE triggered by temperature resulted in 
enhanced nonradiative decay of the excited state and then 
weakened the fluorescence.[44] On the other hand, the newly 
formed hydrophobic domains derived from dehydration of OEG 
side chains with temperature provided platform for the intra-
molecular motion of TPE.[45] 

To explore more details about the thermal-induced phase 
transition of P-MEnGE, we performed the first-order and 
second-order derivatives of the temperature-dependent FL 
intensity curves (Figure 4c, d, e, f). The minimum value of the 
first-order derivative represented the temperature at which the 
FL intensity changed most significantly, which is 40 °C and 55 °C 
for P-ME2GE and P-ME3GE, respectively. Meanwhile, there were 
minimum and maximum in the second derivatives owing to the 
rapid decrease in fluorescence intensity,[46] which was related to 
the thermal-induced phase transition of the polymers. The 
aqueous solution of thermoresponsive polymers with LCST could 
show cloud point on heating procedure. We defined 37 °C and 
54 °C as the cloud point for P-ME2GE and P-ME3GE respectively. 
At the minimum temperature, the OEG side chains of P-MEnGE 

began to dehydrate and induce phase transition. While, at the 
maximum temperature the polymer chains were almost 
completely dehydrated indicating the finish of the phase 
transition.[47] Thanks to the AIE characteristics of TPE moieties, 
temperature changes were monitored sensitively and the fine 
details were revealed during the thermal-induced phase 
transition of thermoresponsive polymer aqueous solution. 

The Phase Transition Behaviors of TPE-Labeled Polycar-
bonates in water under various Temperatures.  

The morphologies of P-MEnGE (n= 2, 3) in aqueous solution at 
different temperature were characterized by dynamic light scat-
tering (DLS). As exhibited in Figure 5a, the aqueous solution of 
P-ME2GE self-assembled into micelles with hydrodynamic diame-
ters (Dh) of about 20 nm at room temperature. The Dh of micelles 
kept constant (20 nm) with an increase of temperature to 35 °C. 
However, when temperature reached above 40 °C, Dh of micelles 
leaped to 500 nm because of the aggregation of dehydrated 
polymer chains.[48] This significant fluctuation of Dh with temper-
ature in the range of 35~40 °C properly exhibited the thermal 
transition process of P-ME2GE near cloud point. In Figure 5b, the 
Dh of P-ME3GE micelles remained stable at 50~55 °C while 
showed a significant increase at 60 °C, indicating the cloud point 
(54 °C) of P-ME3GE from molecular aggregation level. These re-

sults were consistent with the above temperature-dependent FL 
intensity study.  
  Common temperature-dependent optical transmittance tests 
were also conducted to further confirm the thermal transition 
properties of P-MEnGE (n= 2, 3) (Figure 5c, d). According to UV-vis 
spectra of P-MEnGE in aqueous solution (Figure S15), we chose 
500 nm to measure the transmittance of polymer solution in or-
der to avoid the interference of TPE absorption. The transmit-
tance of solution dropped rapidly until it reached zero. The 
first-order derivative of transmittance curves displayed a sharp 
inverted peak, indicating a thermal transition temperature of the 
polymers. The temperature variation range of 36 to 45 °C in 
P-ME2GE was in good agreement with the fluorescence results 
(37~45 °C). However, the result of P-ME3GE deviated from the 
fluorescence data, which might be attributed to the fact that the 

Figure 5. Hydrodynamic diameters of P-ME2GE (a) and P-ME3GE (b) in 

aqueous solution at different temperatures determined by DLS. Concen-

tration: 0.5 mg mL
-1

. Temperature-dependent transmittance of aqueous 

solutions of P-ME2GE (c) and P-ME3GE (d) at 500 nm with the first-order 

derivative of the corresponding curves. 
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influence of molecular motion on TPE fluorescence intensity was 
more obvious at high temperature.[49] 

To further investigate the micro-changes of P-MEnGE during 
thermal-induced phase transition, 1H-NMR measurement were 
conducted in D2O at various temperatures. Figure 6 shows the 
1H-NMR spectra of P-ME2GE in D2O during the heating process 
from 25 to 50 °C. All spectra were measured under the same pa-
rameters and the signal of water at 4.79 ppm was taken as inter-
nal reference. At low temperature (25~30 °C), the signals assigned 
to OEG units  
(3.20-3.80 ppm) were strong and clear, indicating the flexible 
movements of the protons in OEG side chains.[50] At high temper-
ature (36-50 °C), the proton peaks became broader. It means that 
the mobility of protons were restricted because of polymer’s col-
lapse by the dehydration of OEG side chains.[51] This result was in 
consistent with the thermal transition behavior measured by flu-
orescence and transmittance methods. However, an opposite 
variation trend was observed in TPE moiety. At low temperature 
(25~30 °C), the proton peaks of TPE remained broad, while the 
peaks split into multiple peaks at high temperatures (36-50 °C), 
which was resulted from the enhanced intramolecular motion of 
TPE with temperature. The downfield-shifted proton peaks both 
in OEG and TPE moieties were possible due to the gradual break-
down of polymer-water hydrogen bonds.[52] The 1H-NMR spectra 
of P-ME3GE also display similar variation pattern (Figure S16). 
These results confirmed the special role of TPE in fluorescence 
self-reporting the thermal transition process of polymers. 

  To investigate the degradability of P-MEnGE, the in vitro hydro-
lytic degradation of P-ME2GE (Mn=6400 g mol-1) was carried out in 
an aqueous solution at room temperature with a concentration of 
0.5 mg mL-1. The process of degradation was observed by 1H NMR 
spectra in D2O. As shown in Figure S17, the characteristic peaks at 
4.95, 4.54 and 4.30 ppm belonging to cyclic carbonates were ob-
served after 15 days, which indicated that the polymer has been 
partially degraded. The polymers with similar structures to 
PC-MEnGE also showed good degradability in neutral pH condi-
tion.[31] This result suggested the potential applications of 
P-MEnGE in biodegradable materials. 

Conclusions 

In conclusion, we have successfully synthesized ther-
moresponsive CO2-based biodegradable polycarbonates P-MEnGE 
(n=2, 3) with well-defined architectures and AIE characteristics by 
copolymerization of CO2 and OEG-functionalized epoxides using 
TPE-OH as chain transfer agent. The role of TPE-OH was of key 

importance. First, it enables polymer with controlled molecular 
weight from 6400 to 17100 g mol-1 for P-ME2GE and 7500 to 
17900 for P-ME3GE by regulating the feeding ratio of M/I. Second, 
the AIE attributes of TPE-OH realized the fluorescence 
self-reporting of the thermoresponsive transition of polymers 
according to the intramolecular mobility-dependent fluorescence. 
The self-assemble of TPE-labeled polymer in aqueous solution 
resulted in fluorescence enhancement owing to the RIM mecha-
nism of TPE. Through temperature-dependent fluorescence in-
tensity study, the cloud points of P-ME2GE and P-ME3GE were 
determined to be 37 and 54 °C, respectively. The derivative analy-
sis of the fluorescence intensity curve revealed the whole thermal 
transition process with temperature owing to the dehydration of 
OEG units. The present study may provide a self-reporting meth-
od to visualize the thermal transition process of biodegradable 
thermoresponsive polymers. 

Experimental 

All the experimental details are provided in supporting infor-
mation. 
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Thermoresponsive polymers with simultaneous biodegradability and signal “self-reporting” outputs that meet for advanced applications are hard to 

obtain. In this work, we developed fluorescence signal “self-reporting” biodegradable thermoresponsive polycarbonates through the copolymerization 

of CO2 and OEG-functionalized epoxides in the presence of hydroxyl-modified tetraphenylethylene (TPE-OH). The self-assemble of TPE-labeled poly-

mer in aqueous solution resulted in fluorescence enhancement owing to the restriction of intramolecular motion mechanism of TPE. Further research 

indicated that temperature-controlled aggregation and dissociation of TPE moieties are the main reason for fluorescence intensity variations. 
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