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Abstract 

The synthesis, photophysical, electrochemical and photovoltaic properties of two 

D-π-A organic sensitizers, having triphenylamine as electron donor (and hexyloxy as 

additional electron donating group), carboxylic acid as electron acceptor and 

benzimidazole group as π-bridge, are described in detail. The photophysical 

measurements were carried out for the dyes in solutions and on TiO2 and Al2O3 

nanostructured films using time resolved spectroscopy in the fs-ps and ns timescale. The 

electron injection dynamics on a series of TiO2 nanostructured films sensitized with the 

two dyes, have shown a faster electron injection for the dye with additional electron 

donating group. The photovoltaic characterization has shown a maximum overall 

conversion efficiency of 3.4% for dye sensitized solar cells with a quasi-solid state 

electrolyte. The performance of the solar cells is explained in terms of the photophysical 

properties, electron injection dynamics and local resistance to charge transfer across the 

TiO2-electrolyte interface measured with electrochemical impedance spectroscopy.  
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1. Introduction 

Third generation dye sensitized solar cells (DSSCs) have been proposed within the 

last two decades, as low-cost alternatives to conventional amorphous silicon 

photovoltaics owing to the simplicity of their fabrication procedure, practically under 

ambient conditions with mild chemical processes [1,2]. The unique design of DSSCs 

offers choices for systematically changing the materials of the different parts that 

constitute the DSSCs in order to optimize and improve their performance. One of the 

main components of the DSSCs is the photosensitizer which is responsible for the visible 

and near-infra-red utilization of the solar light since metal oxide semiconductors which 

are also employed in the cells, absorb only in the ultraviolet spectral region. At present, 

ruthenium complexes and metal porphyrins photosensitizers have an overall solar to 

energy conversion efficiency higher than 12% for small size devices [3,4]. However, 

metal free organic dyes can also be considered as an alternative choice for the conversion 

of solar energy to electricity in DSSCs [5-11]. Pure organic dyes can be prepared 

according to cheap synthetic routes or finally obtained from nature as component of 

flowers and fruits. The reason for choosing pure organic dyes is that they have certain 

advantages over metal based photosensitizers; they are easily modified with common 

synthetic procedures, while they exhibit high molar extinction coefficients compared to 

metal complexes. Organic dyes with high molar extinction coefficients can be used 

advantageously in thin TiO2 film based solar cells which are mainly required in solid 

state devices where the mass transport and pore filling are limited affecting the 

performance of the cells.  
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In recent years, most of the published work on the synthesis of new pure organic 

dyes for DSSCs has been focused on the Donor-π-Acceptor (D-π-A) system owing to its 

effective photo-induced intramolecular charge transfer characteristics [12-17]. 

Compounds commonly used as electron donors are derivatives of triphenylamine [18-20], 

coumarin [21, 22], carbazole [23, 24] or indoline [25, 26], with the triphenylamine being 

the most popular. Thiophene [27], benzene [28] or fluorene [29] fragments act, among 

others, as the π-conjugated linker between the electron donor and acceptor. The electron 

acceptor, usually a carboxyl group or cyanoacrylic acid fragment, also plays the role of 

an anchoring group responsible for binding on the TiO2 mesoporous film surface. 

Although a reasonable number of pure organic sensitizers have been reported to date, a 

quest for dyes exhibiting high molecular extinction coefficients and additional optimized 

properties to meet the criteria needed for efficient DSSCs devices is still ongoing. This is 

obvious by the large number of recently published articles in the field [30-36]. In several 

cases adding auxiliary electron donating groups coupled to the triphenylamine moiety, 

has been shown to improve the properties of the sensitizer by enhancing their 

intramolecular charge transfer characteristics and by inducing a bathochromic shift of the 

absorption spectrum [37-39]. In addition, introducing auxiliary electron donating groups 

can lead to a decreased possibility of π-π aggregation. On the other hand, the addition of 

bulky donors can also have detrimental effects by reducing the amount of adsorbed dye 

molecules. In a very recent work, we have reported on the effect of additional methoxy 

groups coupled to the triphenylamine where an enhanced spectral response was observed 

for the methoxy-substituted dye [40]. However, an undesired faster electron-cation 

recombination was also observed in these dyes. 
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In this respect, we present here the synthesis and detailed photophysical and solar 

cell characterization of two new organic dyes with D-π-A structure (MZ-341 and MZ-

235, Scheme 1), where the donor is a triphenylamine group which, in the case of MZ-

235, is coupled to additional electron donating hexyloxy groups. The effect of this 

additional electron donating groups on the photophysical and solar cell properties of these 

dyes is reported. The π-conjugated bridge between donor and acceptor is benzimidazole 

derivative. It is the first time that a weak acceptor such as benzimidazole group is used 

between donor (triphenylamine group) and acceptor (carboxylic acid) to achieve lower 

reduction potential and to facilitate charge transfer. The photophysical properties of the 

dyes are studied in dye solution with different solvent polarity by means of steady state 

absorption and fluorescence spectroscopy as well as with time resolved fluorescence 

spectroscopy in the fs-ps and ns time scale. The injection dynamics are studied for the 

dyes adsorbed on the surface of TiO2 films. Finally, electrochemical impedance 

spectroscopy (EIS) measurements and electrical characterization of DSSCs employing 

the new dyes were performed for thin TiO2 nanocrystalline films (~2 µm) and quasi-solid 

state electrolyte while the results are discussed in terms of the photophysical properties of 

the dyes and electrochemical impedance measurements. 

 

2. Experimental Section 

2.1 Dyes and synthetic route 

The chemical structures of the newly synthesized sensitizers are presented in 

Scheme 1. The electron donor in MZ-341 is a triphenylamine group which in the case of 

MZ-235 is coupled to additional electron donating hexyloxy groups. The electron 
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acceptor is a carboxylic acid while benzimidazole group is used a π-conjugated linker. 

The synthesis of the sensitizers is described below and briefly the procedure is presented 

in Scheme 2: 

Synthesis of 1-(hexyloxy)- 4-iodophenol (1). A mixture of 4-iodophenol (8.8g, 

40mmol), potassium carbonate (5.6g, 40mmol), 18-Crown-6 (1g, 4mmol), acetone 

(100mL) and1-bromohexane (6.6g, 40mmol) were added in a round bottomed flask and 

refluxed with stirring overnight. The reaction was controlled and ended with thin-layer 

chromatography (TLC), cooled down to room temperature, filtered and the reaction 

mixture was extracted with diethylether (2 x 20mL) and water (2 x 20mL). The organic 

phase was separated, dried over sodium sulphate and the solvent was evaporated by 

rotary evaporator. The crude product was purified by column chromatography 

(dichloromethane/hexane: 1/1, V/V) to obtain a colorless oil (91%, yield). 1H NMR (400 

MHz CDCl3): δ 7.50 (d, 2H), 6.63 (d, 2H), 3.87 (t, 2H), 1.76-1.70 (m, 2H), 1.44-1.39 (m, 

2H), 1.34-1.29 (m, 4H), 0.89 (t, 3H). 13C NMR (400 MHz CDCl3): δ 138.37, 117.18, 

68.35, 31.84, 29.41, 25.96, 22.87, 14.30. 

Synthesis of (4-bromopheny)bis[4-(hexyloxy)phenyl]amine (2). In a round bottomed 

flask, a mixture of CuI (0.2g, 1mmol) and phenanthroline (0.18g, 1mmol) were added 

and dissolved in toluene (10mL). Dean-Stark aparatus and  reflux condenser were set and 

the reaction mixture was stirred for half an hour. 1-(hexyloxy)-iodobenzene (5g, 

16mmol), 4-bromoaniline (1.65g, 9,6mmol), potassium hydroxate (4.8g, 77mmol) and 

toluene (20mL) were added and the mixture was refluxed with stirring overnight. The 

reaction was controlled and ended with TLC, cooled to the room temperature, filtered 

over celite and washed with dichloromethane. The reaction mixture was extracted with 
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dichloromethane (3x20mL) and water (3x20mL). The organic phase was separated, dried 

over sodium sulphate and the solvent was evaporated by rotary evaporator. The crude 

product was purified by column chromatography (dichloromethane/hexane: 1/4, V/V) on 

silica gel to yield yellow oil (66% yield). 1H NMR (400 MHz CDCl3): δ 7.21 (d, 2H), 

7.00 (d, 2H), 6.8 (d, 6H), 3.91 (t, 4H), 1.78-1.72 (m, 4H), 1.46-1.42 (m, 4H), 1.36-1.32 

(m, 8H), 0.90 (t, 6H). 13C NMR (400 MHz CDCl3): δ 168.37, 134.67, 131.33, 130.50, 

128.98, 127.89, 127.24, 125.16, 110.48, 40.43, 40.23, 40.02, 39.81, 39.60. 

Synthesis of (4-{bis[4-(hexyloxy)phenyl]amino}phenyl)boronic acid (3). A round 

bottomed flask was vacuumed and given argon which provides isolated atmosphere. (4-

bromophenyl)bis[4-(hexyloxy)phenyl]amine (3.8g, 7.3mmol) was dissolved with dry 

THF (10mL) and added to the flask. The temperature was set to -80°C with acetone and 

dry ice. N-butyl lithium (3.75mL, 7.25mmol) was added dropwise into the flask carefully 

and stirred for half an hour. Trimethylborate (8.4mL, 72.6mmol) was added dropwise to 

the mixture and stirred overnight. The reaction was controlled and ended with TLC. The 

residue was extracted with diethylether (3x30mL) and 1M hydrochloric acid aqueous 

solution (3x30mL). The organic phase was separated, dried over sodium sulphate and the 

solvent was evaporated by rotary evaporator. The crude product was purified by column 

chromatography (ethylacetate/hexane: 3/1, V/V) on silica gel to obtain white solid (74% 

yield). 1H NMR (400 MHz d6 -DMSO): δ 7.68 (s, 2H), 7.57 (d, 2H), 6.97 (d, 4H), 6.85 (d, 

4H), 6.66 (d, 2H), 3.89 (t, 4H), 1.70-1.63 (m, 4H), 1.42-1.36 (m,4H), 1.30-1.26 (m, 8H), 

0.85 (t, 6H). 13C NMR (400 MHz CDCl3): δ 156.03, 150.073, 140.37, 135.87, 127.65, 

118.08, 116.07, 68.30, 31.66, 29.37, 25.87, 14.53. 
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Synthesis of 6-(4-{bis[4-(hexyloxy)phenyl]amino}phenyl)-1H,3H-

benzo[de]isochromene-1,3-dione (4). In a round bottomed flask a mixture of 6-bromo-

1,3-benzoisochromene-1,3-dione (103mg, 0.4mmol), (4-{bis[4-(hexyloxy) phenyl] 

amino} phenyl) boronic acid (150mg, 0.3mmol) was added and dissolved in 1,2-

dimethoxyethane (15mL). After that, [1,1′-Bis (diphenylphosphino) ferrocene] 

dichloropalladium (II)  (20mg, 0.022mmol) and potassium carbonate aqueous solution 

(1M, 2mL) were added. The system was isolated under argon atmosphere, heated up to 

boiling temperature and stirred overnight. The reaction was controlled and ended with 

TLC, extracted with, dichloromethane (3x20mL) and water (3x20mL). The organic phase 

was separated, dried over sodium sulphate and the solvent was evaporated. The crude 

product was purified by column chromatography (dichloromethane/hexane: 1/2, V/V) on 

silica gel to obtain red solid. 1H NMR (400 MHz CDCl3): δ 8.62 (m, 2H), 8.54 (dd, 1H), 

7.74 (dd, 2H), 7.31(d, 2H), 7.16 (d, 4H), 7.05 (d, 2H), 6.89 (d, 4H), 3.96 (t, 4H), 1.79 (m, 

4H), 1.47 (m, 4H), 1.35 (m, 8H), 0.91 (t, 6H). 13C NMR (400 MHz CDCl3): δ 156.56, 

139.89, 134.90, 133.25, 130.65, 129.00, 128.07, 127.73, 127.34, 119.14, 115.91, 68.69, 

31.61, 29.32, 26.00, 23.02, 14.23. The 1H-NMR and 13C-NMR spectra of the molecule 

appear in supporting information as Fig. S1. 

Synthesis of 4-(4-{bis[4-(hexyloxy)phenyl]amino}phenyl)-7-oxo-7H-

benzimidazo[2,1-a]benzo[de]isoquinoline-11-carboxylic acid (5). In a round bottomed 

flask a mixture of 6-(4-{bis[4-(hexyloxy)phenyl]amino}phenyl)-1H,3H-

benzo[de]isochromene-1,3-dione (70mg, 0.1mmol), 3,4-diaminobenzoic acid (33mg, 

0.2mmol), zinc acetate (20mg, 0.1mmol)  was added and dissolved in pyridine (15mL).  

The mixture was refluxed with stirring overnight. The reaction was controlled and ended 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

9 

 

with TLC. The reaction mixture was neutrealized by addition of 1M hydrochloric acid 

aqueous solution and was extracted with dichloromethane (3x20mL) and water 

(3x20mL). The organic phase was separated, dried over sodium sulphate and the solvent 

was evaporated by rotary evaporator. The crude product was purified by column 

chromatorgraphy (dichloromethane/hexane: 9.5/0.5, V/V) on silica gel to obtain red solid. 

1H NMR (400 MHz CDCl3): δ 8.86 - 8.75 (d, 1H), 8.60 (t, 1H), 8.18 (m, 1H), 8.01 (m, 

1H), 7.90 (m, 1H), 7.72 (m, 2H), 7.47 (m, 2H), 7.34 (m, 2H), 7.14 (m, 4H), 7.07 (m, 2H), 

6.89 (m, 4H), 3.96 (t, 4H), 1.35 (m, 16H), 0.91 (m, 6H). 13C NMR (400 MHz CDCl3): δ 

164.14, 156.28, 149.68, 140.53, 130.65, 129.64, 127.41, 119.45, 115.70, 68.67, 31.82, 

29.90, 29.55, 25.98, 22.69, 14.55. The 1H-NMR and 13C-NMR spectra of the molecule 

appear in the supporting information as Fig. S2. 

Synthesis of methyl 4-bromo-7-oxo-7H-benzimidazo[2,1-a]benzo[de]isoquinoline-

11-carboxylate(6). A mixture of 6-bromo-1H,3H-benzo[de]isochromene-1,3-dione 

(28mg, 0.1mmol), methyl 3,4-diaminobenzoate (33mg, 0.2mmol), zinc acetate (20mg, 

0.1mmol)  were added in a round bottomed flask and dissolved in pyridine (15mL). The 

reaction was refluxed overnight and was controlled with TLC. The reaction mixture was 

neutrealized by 1M hydrochloric acid aqueous solution and extracted with 

dichloromethane (3x20mL) and water (3x20mL). The organic phase was dried with 

sodium sulphate and the solvent was evaporated by rotary evaporator. The crude product 

was purified by column chromatorgraphy (dichloromethane/hexane: 9.5/0.5, V/V) on 

silica gel to obtain a yellow solid. 1H NMR (400 MHz d6 -DMSO): δ 8.88 (m, 1H), 8.71 

(t, 1H), 8.56 - 8.46 - 8.45 (m, 1H), 8.20 (m, 1H), 8.09 (m, 1H), 8.08 (m, 1H), 7.98 - 7.91 

(m, 1H), 7.89 - 7.85 (m, 1H), 4.00 (s, 3H). 13C NMR (400 MHz CDCl3): δ 163.51,148.41, 
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147.31, 133.32,131.96, 131.68, 131.43, 130.34, 129.49, 128.46, 127.62, 127.10, 125.48, 

124.12, 122.50, 116.28, 51.75. The 1H-NMR and 13C-NMR spectra of the molecule 

appear in the supporting information as Fig. 3S. 

Synthesis of methyl 4-[4-(diphenylamino)phenyl]-7-oxo-7H-benzimidazo[2,1-

a]benzo[de]isoquinoline-11-carboxylate (7). A mixture of methyl 4-bromo-7-oxo-7H-

benzimidazo[2,1-a]benzo[de]isoquinoline-11-carboxylate (123mg, 0.3mmol), 4-

(diphenylamino)phenylboronic acid (90mg, 0.3mmol) were added in a schlenk flask and 

dissolved in 1,2-dimethoxyethane (10mL). Then [1,1′-bis (diphenylphosphino) ferrocene] 

dichloropalladium (II)  (12mg, 0,02mmol) and potassium carbonate aqueous solution 

(1M, 2mL) were added to the mixture. The system was isolated under argon atmosphere, 

heated up to boiling temperature and stirred overnight. The reaction was controlled and 

ended with TLC while the extraction was made with dichloromethane (3x20mL) and 

water (3x20mL). The organic phase was dried with sodium sulphate and the solvent was 

evaporated. The crude product was purified by column chromatography 

(dichloromethane/hexane: 1/2, V/V) on silica gel to obtain orange solid. 1H NMR (400 

MHz  CDCl3): δ 8.90 - 8.84 (m, 2H), 8.65 -8.64- 8.57 (m, 1H), 8.48 (d, 1H), 8.19 (t, 1H), 

7.97- 7.86 (d, 1H), 7.81-7.72 (m, 1H), 7.42 - 7.37 - 7.34 (m, 6H), 7.27 - 7.21(m, 6H), 

7.11 (t,2H), 6.93 (t, 2H), 4.00 (s, 3H). 13C NMR (400 MHz CDCl3): δ 164.31, 163.60, 

148.33, 147.26, 134.54, 133.64, 133.48, 131.99, 131.82, 131.57, 131.00, 130.79, 129.58, 

128.31, 127.94, 127.77, 127.17, 126.79, 125.04, 123.71, 122.68, 122.57, 122.38, 122.27, 

120.95, 120.62, 116.09, 51.66. The 1H-NMR and 13C-NMR spectra of the molecule 

appear in the supporting information as Fig. 4S. 
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Synthesis of 4-[4-(diphenylamino)phenyl]-7-oxo-7H-benzimidazo[2,1-

a]benzo[de]isoquinoline-11-carboxylic acid (8). Methyl 4-[4-(diphenylamino)phenyl]-7-

oxo-7H-benzimidazo[2,1-a]benzo[de]isoquinoline-11-carboxylate was added in a round 

bottomed flask and dissolved in THF:ethanol (1:1) mixture. 1 M KOH solution was 

added in the reaction flask and refluxed overnight. The reaction was controlled and ended 

with TLC while the organic solvent was evaporated and the mixture was acidified with 

1M HCl. The precipitate was filtered and washed with pure water. The crude product was 

purified by column chromatorgraphy (dichloromethane/methanol: 9.5/0.5, V/V) on silica 

gel to obtain red solid. 1H NMR (400 MHz  CDCl3): δ 8.96 - 8.89 (m, 1H), 8.67 - 8.56 

(m, 1H), 8.26 (t, 1H), 7.82 (m, 2H), 7.71 (m, 1H), 7.54 (m, 1H), 7.42 - 7.41 (m, 2H), 7.34 

(m, 4H), 7.23 (m, 8H), 7.11 (t, 2H).13C NMR (400 MHz CDCl3): δ 166.39, 163.96, 

163.77, 153.38, 148.43, 147.46, 147.26, 133.49, 131.99, 131.82, 131.58, 130.98, 130.80, 

129.49, 128.30, 127.76, 126.76, 125.09, 123.71, 122.52, 122.38, 120.95, 116.09. The 1H-

NMR and 13C-NMR spectra of the molecule appear in the supporting information as Fig. 

5S. 

 

2.2 Materials  

All solvents and reagents, unless otherwise stated, were of puriss quality and used 

as received. Copper (I) iodide and 1-bromohexane were purchased from Fluka; Acetone, 

dichloromethane, toluene, 18-crown-6, phenanthroline, n-butyllithium, 1,2-

dimetoxyetane, tetrahydrofuran (THF),  trimethylborate, [1,1’-

Bis(diphenylphosphino)ferrocene]dichloropalladium(II), 4 bromo naphthalene and 3,4 

diaminobenzoic acid were purchased from Sigma-Aldrich. 4-iodophenol and 4-
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bromoaniline were purchased from Alfa Aesar. Potassium carbonate and zinc acetate 

were purchased from Riedel de Haen.  

For fabrication of solar cells, TiO2 and Al2O3 films:  Lithium iodide, iodine, 1-

methyl-3-propylimidazolium iodide, hydrogen hexachloroplatinate(IV) 

hydrate  (H2PtCl6), poly(propylene glycol)bis(2-aminopropyl) ether, 3-

isocyanatopropyltriethoxysilane, guanidine thiocyanate and all solvents were purchased 

from Sigma-Aldrich. SnO2:F transparent conductive electrodes (FTO, TECTM A8), 8 

Ohm/square, were purchased from Pilkington NSG Group.  Commercial ultra pure 

titanium isopropoxide (TTIP, 97%, Aldrich), aluminum tributoxide (AlBuO, 95%, 

Aldrich), Triton X-100 (polyoxyethylene-10- isooctylphenyl ether) surfactant (99.8%, 

Aldrich) and glacial acetic acid (AcOH, Aldrich) were used to make the precursors for 

TiO2 and Al2O3 sols. The preparation of TiO2 and Al2O3 films was described in previous 

publications [41, 42]. 

 

2.3 Preparation of solar cells 

In the construction of the solar cells a quasi-solid state electrolyte was used. This 

was chosen as it combines the high ionic conductivity of liquids while it reduces the risk 

of leaks minimizing sealing problems in the cells. For the gel electrolyte applied to the 

DSSCs, we used a hybrid organic-inorganic material, ICS-PPG230, which was prepared 

according to a procedure described in previous publications [43, 44]. Briefly, 0.7 grams 

of the functionalized alkoxide precursor ICS-PPG230 were dissolved in 1.6 grams of 

sulfolane and 0.8 grams of 3-methoxypropionitrile under vigorous stirring.  Then, 0.368 g 

AcOH were added followed by 0.3 M 1-methyl-3-propylimidazolium iodide, 0.1 M LiI 
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and 0.05 M I2 in a final molar ratio of AcOH:LiI:MPImI:I2 = 2.5:0.1:0.3:0.05. Finally 

0.204 g of tert-butyl pyridine and 0.036 g of guanidine thiocyanate was added to the 

above mixture. After few hours of stirring, one drop of the obtained sol was placed on the 

top of the titania electrode with adsorbed dye molecules and a slightly platinized FTO 

counter electrode was pushed by hand on the top. The platinized FTO glass was made by 

exposing it to a H2PtCl6 solution (5mg/1ml of i-PrOH) followed by heating at 450 oC for 

10 minutes. The two electrodes tightly stuck together by −Si−O−Si− bonds developed by 

the presence of ICS-PPG230. The cell active area for the electrical measurements was 

0.28 cm2 determined by a black mask. 

 

2.4 Methods 

Electrochemical measurements for MZ-341 and MZ-235 dyes were carried out with 

CH 440B Instruments potentiometer. FT-IR spectra were recorded on a Thermo 

Scientific Nicolet iS5 FT-IR Spectrometer using an ATR system (4000–650 cm-1 ). 1H 

and 13C NMR (Varian-400 MHz) data were recorded at 25oC using CHCl3-d and d6-

DMSO as solvents and TMS as an internal standard. The steady state absorption and 

fluorescence spectra were taken using a Hitachi U-2900 UV-Vis spectrophotometer and a 

Hitachi F-2500 fluorescence spectrophotometer, respectively. The accuracy of the 

fluorescence measurements was checked by detecting the emission band of Europium 

Eu3+ (5 D0→
7 F2 transition) at 613 nm as a reference. The fluorescence spectra of the solid 

samples were collected using a specific holder which had an inclination angle of 10o 

assuring the exact same geometry in all measurements and avoiding increased reflections 

towards the detector. Unsensitized TiO2 and Al2O3 films were used as reference samples 
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for obtaining the spectra of the sensitized ones. The thickness of the oxide films was 

about 2 µm according to cross section scanning electron microscopy images.  

The fluorescence dynamics were studied by using a femtosecond time resolved 

upconversion system that has been described in details elsewhere [41,42,45,46]. The 

excitation beam was the second harmonic of a Ti:Sapphire femtosecond laser, at 400 nm 

(80 fs pulse duration) and the average excitation power was less than 3 mW. The 

Instrument's Response Function (IRF) was 140 fs, while the samples were dilute 

solutions of the two dyes in toluene and THF (10-5 M concentration), or TiO2 and Al2O3 

films sensitized with the dyes. All dynamics were detected under magic angle conditions. 

For obtaining the long-lifetime (nanosecond) dynamics, a Time Correlated Single Photon 

Counting (TCSPC) method has been used. This is based on a Fluotime 200 spectrometer 

(Picoquant), where two pulsed diode lasers, at 403 and 470nm, were used for the 

excitation and a Microchannel-Plate Photomultiplier (MCP-PMT) was used for the 

detection. The IRF of the TCSPC spectrometer was ~80 ps.  

For solar cells’ characterization and for obtaining the J-V curves, the samples were 

illuminated with Xe light using a Solar Light Co. solar simulator (model 16S-300) 

equipped with AM 0 and AM 1.5 direct Air Mass filters to simulate solar radiation at the 

surface of the earth. The light intensity was kept constant at 1000 W/m2 measured with a 

Newport power meter (843-R). Finally, the J-V curves were recorded by connecting the 

cells to a Keithley Source Meter (model 2601A) which was controlled by Keithley 

computer software (LabTracer). We made three cells for each dye which were tested 

under the same conditions in order to avoid any misleading estimation of their efficiency. 

Cell performance parameters, including short-circuit current density (JSC), open circuit 
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voltage (VOC), maximum power (Pmax), fill factor (FF) and overall cell conversion 

efficiency n, were determined from each J-V characteristic curve. 

EIS characterization was carried out under illumination using the same Xe light 

source that was used for the J-V curves. EIS measurements were performed without the 

use of a mask with Metrohm Autolab 3.v potentiostat galvanostat (Model PGSTAT 

128N) through a frequency range of 100 kHz-0.01 Hz using a perturbation of ±10 mV 

over the open circuit potential. Experimental data are presented by scattering symbols 

while lines represent the fitted plots obtained using Nova 1.10 software. 

 

3. Results and discussion 

3.1 Electrochemical properties  

The electrochemical properties of the MZ dyes were examined by the cyclic 

voltammetric method in a 0.1M solution of Bu4NPF6 in acetonitrile with a scan rate of 

100mVs-1. A glassy-carbon  was used as the working electrode, platinum as the counter 

electrode and Ag/AgCl as the reference electrode. The oxidation potentials were found at 

0.89 V and 0.78 V (vs. Fc+/Fc) for MZ-341 and MZ-235, respectively.  They are 

assigned to the oxidation of the triphenylamine donor moiety. The reduction potentials 

were found at -1.13 and -1.67 V for MZ-341 and at -1.16 and -1.56 V for MZ-235 

respectively. They are assigned to the reduction of the benzimidazole and carboxylic acid 

acceptor that can be anchored to the TiO2 surface. It is worth noting that the presence of 

electron-donating groups coupled to the triphenylamine backbone reduces the oxidation 

potential. HOMO levels for both dyes were calculated from the oxidation potentials while 

LUMO level were calculated from the reduction potentials. HOMO levels are located at 
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5.18  and 5.30 eV while LUMO levels at 3.24 and 3.27 eV for MZ-235 and MZ-341 

respectively. Cyclic voltammograms for both dyes are presented in Fig.1. 

 

3.2 FT-IR measurements of the MZ dyes 

The IR spectra obtained for both dyes are presented in Fig.2. The O−H bonds of the 

dyes resonate at around 3400 cm−1 and they are believed to arise from COOH. The peak 

at around 1700 cm−1 is based on the C=O stretch of the carboxylic acid group. Aromatic 

and aliphatic CH groups exhibited characteristic absorption bands around 2900 and 2800 

cm−1. These three important peaks proved that carboxyl groups are successfully 

integrated on MZ dyes.  

 

3.3 Photophysical properties in solutions and films 

Figures 3a and 3b present the absorption and fluorescence spectra of dyes MZ-341 

and MZ-235 in toluene and THF dilute solutions, respectively. The photophysical 

parameters are summarized in Table 1. The dyes exhibit almost identical absorption 

spectra, regardless of the solvent used, with peaks at 441-443 nm for MZ-341 and at 459 

nm for MZ-235, denoting a relatively polarity-independent nature of the ground state. A 

red-shift (~17-19 nm) of the absorption's peak for MZ-235 compared to MZ-341 in both 

solvents is observed. This originates from the hexyloxy substituents on the para position 

of the two benzenes of the triphenylamine donor [39, 40]. The addition of these extra 

electron donating groups (hexyloxy groups) on the triphenylamine donor reduces the 

oxidation potential by giving triphenylamine an enhanced nucleophilic character, 

resulting in an increased HOMO level of the dye. This is reflected by a red shift of the 
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absorption maximum for MZ-235 relative to MZ-341 where these substitution groups are 

absent.  

On the other hand, the fluorescence spectra in toluene and THF display several 

differences in both dyes, with those in toluene being narrower and hypsochromically 

shifted compared to those in THF. Specifically, the fluorescence spectra in toluene show 

peaks at 547 and 576 nm for MZ-341 and MZ-235, respectively. The corresponding 

values in THF are 595 and 613 nm. The bathochromic shift as well as the broader 

spectrum in THF compared to toluene, is an indication that the excited state presents an 

intense charge transfer character. This is consistent with the non normalized fluorescence 

spectra (they are not presented), where MZ-341 and MZ-235 exhibit approximately 10-

fold and 80-fold decreased fluorescence intensity in THF relative to toluene. Finally, a 

bathochromic shift (18-29 nm) of the fluorescence peak accompanied by a broader 

spectrum in both solvents is evident for MZ-235 with the extra electron donating groups, 

indicating that this dye adopts a more relaxed excited state than its analogue MZ-

341without the additional donor group.  

The absorption and fluorescence spectra of MZ-341 and MZ-235 on Al2O3 and 

TiO2 substrates are shown in Figures 4a and 4b. In Table 1, the related photophysical 

results are summarized. Regarding the absorption spectra, the two dyes exhibit broad 

peaks at 430-450 nm for MZ-341 and at 460-470 nm for MZ-235. As in the solutions, 

MZ-235 exhibits a bathochromic shift of the absorption spectrum compared to MZ-341 

due to the hexyloxy groups. In general, the absorption spectra of the dyes on TiO2 and 

Al2O3 films are influenced by possible formation of H- or J- aggregates and by the 

deprotonation of the carboxyl group. The formation of H-aggregates as well as the 
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deprotonation of the carboxyl group would lead to a hypsochromic shift while J-

aggregates would lead to a bathochromic one.  In our case, the absorption peaks in films 

do not show significant differences compared to the corresponding values in solutions. 

This means that the influence of the above mentioned effects may be canceled. However, 

in films, the absorption spectra display a long tail towards the red-edge indicative of the 

inhomogeneity and the formation of aggregates.  

Interestingly, the fluorescence spectra of MZ-341 and MZ-235 on Al2O3 and TiO2 

exhibit peaks at almost similar wavelengths namely 580-590 nm (Table 2). These peaks 

are red-shifted compared to the peaks in toluene but they are blue-shifted compared to the 

values in THF. The latter indicates that the emitting state in films has a less intense 

charge transfer character than in THF which possibly indicates deprotonation of the 

carboxylate group where the carboxylate anion has a decreased electron accepting 

capability relative to its neutral form (higher LUMO level).  

The fluorescence dynamics of MZ-341 and MZ-235 have been studied by means of 

fs time resolved spectroscopy in toluene and THF solutions and on TiO2 and Al2O3 

substrates on a temporal range from -0.5 up to 500 ps and in specific occasions up to 

1000 ps. Besides, for lifetime measurements in the ns timescale, a Time Correlated single 

Photon Counting (TCSPC) technique has been used. Figures 5a and 5b show the 

dynamics of the two dyes in toluene and THF obtained by the fs spectroscopy, while 

figure 5c shows the dynamics obtained by TCSPC technique. The fluorescence transients 

by means of fs spectroscopy have been detected at various emission wavelengths within 

the whole emission spectrum of the dyes. In Figures 5a and 5b, the dynamics are shown 
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at the peaks of emission spectra of the two compounds in each solvent while figures S6 

and S7 show the dynamics at all wavelengths. 

The dynamics of the two dyes exhibit substantial differences. However, both dyes 

in THF decay reasonably faster relative to toluene, confirming the lowering of the LUMO 

level towards a stronger coupling in the excited state and therefore an enhanced charge 

transfer character. In order to analyze the dynamics, a global fitting method has been 

employed using a multi-exponential function convoluted with the IRF. Thus, common 

decay times have been given at all wavelengths while the pre-exponential factors have 

been determined as a function of wavelength. The results are summarized in Table 2 for 

the dynamics at the peaks of the emission spectra and in Tables S1 - S4 for all the 

detected wavelengths. 

Regarding MZ-341 in toluene, two short time constants equal to 1.7 and 5.5 ps 

were found. Both time constants exhibit positive pre-exponential factors at short 

wavelengths which become negative at long ones, thus leading to a transient relaxation of 

the emission spectrum (Table S1). In THF, time constants of 0.63 and 1.0 ps were found 

which also refer to a relaxation of the emission towards low-energies as their pre-

exponential factors become negative at long wavelengths (Table S2). The above 

mentionned behavior of the short-time dynamics is common in charge trasfer dyes and is 

due to ICT formation and solvation of the polar excited state [15,47]. MZ-341 in THF 

also exhibits a decay component of 5 ps with positive amplitudes at all wavelengths 

which possibly indicates the existence of a non-radiative mechanism depleting the 

excited state. On a longer timescale, MZ-341 in both solvents exhibits a slow decay 

component of ~4.2-4.4 ns (Fig. 5c and Table 3) which was found the same upon both 403 
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and 470 nm excitation and is considered as the lifetime of the emitting state. This decay 

lifetime was determined by means of TCSPC technique. The similarity of the lifetimes in 

both solvents indicates that the emitting state of MZ-341 is the same in both solvents. 

Apart from the 4.2-4.4 ns lifetimes a shorter decay time of  0.85 ns has also been found 

for MZ-341 in toluene. This time is too slow to be considered as a relaxation time and 

could be tentatively ascribed to the emission from an intermediate unrelaxed state. 

The dynamics of MZ-235, having the additional electron donating groups, also 

show fast decay at short wavelengths while as the detection is shifted to longer ones the 

decay is slower and rise components are also observed (Figure S7). The spectral 

relaxation for MZ-235 in toluene occurs with components of 1.1 and 4.0 ps respectively 

while in THF a single relaxation component of 0.4 ps is observed (Tables S3 and S4). 

MZ-235 in toluene exhibits a fast non-radiative decay of 26 ps while at long timescales a 

slow decay component of 3.2 ns is observed which is however accompanied by a shorter 

one of 0.5 ns. Both ns decay components were found by TCSPC (Table 3). As in the case 

of MZ-341, they can be associated to the lifetime of the relaxed excited state and possibly 

to an unrelaxed state.  

It is noted that the fluorescence intensity of MZ-235 in THF totally vanishes within 

the first 500 ps showing a lifetime of 70 ps as obtained by the global fitting analysis. This 

fast decay in THF was also accompagied by a significant drop of the fluorescence 

intensity in this solvent relative to toluene. Such an abrupt decrease of the lifetime as the 

solvent polarity increases has been also observed in the past for other dipolar dyes and 

has been attributed to the formation of a Twisted Intramolecular Chrge Transfer state 

(TICT) [48-50]. In general, apart from a fast decay of the excited state, the presence of a 
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TICT state shifts the emission spectrum to longer wavelengths (or cause the appearance 

of an intense shoulder at long wavelengths) and decreases the emission efficiency 

because of the conical intersection of the TICT state and the ground state surfaces which 

allows the population to transfer to the ground state non-radiatively. In order to test 

whether a TICT is formed when MZ-235 is disolved in THF, we prepared solutions of 

MZ-235 in THF after adding polystyrene (PS). This polymer was chosen because it 

disolves easily in THF and it is non-polar [51]. Various solutions were prepared by 

adding PS until they became highly viscous (concentration of polystyrene up to 40 

mg/ml). By increasing the viscosity of the solutions, the rotational freedom of MZ-235 is 

restricted and thus the formation of a TICT should be hindered. Therefore, if the decrease 

of the lifetime in THF is due to the formation of a TICT, the fluorescence dynamics 

should become slower in the viscous solutions. In Figure 5b, the fluorescence decay of 

MZ-235 in THF with 40 mg/ml polystyrene is shown. It is obvious that the decay is 

identical to that without PS. In addition, the steady state fluorescence spectrum of MZ-

235 in THF/PS solution has been detected and is shown in Figure 3b. Similar to the 

dynamics, the spectrum of MZ-235 in THF/PS is found identical to the neat THF 

solutions. Therefore, it is highly unlikely that a TICT is formed and the decrease of the 

lifetime in THF can be ascribed to the fast, mostly non-radiative, decay of the ICT state 

due to the polar solvent molecules. 

Figure 6 presents the fluorescence transients of dyes MZ-341 and MZ-235 on 

Al2O3 and TiO2 nanocrystalline films. The dynamics on TiO2 are significantly faster than 

on Al2O3 indicating efficient electron injection from the dye's LUMO to the TiO2 

conduction band [52-54]. After fitting the results with a three exponential function, the 
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time constants for MZ-341 were found 1 (0.37), 5.8 (0.42) and 44 ps (0.21) on TiO2 and 

3.1 (0.44), 17.6 (0.36) and 156 ps (0.20) on Al2O3. The corresponding time constants for 

MZ-235 were found 0.6 (0.53), 4.7 (0.34) and 48 ps (0.13) on TiO2 and 2 (0.46), 23.3 

(0.32) and 387 ps (0.22) on Al2O3. Table 4 summarizes the results. The observed faster 

decay of MZ-235 on TiO2 compared to MZ-341 is ascribed to the presence of the 

hexyloxy group onto the triphenylamine moiety, which enhances its electron donating 

strength. The same dye on Al2O3 exhibits a faster component within the first few 

picoseconds compared to MZ-341, which is also ascribed to its enhanced electron 

donating efficiency and can be possibly due to electron injection towards trap states in 

Al2O3. However, at longer timescales a slower decay is evident for MZ-235 on Al2O3 

(τ3=387 ps for MZ-235 vs. 156 for MZ-341). This difference in the long lifetimes is 

ascribed to the reduced aggregation of MZ-235 due to the elongated hexyloxy 

substituents. This reduced aggregation leads to a decreased possibility for quenching and 

thus to an increased lifetime of MZ-235 on Al2O3. 

 

3.4 Solar cells performance 

The current-voltage (J-V) characteristic curves of the quasi-solid state DSSCs under 

one sun illumination using MZ-341 and MZ-235 newly synthesized dyes as sensitizers, 

are presented in Figure 7a. For each sensitizer, we prepared three cells which were tested 

under the same conditions. The electrical characteristics are presented in Table 5 and 

concern the average values obtained from the cells. In all cases, the active area of the 

cells was 0.28 cm2. The quasi-solid state DSSCs constructed with MZ-341 showed an 

overall efficiency of 3.4 % slightly better than that obtained for MZ-235 (3.0 %). The 
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open circuit voltage for both dyes was measured around 660 mV while the short circuit 

current density was 6.83 and 6.45 mA/cm2 for MZ-341 and MZ-235 respectively. Since 

the short circuit current value is rather low, we believe that this is ascribed to two factors: 

The low extinction coefficient value and the ineffective visible light exploitation. 

Besides, the relatively lower values for electrical characterisitcs obtained for MZ-235 can 

be explained in terms of lower absoprtion of the sensitized TiO2 photoelectrode compared 

to that measured for MZ-341 as it can be seen in the inset of Fig. 7a.   However, the 

devices showed good stability when subjected to 1 sun light irradiance from a Xe lamp 

after 300 h of continuous visible light soaking. The cells were all unsealed and were used 

without any further treatment after the electrolyte was gelled. The cells with the two dyes 

were also examined as efficient photoelectrodes in DSSCs measuring the dark current 

suppression. Figure 7b shows that the dark current density in the cells does not have 

substantial differences however, the electron leakage, in the cells made with the dye MZ-

235 is higher compared to the cells made with MZ-341. This corroborates with the 

slightly reduced overall performance of the MZ-235 DSSCs under light exposure.  

Figure 8 shows the Nyquist plots obtained from the cells with the two dyes. The 

first semicircle corresponds to the Pt/electrolyte interface, Rpt. The charge transfer 

resistance at the counter electrode (Rpt) is represented as a semicircle in the impedance 

spectra and as a peak in the Bode phase angle plot. The resistance element related to the 

response in the intermediate frequency represents the charge transport at the 

TiO2/dye/electrolyte interface (Rtr) and shows diode like behavior. The semicircle at the 

low frequency, which is attributed to the diffusion in the electrolyte (Rdif), was small and 

not well formed indicating a fast diffusion. Finally, the intercept of the horizontal axis 
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stands for the resistance of the sheet resistance of the FTO substrate and the contact 

resistance of the FTO/TiO2 (Rh) [55,56]. 

The total series resistance of the cell can be calculated using equation (1) 

                                         difpthS RRRR ++=                                              (1) 

The semicircles at the Nyquist plots are obtained from a frequency scan through a wide 

range of high, intermediate and low frequency. Thus, the Bode phase plots, shown in Fig. 

9, also feature three characteristic frequency peaks corresponding to each of the Nyquist 

characteristic peaks. The equivalent circuit which we used to fit the experimental data is 

presented as an inset in Figure 8. For electrodes having a rough surface, the capacitance 

element in the equivalent circuit is replaced by a constant phase element (CPE, Q) which 

depends on the parameters Yo and N. It is possible to convert a CPE element, which is in 

parallel with a resistance, to a pseudo capacitance using equation (2) 

                                    








 −
⋅=

1
1

1
NN

pseudo RYC
O                                                  (2) 

The parameters obtained by fitting the data in Fig. 8, are presented in Table 6. The cells 

with MZ-341 and MZ-235 dyes exhibit a quite similar behavior of the charge transport 

resistance at the TiO2/dye/electrolyte interface. However, an increased value for the total 

series resistance for the cells employing MZ-235 dye is obtained, which agrees with the 

slightly smaller energy conversion efficiency of these cells. 

Bode plots obtained from cells with both dyes are presented in Figure 9. From these 

plots in the medium-frequency range, the characteristic frequency is associated with the 

electron transport in the mesoscopic TiO2 film and the back reaction at the 

TiO2/electrolyte interface. The electron lifetime in TiO2 electrodes for both cells 
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employing MZ-235 and MZ-341 was calculated using equation (3), where f is the 

characteristic frequency of the peak from the Bode phase plots [57]. 

                   
fn ⋅⋅

=
π

τ
2

1
                                                 (3) 

The electron lifetime for the cells with MZ-235 was calculated to be 2.8 ms which was 

slightly lower than the one obtained for MZ-341 (3.5 ms). This is also an additional 

evidence for the better performance of cells employing MZ-341 as photosensitizer. 

Moreover, the low and high frequency peak observed in the Bode plots correspond to 

triiodide diffusion in the electrolyte and charge transfer at the counter electrode, 

respectively. There are no significant changes at least at high frequency peaks implying 

that no unexpected reaction had occurred within the electrolyte and counter electrode for 

the two dyes. 

Overall, by comparing the photodynamics and solar cell performance of the two 

sensitizers, it is concluded that MZ-235, with the additional electron donating groups, 

exhibits enhanced intramolecular charge transfer properties and faster electron injection. 

Taking into account the fact that this dye exhibits a better spectral response than MZ-341, 

it was expected to show a higher solar cell efficiency than MZ-341, without the 

additional electron donor. However, the opposite is observed. The smaller solar cell 

efficiency of the DSSCs prepared with MZ-235 is in agreement with the EIS results such 

as higher total series resistance and smaller electron lifetime in TiO2 electrodes compared 

to the cells made with MZ-235. Another tentative explanation of the smaller performance 

in the hexyloxy substituted sensitizer is a faster recombination of injected electrons with 

the dye cations since the hexyloxy groups are expected to increase the positive charge on 

the triphenylamine moiety of the dye [40]. 
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3. Conclusions 

In conclusion, two new triphenylamine based organic dyes with or without 

additional electron donating hexyloxy groups, having benzimidazole moiety as π-bridge 

are synthesized and examined photophysically and as sensitizers in thin TiO2 film based 

DSSCs. The dye with the hexyloxy groups, MZ-235, attached to the triphenylamine has 

shown a bathochromic shift of its absorption spectrum thus exhibiting a better coverage 

of the visible spectrum. In addition, it has shown faster intramolecular charge transfer 

state formation and faster electron injection toward TiO2 as it was found through time 

resolved fluorescence spectroscopy in the fs-ps and in the ns timescale. However, the dye 

without additional groups attached to triphenylamine, MZ-341, proved to be more 

efficient in solar cell performance while a maximum overall performance of 3.4% was 

obtained for a quasi-solid state DSSC. The better performance of MZ-341 was explained 

in terms of higher absorbance on TiO2 photoelectrode compared to the MZ-235 dye and 

also examined through electrochemical impedance spectroscopy measurements.  
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Schemes: 
 
Scheme 1.  Chemical structures of MZ-341 and MZ-235 dyes. 
Scheme 2.  Synthetic procedures of the MZ-235 and MZ-341 
 
Tables:  
 
Table 1: Photophysical parameters of MZ-341 and MZ-235 dyes. 
Table 2: Decay parameters of MZ-341 and MZ-235 in toluene and THF obtained by fs 
upconversion spectroscopy upon excitation at 400 nm. The results were obtained after a 
global analysis method on five different detection wavelengths and are shown here for 
the wavelength corresponding to the peak of the fluorescence spectra. 
Table 3: Decay parameters of MZ-341 in toluene and THF and MZ-235 in toluene 
obtained by TCSPC spectroscopy  upon excitation at 403 nm. 
Table 4: Decay parameters of MZ-341 and MZ-235 on TiO2 and Al2O3 substrates upon 
excitation at 400 nm. 
Table 5: Solar cells parameters for DSSCs with TiO2 photoelectrodes sensitized with 
MZ-235 and MZ-341. 
Table 6: Fitted parameters derived from electrochemical impedance spectroscopy. 
 
Figure captions: 
 
Figure 1. IR spectra of MZ-235 and MZ-341 dyes. 

Figure 2.  Cyclic voltammograms of the MZ-235 (a)  and MZ-341 (b) dyes  
Figure 3. Absorption and fluorescence spectra of (a) MZ-341 and (b) MZ-235 in toluene 
and THF solutions. Additionally, the fluorescence spectrum of MZ-235 in THF/PS 
solution is presented in (b). 
Figure 4. Absorption and fluorescence spectra of (a) MZ-341 and (b) MZ-235 on TiO2 
and Al2O3 substrates. 
Figure 5. (a) Fluorescence dynamics of MZ-341 in toluene and THF solutions at 550 nm 
and 600 nm, respectively and (b) Fluorescence dynamics of MZ-235 in toluene and THF 
solutions at 575 nm and 610 nm and in THF/PS at 610 nm respectively. The dynamics in 
(a) and (b) were obtained by fs upconversion fluorescence spectroscopy. (c) Fluorescence 
dynamics of MZ-341 in toluene and THF solutions at 550 nm and 600 nm, respectively 
and of MZ-235 in toluene at 575 nm obtained by TCSPC spectroscopy. The fitting curves 
have been derived by multiexponential functions and they are represented by solid lines. 
Figure 6. Fluorescence dynamics of MZ-341 and MZ-235 on TiO2 and Al2O3 substrates 
at 590nm. The fitting curves have been derived by three exponential decay functions and 
they are represented by solid lines. 
Figure 7. (a) J-V curves of quasi-solid state solar cells employing MZ-341 and MZ-235 
dyes under illumination (1.5 A.M, 1000W/m2) and (b) in dark. 
Figure 8. Impedance spectra: Nyquist plots of MZ-235 and MZ-341 sensitized DSSCs 
performed under illumination (1.5 A.M, 1000W/m2). 
Figure 9. Bode phase plots of MZ-235 and MZ-341 sensitized DSSCs performed under 
illumination (1.5 A.M, 1000W/m2). 
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Supporting Information: 
 
Figure S1. (a) 1H-NMR of 6-(4-{bis[4-(hexyloxy)phenyl]amino}phenyl)-1H,3H-
benzo[de]isochromene-1,3-dione (b) 13C-NMR of 6-(4-{bis[4-
(hexyloxy)phenyl]amino}phenyl)-1H,3H-benzo[de]isochromene-1,3-dione 
 Figure S2. (a) 1H-NMR of 4-(4-{bis[4-(hexyloxy)phenyl]amino}phenyl)-7-oxo-7H-
benzimidazo[2,1-a]benzo[de]isoquinoline-11-carboxylic acid (b) 13C-NMR of 4-(4-
{bis[4-(hexyloxy)phenyl]amino}phenyl)-7-oxo-7H-benzimidazo[2,1-
a]benzo[de]isoquinoline-11-carboxylic acid 
Figure S3. (a) 1H-NMR of methyl 4-bromo-7-oxo-7H-benzimidazo[2,1-
a]benzo[de]isoquinoline-11-carboxylate (b) 13C-NMR of methyl 4-bromo-7-oxo-7H-
benzimidazo[2,1-a]benzo[de]isoquinoline-11-carboxylate 
Figure S4. (a)  1H-NMR of methyl 4-[4-(diphenylamino)phenyl]-7-oxo-7H 
benzimidazo[2,1-a]benzo[de]isoquinoline-11-carboxylate (b) 13C-NMR of methyl 4-[4-
(diphenylamino)phenyl]-7-oxo-7H-benzimidazo[2,1-a]benzo[de]isoquinoline-11-
carboxylate 
Figure S5.  (a)  1H-NMR of 4-[4-(diphenylamino)phenyl]-7-oxo-7H-benzimidazo[2,1-
a]benzo[de]isoquinoline-11-carboxylic acid (b) . 13C-NMR of 4-[4-
(diphenylamino)phenyl]-7-oxo-7H-benzimidazo[2,1-a]benzo[de]isoquinoline-11-
carboxylic acid 
Figure S6. Fluorescence dynamics of MZ-341 in (a) toluene at 500 nm, 550 nm and 600 
nm and in (b) THF at 530 nm, 600 nm and 670 nm, respectively.  
Figure S7. Fluorescence dynamics of MZ-235 in (a) toluene at 525 nm, 575 nm and 625 
nm and in (b) THF at 540 nm, 610 nm and 660 nm, respectively.  
 
 
Table S1. Decay parameters of MZ-341 in toluene obtained by fs upconversion 
spectroscopy upon excitation at 400 nm. The results were obtained after a global analysis 
method on five different detection wavelengths. 
Table S2. Decay parameters of MZ-341 in THF obtained by fs upconversion 
spectroscopy upon excitation at 400 nm. The results were obtained after a global analysis 
method on five different detection wavelengths. 
Table S3. Decay parameters of MZ-235 in toluene obtained by fs upconversion 
spectroscopy upon excitation at 400 nm. The results were obtained after a global analysis 
method on five different detection wavelengths. 
Table S4. Decay parameters of MZ-235 in THF obtained by fs upconversion 
spectroscopy upon excitation at 400 nm. The results were obtained after a global analysis 
method on four different detection wavelengths. 
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Scheme 1.  Chemical structures for (a) MZ-341 and (b) MZ-235 dyes. 
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Scheme 2.  Synthetic procedures of the MZ-235 and MZ-341 
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Table 1: Photophysical parameters of MZ-341 and MZ-235 dyes. 
 λabs (nm) λfluor (nm) λabs (nm) λfluor (nm) 
 MZ-341 MZ-235 
Toluene 443 (3240)* 547 460 (5840)* 576 
THF 441 (9050) 595 460 (4870) 613 
TiO2 film 440 591 472 585 
Al 2O3 film 438 582 472 583 

* The molar extinction coefficients in M-1cm-1 are shown in parentheses. 

 

Table 2: Decay parameters of MZ-341 and MZ-235 in toluene and THF obtained by fs 
upconversion spectroscopy upon excitation at 400 nm. The results were obtained after a 
global analysis method on five different detection wavelengths and are shown here for 
the wavelength corresponding to the peak of the fluorescence spectra.  
 

Solvent λdet (nm) A1 τ1 (ps) A2 τ2 (ps) A3 τ3 (ps) A4 τ4 (ps) 
MZ-341 

Toluene 550 -0.36 1.7 0.22 5.5  0.78    ns component  
THF 600 -0.42 0.63 0.18 1.0 0.51 5.0 0.31 ns component 

MZ-235 
Toluene 575 -0.06 1.1 0.60 4.0 0.14 26   0.25 ns component 

THF 610 - - 0.17 0.40 0.76 1.2 0.07 70 
 
 
 
Table 3: Decay parameters of MZ-341 in toluene and THF and MZ-235 in toluene 
obtained by TCSPC spectroscopy  upon excitation at 403 nm.  
 

Solvent Wavelength (nm) A1 τ1 (ns) A2 τ2 (ns) 
MZ-341 

Toluene 550 0.10 0.85 0.9 4.4 
THF 600 - - 1.0 4.2 

MZ-235 
Toluene 575 0.43 0.50 0.57 3.2 
THF* 610 - - - - 

* No data for MZ-235 in THF were recorded, as it presents only picoseconds decay 
components. 
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Table 4: Decay parameters of MZ-341 and MZ-235 on TiO2 and Al2O3 substrates upon 
excitation at 400 nm. 
 

Substrate A1 τ1 (ps) A2 τ2 (ps) A3 τ3 (ps) 
MZ-341 

TiO2 0.37 1.0 0.42 5.8 0.21 44 
Al2O3 0.44 3.1 0.36 17.6  0.20 156 

MZ-235 
TiO2 0.53 0.6 0.34 

 
4.7 0.13 

 
48 

Al2O3 0.46 2.0 0.32 23.3 0.22 387 

 
 
 
 
Table 5: Solar cells parameters for DSSCs with TiO2 photoelectrodes sensitized with 
MZ-341 and MZ-235 
 

Dye Voc (mV) Jsc (mA/cm2) FF n (%) 
MZ-341 663±2 6.83±0.02 0.74 3.4 
MZ-235 662±2 6.45±0.02 0.69 3.0 

 
 
Table 6: Fitted parameters derived from electrochemical impedance spectroscopy. 

Dye Rh (Ω) Rpt (Ω) Cpt (µF) Rtr (Ω) Ctr (µF) Rdif (Ω) Cdif (mF) 
MZ-341 6.09±0.03 1.13±0.03 35 3.38±0.18 125 <<0.81 - 
MZ-235 7.22±0.03 0.669±0.03 53.1 3.85±0.18 799 0.810±0.18 188 
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Figure 1.  Cyclic voltammograms of (α) the MZ-341 and (b) MZ-235 dyes  
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Figure 2 : IR spectra of (α) MZ-341 and (β) MZ-235 dyes.  
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Figure 3. Absorption and fluorescence spectra of (a) MZ-341 and (b) MZ-235 in toluene 
and THF solutions. Additionally, the fluorescence spectrum of MZ-235 in THF/PS 
solution is presented in (b). 
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Figure 4. Absorption and fluorescence spectra of (a) MZ-341 and (b) MZ-235 on TiO2 
and Al2O3 substrates. 
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Figure 5. (a) Fluorescence dynamics of MZ-341 in toluene and THF solutions at 550 nm 
and 600 nm, respectively and (b) Fluorescence dynamics of MZ-235 in toluene and THF 
solutions at 575 nm and 610 nm and in THF/PS at 610 nm respectively. The dynamics in 
(a) and (b) were obtained by fs upconversion fluorescence spectroscopy. (c) Fluorescence 
dynamics of MZ-341 in toluene and THF solutions at 550 nm and 600 nm, respectively 
and of MZ-235 in toluene at 575 nm obtained by TCSPC spectroscopy. The fitting curves 
have been derived by multiexponential functions and they are represented by solid lines. 
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Figure 6. Fluorescence dynamics of MZ-341 and MZ-235 on TiO2 and Al2O3 substrates 
at 590nm. The fitting curves have been derived by three exponential decay functions and 
they are represented by solid lines. 
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Figure 7.  (a) J-V curves of quasi-solid state solar cells employing MZ-341 and MZ-235 
dyes under illumination (1.5 A.M, 1000W/m2) and (b) in dark. Inset of Fig.7a: the 
absolute absorbance of sensitized TiO2 films with both dyes. 
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Figure 8.  Impedance spectra: Nyquist plots of MZ-341 and MZ-235 sensitized DSSCs 
performed under illumination of 1sun.  
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Figure 9. Bode phase plots of MZ-341 and MZ-235 sensitized DSSCs performed under 
illumination of 1sun. 
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Figure S1. (a) 1H-NMR of 6-(4-{bis[4-(hexyloxy)phenyl]amino}phenyl)-1H,3H-
benzo[de]isochromene-1,3-dione (b) 13C-NMR of 6-(4-{bis[4-
(hexyloxy)phenyl]amino}phenyl)-1H,3H-benzo[de]isochromene-1,3-dione 
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Figure S2.  (a) 1H-NMR of 4-(4-{bis[4-(hexyloxy)phenyl]amino}phenyl)-7-oxo-7H-
benzimidazo[2,1-a]benzo[de]isoquinoline-11-carboxylic acid (b) 13C-NMR of 4-(4-
{bis[4-(hexyloxy)phenyl]amino}phenyl)-7-oxo-7H-benzimidazo[2,1-
a]benzo[de]isoquinoline-11-carboxylic acid 
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Figure S3. (a)  1H-NMR of methyl 4-bromo-7-oxo-7H-benzimidazo[2,1-
a]benzo[de]isoquinoline-11-carboxylate (b) 13C-NMR of methyl 4-bromo-7-oxo-7H-
benzimidazo[2,1-a]benzo[de]isoquinoline-11-carboxylate 
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Figure S4. (a)  1H-NMR of methyl 4-[4-(diphenylamino)phenyl]-7-oxo-7H 
benzimidazo[2,1-a]benzo[de]isoquinoline-11-carboxylate (b) 13C-NMR of methyl 4-[4-
(diphenylamino)phenyl]-7-oxo-7H-benzimidazo[2,1-a]benzo[de]isoquinoline-11-
carboxylate 
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Figure S5. (a)  1H-NMR of 4-[4-(diphenylamino)phenyl]-7-oxo-7H-benzimidazo[2,1-
a]benzo[de]isoquinoline-11-carboxylic acid (b) . 13C-NMR of 4-[4-(diphenylamino) 
phenyl]-7-oxo-7H-benzimidazo[2,1-a]benzo[de]isoquinoline-11- carboxylic  acid 
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Figure S6. Fluorescence dynamics of MZ-341 in (a) toluene at 500 nm, 550 nm and 600 
nm and in (b) THF at 530 nm, 600 nm and 670 nm, respectively.  
 

 
 
Figure S7. Fluorescence dynamics of MZ-235 in (a) toluene at 525 nm, 575 nm and 625 
nm and in (b) THF at 540 nm, 610 nm and 660 nm, respectively.  
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Table S1. Decay parameters of MZ-341 in toluene obtained by fs upconversion 
spectroscopy upon excitation at 400 nm. The results were obtained after a global analysis 
method on five different detection wavelengths. 

 A1 τ1(ps) Α2 τ2(ps) Α3 τ3(ps) 
500 0.17  

 
1.7 

0.51  
 

5.5 

0.32  
ns 

component 
525 -0.12 0.57 0.43 
550 -0.36 0.22 0.78 
575 -0.08 -0.26 1 
600 -0.18 -0.19 1 

 

Table S2. Decay parameters of MZ-341 in THF obtained by fs upconversion 
spectroscopy upon excitation at 400 nm. The results were obtained after a global analysis 
method on five different detection wavelengths. 

 A1 τ1(ps) Α2 τ2(ps) Α3 τ3(ps) Α4 τ4(ps) 
530 0.95  

 
0.63 

0.04  
 

1.0 

0.01  
 

5.0 

0  
ns 

component 
565 -0.16 0.73 0.22 0.05 
600 -0.42 0.18 0.51 0.31 
635 -0.71 0.03 0.42 0.55 
670 -0.64 -0.12 0.20 0.80 

 

Table S3. Decay parameters of MZ-235 in toluene obtained by fs upconversion 
spectroscopy upon excitation at 400 nm. The results were obtained after a global analysis 
method on five different detection wavelengths. 

 A1 τ1(ps) Α2 τ2(ps) Α3 τ3(ps) Α4 τ4(ps) 
525 0.60  

 
1.1 

0.29  
 

4.0 

0.07  
 

26 

0.04  
ns 

component 
550 0.29 0.60 0.09 0.11 
575 -0.10 0.60 0.15 0.25 
600 -0.20 0.20 0.38 0.42 
625 -0.13 -0.10 0.26 0.74 

 

Table S4. Decay parameters of MZ-235 in THF obtained by fs upconversion 
spectroscopy upon excitation at 400 nm. The results were obtained after a global analysis 
method on four different detection wavelengths. 

 A1 τ1(ps) Α2 τ2(ps) Α3 τ3(ps) 
540 0.96  

0.4 
0.03  

1.2 
0.01  

70 575 0.66 0.33 0.01 
610 0.17 0.76 0.07 
660 -0.119 0.75 0.25 
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1. Synthesis of D-π-A organic sensitizers with benzimidazole group as π-bridge. 

2. Solar cell conversion efficiency of 3.4% with the D-π-A sensitizers. 

3.  Electron injection dynamics on TiO2 and Al2O3 films sensitized with the two 

dyes. 

 

 

 

 


