Tetrahedron Letters 55 (2014) 3097-3099

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Change of mechanism with a change of substituents for a Zincke reaction

Marcos Caroli Rezende*, Ingrid Ponce, Rubén Oñate, Iriux Almodovar, Carolina Aliaga

Facultad de Química y Biología, Universidad de Santiago, Av. Bernardo O'Higgins 3363, Santiago, Chile

ARTICLE INFO

Article history: Received 11 March 2014 Revised 26 March 2014 Accepted 31 March 2014 Available online 5 April 2014

Keywords: Zincke reaction 4-Substituted anilines Unexpected displacement product SET process

The reaction of *N*-(2,4-dinitrophenyl)pyridinium chloride with amines to form N-substituted pyridinium salts was described for the first time by Theodor Zincke nearly a hundred years ago.¹ The reaction proceeds via an ANRORC (Attack of Nucleophile Ring-Opening Ring-Closure) mechanism, with the initial attack of the pyridinium ring by the nucleophile, followed by ring opening and subsequent ring closure, with the elimination of a molecule of 2,4-dinitroaniline.² The reaction thus provides a way of preparing N-substituted nitrogen heterocycles from the corresponding, analogous N-(2,4-dinitrophenyl) salts. If secondary amines are employed as nucleophiles in aqueous media, formation of the ring-opened compounds leads to valuable synthetic intermediates (Zincke aldehydes). Thus, Zincke reaction has found widespread applications in organic synthesis. Recent reports employing the reaction include the preparation of N,N'-diaryl-substituted 4,4'bipyridinium salts,³ pyridinium derivatives of amino acids,⁴ N-arylated pyridinium salts with reactive groups,⁵ 4-aryl bispyridinium salts,⁶ new photochromic dyes,⁷ and ionic polymers.⁸ Zincke aldehydes have been used as intermediates in a variety of applications.⁹ The 'normal' Zincke reaction is a formal replacement of the 2,4-dinitrophenyl substituent by an alkyl or aryl group R attached to the primary NH₂ functionality. This may be called the 'endocyclic' pathway to distinguish it from the 'exocyclic' displacement of the 2,4-dinitrophenyl substituent by the nucleophile. This competing process may take place when the pyridinium ring is

ABSTRACT

The reaction between *N*-(2,4-dinitrophenyl)-4-(4-pyridyl)pyridinium chloride and 4-aminothiophenol led to an unexpected displacement of the 2,4-dinitrophenyl group, in contrast with the normal Zincke product formed with other nucleophilic 4-substituted anilines. Evidence for a SET process was obtained from EPR spectra of the reaction mixture.

© 2014 Elsevier Ltd. All rights reserved.

substituted by electron-releasing groups.¹⁰ However, the reasons for favoring such a process are still not entirely understood. Zincke reactions that are anticipated to occur in a 'normal' way may turn out to follow this competing pathway, leading to unexpected products. A dramatic example of this was the report of a 'normal' Zincke reaction, in the preparation of imidazolium salts with a chiral Nsubstituent.¹¹ Reinvestigation of the reaction showed that the formed products were not the reported salts, but resulted from the displacement of the 2,4-dinitrophenyl substituent by the nucleophile and the solvent.¹² As part of our efforts to develop organic spacers acting as self-assembled monolayers for modified electrodes,^{13,14} we resorted to the Zincke reaction to prepare Nsubstituted pyridinium salts **2**.

The preparation of compounds **2** employing this procedure had been described before, for a variety of substituted anilines.⁵ We confirmed the formation of a 'normal' Zincke product (**2a**) by the reaction of 4-aminophenol with the pyridinium salt (**1**).⁵ However, by following the same procedure with 4-aminothiophenol, we were surprised to obtain 4,4'-bipyridyl and the sulfide (**3**) as the sole products of the reaction (Scheme 1).

X-ray analysis of the obtained orange crystals confirmed its unequivocal formation (Fig. 1).

Attempts to modify the reaction conditions, by employing solvent-free conditions,¹⁵ led to the same products.

By applying the same reaction conditions with 4-methylthioaniline as nucleophile, we obtained the expected Zincke product (**2b**). This observation suggested that the acidic proton present in thiophenol played a decisive role in diverting the course of the reaction.

^{*} Corresponding author. E-mail address: marcos.caroli@usach.cl (M.C. Rezende).

Scheme 1. Reaction of Zincke salt (1) with different 4-substituted anilines.

Figure 1. Ortep projection of compound (3).

Both 4-amino-phenol and -thiophenol are amphiphilic nucleophiles, resulting from the equilibria below (Scheme 2).

In the case of 4-aminophenol, the reaction products suggest that the amino group behaves as a better, or more efficient nucleophile than the phenolate. The opposite, however, occurs with 4aminothiophenol, a result which may be explained in terms of the greater nucleophilicity of ArS^- in aromatic nucleophilic substitutions, when compared with $ArO^{-,16}$ This argument might be invoked if the reaction mechanism was in fact an S_NAr process.

Another mechanistic possibility involved a single-electron transfer (SET) process. This process would be easier for the softer, and better reducing agent ArS⁻, than for the harder phenolate molecule. In addition, a direct nucleophilic attack by the thiophenolate would have to overcome a significant steric barrier, and would lead to a highly congested Meisenheimer intermediate. Intermolecular charge-transfer from thiophenolates to 2,4-dinitrobenzene has

Scheme 2. Equilibria of 4-amino-phenol and -thiophenol with zwitterionic forms.

Figure 2. Epr spectrum of the reaction mixture in ethanol (g value = 2.00802). In the inset, decay of the recorded signal with time.

Scheme 3. A possible SET mechanism for the reaction.

been described nearly fifty years ago,^{17,18} and such a process would have to circumvent a smaller steric hindrance.

In order to decide between the two mechanistic pathways, we recorded epr spectra of an equimolar (25 mM) mixture of **1** and 4-aminothiophenol in ethanol. It was evident from the spectra that a radical intermediate was formed, which collapsed to products within 10–15 min (Fig. 2).

A possible mechanism for the reaction, compatible with the above observation, is shown in Scheme 3. A single-electron transfer from the thiophenolate anion to the *N*-dinitrophenyl ring leads to an intermediate radical pair, which collapses to the observed product by the elimination of 4,4'-dipyridyl.

In conclusion, in the present communication we report the unexpected change of pathways for Zincke salt (1) when reacting with different 4-substituted anilines. Instead of the normal nucleophilic attack at the 2-position of the pyridinium ring by the amine, first step of the ANRORC mechanism, a 4-aminothiophenol, in equilibrium with a zwitterionic thiophenolate, transferred one electron to the pyridinium group. The resulting radical pair intermediate rapidly collapsed to 4,4'-dipiridyl and 2,4-dinitro-4'-aminodiphenylsulfide (3). The postulated mechanism suggests that other Zincke salts may undergo the same SET process when reacting with aminothiols.

Acknowledgments

This work was financed by FONDECYT projects 1100022, 1110736 and PB0807. I.P. thanks Becas Chile and Conicyt for a doctoral fellowship and a postdoctoral Grant (#3140104). We thank Profs. Gerard Parkin and Luis Campos of Columbia University and the National Science Foundation (CHE-0619638) for the acquisition of the X-ray diffractometer employed in confirming the structure of **3**.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2014.03. 136.

References and notes

- 1. Zincke, Th.; Heuser, G.; Moller, W. Justus Liebigs Ann. Chem. 1904, 333, 296–345.
- 2. Cheng, W. C.; Kurth, M. J. Org. Prep. Proc. Int. 2002, 34, 585-608.

- Bongard, D.; Möller, M.; Rao, S. N.; Corr, D.; Walder, L. Helv. Chim. Acta 2005, 88, 3200–3209.
- Nguyen, T. M.; Sanchez-Salvatori, M. R.; Wypych, J.-C.; Marazano, C. J. Org. Chem. 2007, 72, 5916–5919.
- Yamaguchi, I.; Higashi, H.; Shigesue, S.; Shingai, S.; Sato, M. Tetrahedron Lett. 2007, 48, 7778–7781.
- 6. Papadakis, R.; Tsolomitis, A. J. Phys. Org. Chem. 2009, 22, 515–521.
- Mahmoodi, N. O.; Mamaghani, M.; Ghanadzadeh, A.; Arvand, M.; Fesanghari, M. J. Phys. Org. Chem. 2010, 23, 266–270.
- 8. Yamaguchi, I.; Minamitani, M. React. Funct. Polym. 2012, 72, 904–911.
- 9. Vanderwal, C. D. J. Org. Chem. 2011, 76, 9555–9567.
- 10. Kost, A. N.; Gromov, S. P.; Sagitullin, R. S. Tetrahedron 1981, 37, 3423-3454.
- 11. Ou, W. H.; Wang, Z. Z. Green Chem. 2006, 8, 731–734.
- 12. Pastre, J. C.; Correia, C. R. D.; Génisson, Y. Green Chem. 2008, 10, 885-889.
- Ponce, İ.; Silva, J. F.; Oñate, R.; Rezende, M. C.; Paez, M.; Pavez, J.; Zagal, J. H. Electrochem. Commun. 2011, 13, 1182–1185.
- Ponce, I.; Silva, J. F.; Oñate, R.; Rezende, M. C.; Paez, M.; Zagal, J. H.; Pavez, J.; Mendizabal, F.; Miranda-Rojas, S.; Muñoz-Castro, A.; Arratia-Pérez, R. J. Phys. Chem. C 2012, 116, 15329–15341.
- Vianna, G. H. R.; dos Santos, I. C.; de Freitas, R. P.; Gil, L.; Alves, R. B. Lett. Org. Chem. 2008, 5, 396–398.
- Smith, M. B.; March, J. Advanced Organic Chemistry; John Wiley & Sons: New York, 2001. 5th Ed. p 861.
- 17. Russel, G. A.; Janzen, E. G.; Strom, E. T. J. Am. Chem. Soc. 1964, 86, 1807–1814.
- 18. Ashby, E. C.; Park, W. S.; Goel, A. B.; Su, W. Y. J. Org. Chem. 1985, 50, 5184–5193.