

Tetrahedron Letters, Vol. 37, No. 46, pp. 8263-8266, 1996 Copyright © 1996 The DuPont Merck Pharmaceutical Company Published by Elsevier Science Ltd 1843-6 Printed in Great Britain. All rights reserved 0040-4039/96 \$15.00 + 0.00

PII: S0040-4039(96)01843-6

ASYMMETRIC REACTIONS OF CHIRAL IMIDE ENOLATES WITH α-KETO ESTERS

Irina C. Jacobson* and G. Prabhakar Reddy

Department of Chemical and Physical Sciences, The DuPont Merck Pharmaceutical Company, Experimental Station, P. O. Box 80500, Wilmington, Delaware, USA 19880-0500.

Abstract: A method for the synthesis of a variety of 2-hydroxy-2,3-trisubstituted succinates (I) is presented. The synthesis is achieved by the asymmetric reactions of lithium, boron or titanium enolates of Evans' chiral imides with α -keto esters. Copyright \bigcirc 1996 The DuPont Merck Pharmaceutical Company. Published by Elsevier Science Ltd

The succinate moiety has been shown to be an effective surrogate for natural amino acid substrates in a variety of inhibitors of Zn-dependent endopeptidases.¹ Of particular interest to us, were compounds incorporating different substituents in \mathbb{R}^2 of the 2-hydroxy-2,3-trisubstituted succinate unit (I).

Diastereoselective formation of I ($R^1=CH_3$, C_6H_5 ; $R^2=CH_3$) was achieved in good yields by Ojima and co-workers in the TiCl4 mediated asymmetric addition of silyl enol ethers and ketene silyl acetal to α -keto esters.² The asymmetric induction reported was in the range of 18-68%. Fang and co-workers have also shown that reactions of 8-phenylmenthyl pyruvate with silyl enol ethers and ketene silyl acetals proceed to form I ($R^1=CH_3$, $R^2=CH_3$, C_2H_5 , C_6H_5) in good yield and diastereoselectivity.³

In the course of our work, we required a method for the synthesis of I that allowed for variation of the R^1 -and R^2 -substituents, as well as controlled variation of the stereochemistry at C³. Preparation of I was proposed by the diastereoselective aldol reaction of chiral N-acyloxazolidinones 1 with α - keto esters 2⁴. Lithium enolates of 1, prepared from the S-imide and LDA in THF according to the conventional procedure⁴, were allowed to react with α -keto esters 2. This reaction proceeds at -78°C in THF in 2-3 h to give good yields of the corresponding aldol-type adducts (Table 1).

Xc = S-(-)-4-benzyl-2-oxazolidinone

Table 1. Aldol Reactions of Lithium Enolates (1) with Pyruvates (2)

Entry	<u>R</u>	R ¹	R ²	3:4 ^a	Yield (%) ^b
8	CH3	СН₃	CH ₂ CH(CH ₃) ₂	73:27	80
Ь	C ₂ H ₅	(CH ₂) ₂ Ph	(CH ₂) ₃ Ph	66:34	76
c	CH₃	СН₃	CH ₂ Ph	64:36	84
đ	CH3	СНз	(CH ₂) ₂ Ph	64:36	81
	CH ₂ Ph	CH3	(CH ₂) ₂ Ph	63:37 ^C	70
f	CH3	Снз	(CH ₂) ₃ Ph	71:29	91
g	СН₃	CH3	CH3	83:17	77

a. Isolated yield of each diastereomer after chromatography; b. Isolated yield of isomeric mixture; c. Determined by ¹H NMR spectroscopy.

As shown by Evans, the Z-enolate of 1 reacts preferentially from the Si face allowing for the control of the configuration at the C³-carbon.⁵ The control of stereoselectivity at the tertiary carbon (C²) was found to be non-specific. The stereochemistry of C² of the major isomer (3g) was determined by X-Ray crystallography (Fig. 1).⁶ The readily separated "anti" (3) and "syn" (4) isomers could be distinguished by their ¹H NMR spectra.⁷

Fig.1. ORTEP drawing of 3 g (Table 1)

To examine the effect exerted by the counter ion on the diastereoselectivity and yield, we also studied the Lewis acid-mediated aldol reactions of boron and titanium enolates of 5 (eq. 2). Heathcock *et. al.* have suggested a dependence of the ratio of the "syn" and "anti" aldol adducts on the steric bulk of the Lewis acid.⁸ Reactions of 5 with methyl pyruvate were elected as a model system and the results are presented in Table 2. Boron enolates of 5, in the presence of TiCl₄ showed moderate selectivity toward "anti" adduct 6, while two other Lewis acids showed no significant enhancement of formation of 6. Reactions of Ti-enolates of 5 (method B)⁹, exhibited modest selectivity toward formation of 6 (entry 4, Table 2).

Table 2. Aldol Reactions of Boron, Titanium and Lithium Enolates of (5)

Entry	Method	Conditions	6:7 ⁸	Yield (%) ⁵
1	A	Bu ₂ BOT(, TiCl4 (2.0eq.)	80:20	65
2	A	Bu ₂ BOTI, SnCl ₄ (0.5eq.)	73:27	49
3	A	Bu ₂ BOTt, Et ₂ AICi (1.0eq.)	52:48	56
4	B	TiCl4 (1.0eq.)	78:22	46
5	С	LDA	71:29	91

a. Isolated yield of each diastereomer after chromatography. b. Isolated yield of diastereomeric mixture. Method A. Enolization: 1.2 mmol of Bu₂BOTf, 1.2 mmol i-Pr₂NEt, 1 mmol of 5, 45 min at 0°C, CH₂Cl₂. Aldol reaction: enolate added to a mixture of 1.5 mmol of methyl pyruvate and Lewis acid, 3h at -78°C, except for entry 3, which required 3h at 0°C. Method B.Enolization: 1 mmol of 5, 1 mmol of TiCl₄, 1 mmol of i-Pr₂NEt, 1h at 0°C in CH₂Cl₂. Aldol reaction: 1.5 mmol of methyl pyruvate, 3h at -78°C. Method C. Enolization: 1.2 mmol of LDA, 1 mmol of 5, 40 min at -78°C. THF. Aldol reaction: 2mmol of methyl pyruvate, 3h at -78°C to -10°C.

Lewis acid mediated aldol reactions of boron enolates of R-imides (8) proceeded in yields and diastereoselectivities comparable to S-imides (Table 3).

a. See method A, Table 2. b. Determined by 1H NMR spectroscopy c. Isolated yields of diastereomeric mixture.

Our results represent a route to the synthesis of all possible diastereomers of 1-hydroxy-2,3disubstituted succinates (I). These succinates can be prepared in multigram quantities and are easily purified by flash chromatography. Excellent control at C^3 is observed and *syn* Me at C^2 is favored. The best selectivity was achieved in the TiCl₄ mediated reaction of boron enolates 5. Efforts are in progress to further study the scope and limitations of this reaction, and will be reported in due course.

Acknowledgements: The authors wish to thank Dr. J. Calabrese for x-ray analysis, and Drs. C. Decicco, R. Dorow, and M. Patel for helpful discussions.

References.

- 1. Schwartz, M.A.; Van Wart, H.E. Progress in Medicinal Chemistry 1992, 29, 2712.
- 2. Ojima, I.; Yoshida, K.; Inaba, S-I. Chem. Letters 1977, 429.
- 3. Fang, J-M.; Chen, M-Y. J. Chem. Soc. Perkin Trans, 1 1993, 1737.
- 4. Evans, D.A.; . Ennis, M.D.; Mathre, D.J. J. Am. Chem. Soc. 1982, 104, 1737.
- 5. Evans, D.A.; Bartroli, J.; Shih, T.L. J. Am. Chem. Soc. 1981, 103, 2127.
- 6. Crystal structure will be published in due course.

(a) ¹H NMR (CDCl₃) of 3 (entry 3,Table 1): δ 1.48(s, 3H), 2.49(dd, J=10.3Hz, 1H), 3.03(d, J=8.8Hz, 2H),
3.06(d, J=3.3Hz, 1H), 3.11(d, J=3.3Hz, 1H), 3.34(t, J=8.1Hz, 1H), 3.69(s, 3H), 3.79(dd, J=1.5Hz, 1H), 4.06(m, 1H), 4.38(s, 1H), 4.69(t, J=8.8Hz, 1H), 7.09-7.27(m, 10H).

(b) ¹H NMR(CDCl₃) of 4 (entry 3, table 1):8 1.51(s, 3H), 2.55(dd, J=10.3Hz, 1H), 2.89(dd, J=5.13Hz, 1H), 3.07(t, J=11.35Hz, 1H), 3.19(dd, J=0.25Hz, 1H), 3.39(t, J=7.69, 1H), 3.78(s, 3H), 3.82(m, 2H), 4.14(m, 1H), 4.77(dd, J=5.13Hz, 1H), 7.069-7.270(m, 10H).

- 8. Walker, M.A.; Heathcock, C.H. J. Org. Chem. 1991, 56, 5747.
- 9. Evans, D.A.; Urpi, F.; Somers, T.C.; Clark, J.S.; Bilodeau, M.T. J. Am. Chem. Soc. 1990, 112, 8215.

(Received in USA 7 August 1996; revised 9 September 1996; accepted 10 September 1996)