Synthesis of Novel Amino Acids and Dehydroamino Acids Containing the Benzo[b]thiophene Moiety

Ana S. Abreu,^[a] Natália O. Silva,^[a] Paula M. T. Ferreira,^{*[a]} and Maria-João R. P. Queiroz^[a]

Keywords: Amino acids / Benzo[b]thiophenes / Cross-couplings / Michael addition / Palladium

Several novel amino acids and dehydroamino acids containing the benzo[*b*]thiophene moiety were prepared by Michael addition or sequential Michael addition and palladium-catalyzed C–C or C–N cross couplings. The substrates for Michael addition were the methyl esters of *N*,*N*-bis(*tert*butyloxycarbonyl)dehydroalanine [Boc₂– Δ Ala–OMe] and *N*-(4-toluenesulfonyl)-*N*-(*tert*-butyloxycarbonyl)dehydroalanine [Tos– Δ Ala(*N*-Boc)–OMe], and the nucleophiles were aromatic thiols and 3-iodobenzylamine. The addition of mercaptobenzo[*b*]thiophenes directly to Tos– Δ Ala(*N*-Boc)–OMe gave stereoselectively, in good yields, the *E*-isomer of the corresponding dehydrocysteine. When thiophenols and 3iodobenzylamine were used as nucleophiles the presence of an additional function (halogen or amine) allowed a subsequent palladium-catalyzed cross-coupling reaction with functionalized benzo[*b*]thiophenes (boronic acids, a halogen or an amine). Using this strategy, several racemic amino acid and dehydroamino acid derivatives, which are linked to the benzo[*b*]thiophene moiety by an aromatic spacer, were obtained in good yields.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003)

Introduction

Non-proteinogenic amino acids constitute an important group of compounds in the field of peptide chemistry. These compounds have several applications, either as biologically active substrates or as individual structural components. Among these amino acids are α,β -dehydroamino acids^[1] and β -substituted alanines.^[2] When inserted into peptides, α,β -dehydroamino acids confer conformational constraints that are important features for studies of structure–activity relationships.

We have developed a highly efficient method for the synthesis of *N*,*N*-diacyldehydroamino acid derivatives from the corresponding β -hydroxyamino acids.^[3] These compounds are versatile substrates in Michael addition reactions and allow the preparation of several new β -substituted amino acids as well as β -substituted dehydroamino acids.^[4]

The benzo[*b*]thiophenes are important heterocycles, either as biologically active molecules or as electronic or luminescent components used in organic materials.^[5] Recently, we reported the synthesis of several sulfur analogues of dehydrotryptophan using Suzuki cross-coupling of β -bromodehydroamino acid derivatives with benzo[*b*]thiophene boronic acids.^[6] Here we describe the synthesis of novel amino acids and dehydroamino acids containing the benzo[*b*]thiophene moiety by Michael addition or sequen-

 [a] Departamento de Química-Universidade do Minho 4700-320 Braga, Portugal Fax: (internat.) + 351-253678983 E-mail: pmf@quimica.uminho.pt tial Michael addition and palladium-catalyzed C-C or C-N cross couplings. The final compounds have the potential for biological activity and for the use as biomarkers because of their expected fluorescence.

Results and Discussion

Several 5- and 7-functionalized 2,3-dimethylbenzo[b]thiophenes were prepared from the corresponding bromo compounds $1a^{[7]}$ and $1b^{[6]}$ (Scheme 1). The mercaptobenzo[b]thiophenes 2a and 2b were synthesized by halogen-lithium exchange followed by reaction with sulfur, and were used as nucleophiles in Michael addition reactions (Scheme 2, Table 1). The benzo[b]thiophene boronic acids 3a and $3b^{[6]}$ were obtained according to a procedure that we have already described.^[6] The amines **4a** and **4b** were prepared by palladium-catalyzed C-N cross-coupling of compounds 1a and **1b**, respectively, with benzophenone imine, followed by hydrolysis of the imino-coupled products.^[8] It was possible to obtain the amine 4a only by using the catalytic system Pd₂(dba)₃, BINAP, and CH₃ONa as base,^[8a] while compound 4b was obtained using the more general system, Pd(OAc)₂, BINAP, and Cs₂CO₃^[8b] (Scheme 1). Both catalytic systems have been applied by us, with no significant differences, to the syntheses of methylated 6-aminobenzo-[b]thiophenes.^[8c]

Michael addition reactions were performed using the substrates $Boc_2 - \Delta Ala \cdot OMe^{[3]}$ **5** and $Tos - \Delta Ala(N-Boc) - OMe^{[3]}$ **6** and the nucleophiles 4-bromothiophenol,

i. 1. *n*BuLi, ether, 0 °C, 2. 1/8 S₈, 3. H⁺ ii. 1. *n*BuLi, ether, 0 °C, 2. B(OBu)₃, 3. H⁺ iii. HN=C(Ph)₂, Pd₂(dba)₃, BINAP, CH₃ONa for **4a**; HN=C(Ph)₂, Pd(OAc)₂, BINAP, Cs₂CO₃, for **4b**, toluene, 100 °C, Ar iv. HCl, THF/AcOEt

Scheme 1

Scheme 2

4-aminothiophenol, 3-iodobenzylamine, and 7- and 5-mercaptobenzo[*b*]thiophenes **2a** and **2b** (Scheme 2). The Michael adducts **7a** and **7c** were obtained in good to high yields as shown in Table 1. Boc $-Ala(N-Boc)-\beta$ -(4aminophenylsulfanyl)-OMe **7b** has been described by us previously.^[4b]

When compound **6** was used as the substrate, the Michael adducts **8** eliminate the tosyl group spontaneously giving the *E*-isomers, stereoselectively, of the corresponding β -substituted α , β -dehydroamino acids **9a**, **9b**, **10** and **11** (Table 1). With 4-bromothiophenol, we could isolate the intermediate addition product **8a** in high yield (Table 1). Using nucleo-

philes **b**, 2a and 2b, the corresponding intermediates 8 were detected during the course of the reaction by NMR spectroscopy, but were not isolated. The stereochemistry of the products was determined by differential NOE enhancements between the β CH and the α NH protons.

The products obtained from Michael addition reactions, 7a, 7c, 8a, and (E)-9a, were coupled with several benzo-[b]thiophene boronic acids under Suzuki cross-coupling conditions in good to high yields (Table 2). With benzo[b]thiophene 3-boronic acid as starting material, a 3,3'-benzo[b]thiophene dimer was also isolated. Using 3a or 3b^[6] as coupling components, the corresponding deboronated benzo[b]thiophenes were obtained as byproducts and, in the latter case, a small amount of 2,3-dimethyl-7hydroxybenzo[b]thiophene^[6,9] was also isolated. After several trial experiments, we established these conditions to be the best for the Suzuki cross-couplings: DME/H₂O (10:1) as solvent and a 30% excess of the boronic acid. As an example, the yield in the synthesis of (E)-15 from (E)-9a was improved from 34% to 52% by increasing the amount of the boronic acid (from 10% to 30% excess). The latter yield was improved again to 85% by changing the ratio of DME to H_2O from 6:1 to 10:1.

Using compound **8a** in the coupling reaction with benzo-[*b*]thiophene 3-boronic acid, elimination of the Tos group occurred, with regeneration of the α , β double bond, giving a mixture of the stereoisomers (*E*)-15 and (*Z*)-15 (ratio 4:1), which were separated by column chromatography (Table 2). The stereochemistry of each was determined by NOE experiments in which we found, as we have observed in other cases,^[6] that the chemical shift of the OMe signal is higher for the *Z*-isomer ($\delta = 3.94$ vs. 3.82 ppm) than for the *E*-isomer.

On comparing the yields obtained in the syntheses of compounds 12, 13, and 14 from compound 7a, we conclude that the benzo[*b*]thiophene 3-boronic acid is the most reac-

Table 1. Starting materials and yields of products in the Michael addition reactions

tive one. Some cleavage of the β -C-S bond was observed during the synthesis of 13 and 14 from compound 7a, with Boc₂- Δ Ala-OMe being isolated in 23 and 45%, respectively. In the latter case, the higher percentage of cleavage

we observed could be due to the lower reactivity of compound **3a** in the Suzuki coupling.

Compound **3a** was also the least reactive boronic acid when (*E*)-**9a** was used as the starting material, but no difference was observed between the reactivities of **3b** and 3-boronic benzo[*b*]thiophene acid and their corresponding products were obtained in similar yields (Table 2).

Compound **4b** was coupled with the Michael adduct **7a**, which has a bromine atom as an additional function, using Buchwald's C–N cross-coupling conditions^[10,11] to give the diarylamine **20** (Table 3). The amine **4a** did not react; instead, it decomposes under the reaction conditions.

The same C-N coupling reactions were performed using bromobenzo[*b*]thiophenes **1a** and **1b** with Michael adducts having a free amino function, $7\mathbf{b}^{[4b]}$ and (*E*)-9b, giving the diarylamines **20**, **21**, and **22** (Table 3). In these cases, an

Table 3. Starting materials and product yields in the C–N cross couplings reactions; reaction conditions: $Pd(OAc)_2$ (10 mol %), BI-NAP (15 mol %), Cs₂CO₃ (1.4 equiv.), dry toluene, 100 °C under Ar, 5 h. **1a** or **1b** (1.5 equiv.)

excess (1.5 equiv.) of the benzo[*b*]thiophene coupling component was needed to obtain the products in good yields. When compounds **7a** and **7b** were used as starting materials, cleavage of the β -C-S bond occurred to some extent, yielding Boc₂- Δ Ala-OMe ($\approx 30\%$).

The C-N coupling reaction of compound (*E*)-9b with 1b gave a mixture (2.5:1) of stereoisomers (*E*)-22 and (*Z*)-22 (Table 3), which were separated by column chromatography. The stereochemistry was determined by NOE experiments, with which it was observed again that the chemical shift of the OMe group is higher for the *Z*-isomer ($\delta = 3.91$ vs. 3.77 ppm) than for the *E*-isomer.

It was possible with this strategy to obtain diarylamines, linked to amino acids and dehydroamino acids, that could have interesting applications as biomaterials with electronic properties. These diarylamines are also precursors of thienocarbazoles,^[11] bioisosteres of the natural antitumor pyridocarbazoles (ellipticines and olivacines) that intercalate in DNA.

Conclusion

Saturated and unsaturated amino acids having a benzo-[b]thiophene moiety were obtained in good to high yields either by Michael additions or by sequential Michael addition and palladium catalyzed C-C or C-N cross couplings. The starting materials were functionalized benzo-[b]thiophenes (Br, B(OH)₂, SH, NH₂) and dehydroamino acids or Michael adducts having an additional functionality (Br or NH₂). The final compounds might have biological activity or, when inserted into peptides, might be useful for conformational studies. These compounds might also be used as biomarkers because of their expected fluorescence properties.

Experimental Section

General Remarks: Melting points were determined on a Gallenkamp apparatus and are uncorrected. The ¹H NMR spectra were measured on a Varian Unity Plus spectrometer at 300 MHz. Spinspin decoupling techniques were used to assign the signals. NOE experiments were performed to determine the stereochemistry of the products. The ¹³C NMR spectra were measured in the same instrument at 75.4 MHz (using DEPT θ 45°). Elemental analyses were determined on a LECO CHNS 932 elemental analyzer. Mass spectra (EI and FAB) and HRMS were obtained by the mass spectrometry service of University of Vigo, Spain.

Column chromatography was performed on Macherey–Nagel silica gel (230–400 mesh). Petroleum ether refers to that of the boiling range 40–60 °C. When a solvent gradient was used, the increase of polarity was made gradually from neat petroleum ether to mixtures of diethyl ether/petroleum ether, with sequential 10% increases of the proportion of diethyl ether, until the product was isolated.

The benzo[*b*]thiophenes 1a,^[7] 1b,^[6] 3a, and 3b^[6] were prepared by methods already described by us.^[6] Amino acids 5,^[3] 6,^[3] and 7b^[4b] were prepared also according to methods described by us.

General Procedure for the Synthesis of 2a and 2b: A solution of *n*BuLi in hexane (2.5 M, 1.24 mL, 3.10 mol) was added dropwise, under Ar, to a solution of 1a or 1b (0.500 g, 2.07 mmol) in dry diethyl ether (10 mL) at 0 °C. The mixture was stirred for 10 min at 0 °C, then sulfur (0.100 g, 3.11 mmol) was added under Ar and the mixture was stirred at room temperature for 2 h. Ice and conc. HCl (1 mL) were added and the mixture was stirred for 15 min. The phases were separated and the aqueous phase was extracted with diethyl ether (2 × 10 mL). The organic extracts were collected, dried (MgSO₄), and then the solvent was evaporated to give the products as oils, which were used directly in the Michael additions without further purification. The corresponding Michael adducts were characterized completely.

2,3-Dimethyl-5-mercaptobenzo[*b*]thiophene (2a): 0.350 g (\approx 87%); ¹H NMR (CDCl₃): δ = 2.26 (s, 3 H, ArCH₃), 2.48 (s, 3 H, ArCH₃), 3.60 (s, 1 H, SH), 7.20 (dd, *J* = 8.4, 1.8 Hz, 1 H, 6-H), 7.54 (d, *J* = 1.8 Hz, 1 H, 4-H), 7.61 (d, *J* = 8.4 Hz, 1 H, 7-H) ppm.

2,3-Dimethyl-7-mercaptobenzo[*b*]thiophene (2b): 0.300 g (\approx 72%); ¹H NMR (CDCl₃): δ = 2.30 (s, 3 H, ArCH₃), 2.52 (s, 3 H, ArCH₃), 3.60 (s, 1 H, SH), 7.27–7.30 (m, 2 H, 2 × ArH), 7.44–7.50 (m, 1 H, ArH) ppm.

2,3-Dimethylbenzo[*b*]**thiophene 5-Boronic Acid (3a):** From compound **1a** (1.50 g, 6.20 mmol), following the method described by us for the synthesis of **3b**,^[6] compound **3a** was obtained as a white solid (0.650 g, 50%), m.p. 184.0–186.0 °C. ¹H NMR ([D₆]DMSO): $\delta = 2.28$ (s, 3 H, ArCH₃), 2.45 (s, 3 H, ArCH₃), 7.67 (d, J = 8.0 Hz, 1 H, 6- or 7-H), 7.77 (d, J = 8.0 Hz, 1 H, 7- or 6-H), 8.05 (br s, 2 H, 2 × OH), 8.11 (s, 1 H, 4-H) ppm. ¹³C NMR ([D₆]DMSO): $\delta = 11.1$ (CH₃), 13.5 (CH₃), 121.0 (CH), 127.1 (C), 127.5 (CH), 129.2 (CH), 132.7 (C), 139.32 (C), 140.1 (C) ppm.

5-Amino-2,3-dimethylbenzo[b]thiophene (4a): A dried Schlenk tube was charged under Ar with dry toluene (4 mL), compound **1a** (500 mg, 2.10 mmol), Pd₂(dba)₃ (9.60 mg, 0.011 mmol), BINAP

(13.0 mg, 0.021 mmol), CH₃ONa (170 mg, 3.15 mmol), and benzophenone imine (0.5 mL, 2.95 mmol), and then the mixture was stirred for 21 h at 100 °C. After cooling, diethyl ether (6 mL) was added and the mixture filtered. Removal of the solvents gave an oily yellow solid that after washing with MeOH gave a yellow solid, which corresponded to the imino-coupled product (560 mg), m.p. 158.5-160.2 °C. ¹H NMR (CDCl₃): $\delta = 2.14$ (s, 3 H, ArCH₃), 2.44 (s, 3 H, ArCH₃), 6.63 (dd, J = 8.4, 2.1 Hz, 1 H, 6-H), 7.03 (d, J = 2.1 Hz, 1 H, 4-H), 7.14-7.26 (m, 4 H, ArH), 7.39-7.51(m, 5 H, ArH), 7.84-7.89 (m, 2 H, ArH). THF (7 mL) and HCl (2 M, 1.5 mL) were added to this solid and the mixture was then stirred overnight. A mixture of EtOAc and hexane (1:2, 3 mL) and HCl (0.5 M, 5 mL) were added and the mixture was stirred for 1 h. The phases were separated and the aqueous phase was basified and then extracted with chloroform $(2 \times 20 \text{ mL})$. The organic phase was dried and the solvent evaporated to give the amine 4a as an oil (130 mg, overall yield 35%). ¹H NMR (CDCl₃): $\delta = 2.22$ (s, 3 H, ArCH₃), 2.45 (s, 3 H, ArCH₃), 3.65 (br s, 2 H, NH₂), 6.71 (dd, J = 8.4, 2.4 Hz, 1 H, 6-H), 6.89 (d, J = 2.4 Hz, 1 H, 4-H), 7.50 (d, J = 8.4 Hz, 1 H, 7-H) ppm. ¹³C NMR (CDCl₃): $\delta = 11.3$ (CH₃), 13.8 (CH₃), 106.5 (CH), 113.6 (CH), 122.5 (CH), 126.3 (C), 128.5 (C), 134.6 (C), 142.2 (C), 143.3 (C) ppm. MS (EI): m/z (%) = 179 (15) $[M^+ + 2]$, 178 (39) $[M^+ + 1]$, 177 (100) $[M^+]$, 176 $[M^+]$ - 1], 162 (65) [M⁺ - 15]. HRMS: found (calcd.) for C₁₀H₁₁NS [M⁺], 177.0614 (177.0612).

7-Amino-2,3-dimethylbenzo[b]thiophene (4b): A dried Schlenk tube was charged under Ar with dry toluene (4 mL), compound 1b (500 mg, 2.10 mmol), Pd(OAc)₂ (19.0 mg, 0.0840 mmol), BINAP (65.0 mg, 0.105 mmol), Cs₂CO₃ (960 mg, 2.94 mmol), and benzophenone imine (0.5 mL, 2.95 mmol), and then the mixture was stirred for 21 h at 100 °C. After cooling, diethyl ether (6 mL) was added and the mixture filtered. Evaporation of the solvents gave an oily yellow solid that after washing with MeOH gave a yellow solid, which corresponded to the imino-coupled product (650 mg), m.p. 109.3–111.6 °C. ¹H NMR (CDCl₃): $\delta = 2.28$ (s, 3 H, ArCH₃), 2.48 (s, 3 H, ArCH₃), 6.32 (dd, J = 7.5, 0.9 Hz, 1 H, 6-H), 7.05 (t, J = 7.5 Hz, 1 H, 4-H), 7.14–7.26 (m, 5 H, ArH), 7.40–7.52 (m, 4 H, ArH), 7.84-7.89 (m, 2 H, Ar-H) ppm. THF (7 mL) and HCl (2 M, 1.5 mL) were added to this solid and the mixture was stirred overnight. A mixture of EtOAc and hexane (1:2, 3 mL) and HCl (0.5 M, 5 mL) were added and the mixture was stirred for 1 h. The phases were separated and the aqueous phase was basified and then extracted with chloroform (2 \times 20 mL). The organic phase was dried and the solvent evaporated to give the amine 4b as a white solid (234 mg, overall yield 63%). Recrystallization from diethyl ether/petroleum ether gave colorless crystals, m.p. 94.0-95.0 °C. ¹H NMR (CDCl₃): $\delta = 2.29$ (s, 3 H, ArCH₃), 2.50 (s, 3 H, ArCH₃), 3.80 (br s, 2 H, NH₂), 6.64 (dd, J = 7.5, 0.9 Hz, 1 H, 6-H), 7.11 (dd, J = 7.5, 0.9 Hz, 1 H, 4-H), 7.22 (t, J = 7.5 Hz, 1 H, 5-H)ppm. ¹³C NMR (CDCl₃): $\delta = 11.7$ (CH₃), 13.9 (CH₃), 109.2 (CH), 112.5 (CH), 124.5 (C), 125.3 (CH), 128.3 (C), 132.6 (C), 140.3 (C), 142.4 (C) ppm. C₁₀H₁₁NS (177.28): calcd. C 67.76, H 6.25, N 7.90, S 18.09; found C 67.56, H 6.30, N 7.94, S 18.05.

General Procedure for Michael Addition of Nucleophiles to Dehydro-Amino Acid Derivatives: As described elsewhere,^[4a,4b] K₂CO₃ (6 equiv.) was added to a solution of (unless stated otherwise) the methyl esters of compounds $5^{[3]}$ or $6^{[3]}$ (3 mmol) in acetonitrile (20 mL), and then the nucleophile (1 equiv.) was added with rapid stirring at room temperature. The reaction was monitored by ¹H NMR spectroscopy and then, when no starting material was detected, the solution was filtered and the solvents evaporated under reduced pressure. The residue was chromatographed with a solvent gradient, from petroleum ether to 30% diethyl ether/petroleum ether (unless stated otherwise).

Boc-Ala[*N***-Boc-β-(4-bromophenylsulfanyl)]-OMe** (7a): Column chromatography gave product 7a (1.06 g, 72%) as a white solid. Recrystallization from diethyl ether/*n*-hexane gave colorless crystals, m.p. 64.7–65.4 °C. ¹H NMR (CDCl₃): $\delta = 1.47$ (s, 18 H, Boc CH₃), 3.46 (dd, J = 14.7, 9.9 Hz, 1 H, β CH₂), 3.71 (dd, J = 14.7, 4.5 Hz, 1 H, β CH₂), 3.73 (s, 3 H, OCH₃), 5.08 (dd, J = 9.9, 4.5 Hz, 1 H, α CH), 7.25 (d, J = 8.4 Hz, 2 H, 2 × ArH), 7.40 (d, J = 8.4 Hz, 2 H, 2 × ArH) ppm. ¹³C NMR (CDCl₃): $\delta = 27.9$ [C(CH₃)₃], 34.9 (β CH₂), 52.5 (OCH₃), 57.7 (α CH), 83.4 [OC(CH₃)₃], 120.40 (C), 131.4 (CH), 132.0 (CH), 134.8 (C), 151.8 (C=O), 170.1 (C=O) ppm. C₂₀H₂₈BrNo₆S (490.41): calcd. C 48.98, H 5.75, N 2.86, S 6.54; found C 49.26, H 6.06, N 2.93, S 6.41.

Boc-Ala[*N***-Boc-β-(3-iodobenzylamino)]-OMe (7c):** Column chromatography gave product **7c** (1.44 g, 90%) as an oil that failed all attempts to crystallize it. ¹H NMR (CDCl₃): δ = 1.45 (s, 18 H, CH₃ Boc), 3.40–3.50 (m, 2 H, βCH₂), 3.75 (s, 3 H, OCH₃), 4.27–4.49 (m, 3 H, αCH and CH₂ Bn), 5.54 (d, *J* = 6.3 Hz, 1 H, NH), 7.07 (t, *J* = 7.5 Hz, 1 H, 5-H), 7.18–7.21 (m, 1 H, ArH), 7.59–7.62 (m, 2 H, ArH) ppm. ¹³C NMR (CDCl₃): δ = 28.2 [C(CH₃)₃], 47.8 (CH₂), 50.5 (CH₂), 52.4 (OCH₃), 52.7 (αCH), 79.7 [O*C*(CH₃)₃], 80.7 [O*C*(CH₃)₃], 126.2 (CH), 126.8 (CH), 130.2 (CH), 136.1 (C), 136.2 (CH), 140.2 (C), 155.2 (C=O), 156.0 (C=O), 171.0 (C=O) ppm. HMRS: C₂₁H₃₁IN₂O₆ [M + H]⁺, found (calcd.) 535.1329 (535.1305).

Tos-Ala[N-Boc-β-(4-bromophenylsulfanyl)]-OMe (8a): The procedure described above was followed using compound **6** (1.50 mmol). Column chromatography gave product **8a** (0.690 g, 85%) as a white solid. Recrystallization from petroleum ether gave colorless crystals, m.p. 70.8–72.6 °C. ¹H NMR (CDCl₃): $\delta = 1.28$ (s, 9 H, Boc CH₃), 2.45 (s, 3 H, Tos CH₃), 3.48 (dd, J = 14.7, 9.3 Hz, 1 H, β CH₂), 3.75 (s, 3 H, OCH₃), 3.83 (dd, J = 14.7, 4.5 Hz, 1 H, β CH₂), 5.22 (dd, J = 9.3, 4.5 Hz, 1 H, α CH), 7.26–7.45 (m, 6 H, ArH) 7.93 (d, J = 8.4 Hz, 2 H, 2 × ArH) ppm. ¹³C NMR (CDCl₃): $\delta = 21.4$ (CH₃), 27.5 [C(CH₃)₃], 35.0 (βCH₂), 52.6 (OCH₃), 58.5 (α CH), 85.2 [OC(CH₃)₃], 120.5 (C), 128.6 (CH), 128.8 (CH), 131.8 (CH), 131.8 (CH), 134.3 (C), 136.2 (C), 144.3 (C), 149.7 (C=O), 169.1 (C=O) ppm. C₂₂H₂₆BrNO₆S₂ (544.49): calcd. C 48.53, H 4.81, N 2.57, S 11.78; found C 48.86, H 4.69, N 2.65, S 11.48.

Boc-(*E*)-**ΔAla[β-(4-bromophenylsulfanyl)]-OMe** [(*E*)-**9**a]: The procedure described above was followed using compound **6** (2.58 mmol, 0.920 g). Column chromatography gave product (*E*)-**9**a (0.750 g, 75%) as a white solid. Recrystallization from diethyl ether/petroleum ether gave colorless crystals, m.p. 115.7–116.7 °C. ¹H NMR (CDCl₃): $\delta = 1.51$ (s, 9 H, Boc CH₃), 3.80 (s, 3 H, OCH₃), 6.35 (br s, 1 H, αNH), 7.33 (d, J = 8.4 Hz, 2 H, 2 × ArH), 7.34 (s, 1 H, βCH), 7.49 (d, J = 8.4 Hz, 2 H, 2 × ArH) ppm. ¹³C NMR (CDCl₃): $\delta = 28.1$ [C(*C*H₃)₃], 52.6 (OCH₃), 81.2 [O*C*(CH₃)₃], 122.3 (C), 122.9 (C), 128.3 (CH), 132.4 (CH), 133.7 (C), 152.4 (C=O), 163.5 (C=O) ppm. C₁₅H₁₈BrNSO₄ (388.28): calcd. C 46.40, H 4.67, N 3.61, S 8.26; found C 46.28, H 4.77, N 3.62, S 8.28.

Boc-(*E***)-ΔAla[β-(4-aminophenylsulfanyl)]-OMe [(***E***)-9b]: Column chromatography using diethyl ether gave product (***E***)-9b (0.924 g, 95%) as a light-yellow solid. Recrystallization from diethyl ether/ petroleum ether gave light-yellow crystals, m.p. 123.4–125.1 °C. ¹H NMR (CDCl₃) : \delta = 1.51 (s, 9 H, CH₃ Boc), 3.75 (s, 3 H, OCH₃), 3.83 (br s, 2 H, NH₂), 6.16 (br s, 1 H, αNH), 6.65 (d,** *J* **= 8.7 Hz,** 2 H, 2 × ArH), 7.29 (d, J = 8.7 Hz, 2 H, 2 × ArH), 7.36 (s, 1 H, β CH) ppm. ¹³C NMR (CDCl₃): $\delta = 28.2$ [C(CH₃)₃], 52.3 (OCH₃), 80.9 [OC(CH₃)₃], 115.6 (CH), 120.68 (C), 121.2 (C), 133.9 (CH), 138.0 (CH), 147.2 (C), 152.5 (C=O), 163.5 (C=O) ppm. C₁₅H₂₀N₂O₄S (324.40): calcd. C 55.54, H 6.21, N 8.64, S 9.88; found C 55.55, H 6.36, N 8.47, S 9.71.

Boc-ΔAla[β-(2,3-dimethylbenzo[*b***]thienyl-5-sulfanyl)]-OMe [(***E***)-10]: The procedure described above was followed using compound 6** (0.500 mmol, 0.180 g). Column chromatography gave product (*E*)-**10** (0.140 g, 65%) as a white solid. Recrystallization from diethyl ether/*n*-hexane gave colorless crystals, m.p. 120.9–122.5 °C. ¹H NMR (CDCl₃): $\delta = 1.53$ (s, 9 H, Boc CH₃), 2.29 (s, 3 H, ArCH₃), 2.50 (s, 3 H, ArCH₃), 3.77 (s, 3 H, OCH₃), 6.27 (br s, 1 H, aNH), 7.37 (dd, *J* = 6.9, 1.5 Hz, 1 H, 6-H), 7.47 (s, 1 H, βCH), 7.71–7.74 (m, 2 H, 4-H and 7-H) ppm. ¹³C NMR (CDCl₃): $\delta = 11.3$ (CH₃), 13.9 (CH₃), 28.2 [C(CH₃)₃], 52.4 (OCH₃), 81.0 [OC(CH₃)₃], 121.5 (C), 122.8 (CH), 124.7 (CH), 126.7 (CH), 126.9 (C), 129.2 (C), 135.7 (C), 136.1 (CH), 138.3 (C), 141.7 (C), 152.5 (C=O), 163.6 (C=O) ppm. C₁₉H₂₃NO₄S₂ (393.52): calcd. C 57.99, H 5.88, N 3.56, S 16.30; found C 58.17, H 5.97, N 3.59, S 15.90.

Boc-Δ**Ala**[β-(2,3-dimethylbenzo[b]thienyl-7-sulfanyl)]-OMe [(*E*)-11]: The procedure described above was followed using compound **6** (1.20 mmol, 0.430 g). Column chromatography gave product (*E*)-**11** (0.360 g, 75%) as a white solid. Recrystallization from diethyl ether/*n*-hexane gave colorless crystals, m.p. 103.4–104.9 °C. ¹H NMR (CDCl₃): δ = 1.54 (s, 9 H, Boc CH₃), 2.31 (s, 3 H, ArCH₃), 2.50 (s, 3 H, ArCH₃), 3.74 (s, 3 H, OCH₃), 6.28 (br s, 1 H, αNH), 7.36 (s, 1 H, βCH), 7.38 (t, *J* = 7.5 Hz, 1 H, 5-H), 7.46 (dd, *J* = 7.5, 1.2 Hz, 1 H, 4-H or 6-H), 7.60 (dd, *J* = 7.5, 1.2 Hz, 1 H, 4-H or 6-H), ppm. ¹³C NMR (CDCl₃): δ = 11.6 (CH₃), 13.8 (CH₃), 28.2 [C(CH₃)₃], 52.4 (OCH₃), 81.1 [OC(CH₃)₃], 121.8 (CH), 122.8 (C), 124.8 (CH), 126.1 (C), 127.9 (C), 128.0 (CH), 133.9 (CH), 135.4 (C), 141.7 (C), 142.0 (C), 152.5 (C=O), 163.5 (C=O) ppm. C₁₉H₂₃NS₂O₄ (393.52): calcd. C 57.99, H 5.88, N 3.56, S 16.30; found C 57.97, H 6.04, N 3.58, S 15.95.

General Procedure for the Suzuki Reaction: Compounds 7a, 7c, 8a, and (*E*)-9a were coupled with several boronic acids (Table 2) (1.3 equiv.) using Pd(PPh₃)₄ (10 mol %) and Na₂CO₃ (2 equiv.) in DME/water (10:1) at 90 °C. The reactions were monitored by TLC, which determined the different reaction times. After cooling, water and ethyl acetate were added and then the phases were separated. The organic phase was washed with brine, dried (MgSO₄), filtered, and the solvent was evaporated to give a brown oil that was subjected to column chromatography.

Boc-Ala{N-Boc-β-[4-(benzo[b]thien-3-yl)phenylsulfanyl]}-OMe (12): The procedure described above was followed using compound 7a (0.500 mmol, 0.250 g) and heating for 2 h 30 min. Column chromatography using a solvent gradient, from neat petroleum ether to 20% diethyl ether/petroleum ether, gave product 12 as a white solid (0.260 g, 95%). Recrystallization from diethyl ether/n-hexane gave colorless crystals, m.p. 110.0–110.8 °C. ¹H NMR (CDCl₃): δ = 1.48 (s, 18 H, Boc CH₃), 3.54 (dd, J = 14.4, 9.9 Hz, 1 H, β CH₂), 3.76 (s, 3 H, OCH₃), 3.82 (dd, J = 14.4, 4.5 Hz, 1 H, β CH₂), 5.18 (dd, J = 9.9, 4.5 Hz, 1 H, α CH), 7.38–7.42 (m, 3 H, ArH), 7.48-7.55 (m, 4 H, ArH), 7.87-7.95 (m, 2 H, ArH) ppm. ¹³C NMR (CDCl₃): $\delta = 27.9$ [C(CH₃)₃], 34.8 (β CH₂), 52.5 (OCH₃), 57.8 (αCH), 83.4 [OC(CH₃)₃], 122.8 (CH), 122.9 (CH), 123.4 (CH), 124.4 (CH), 124.4 (CH), 129.2 (CH), 130.0 (CH), 134.2 (C), 135.0 (C), 137.3 (C), 137.7 (C), 140.6 (C), 151.8 (C=O), 170.2 (C=O) ppm. C₂₈H₃₃NO₆S₂ (543.71): calcd. C 61.83, H 6.12, N 2.58, S 11.79; found C 62.11, H 6.27, N 2.57, S 11.72.

Boc-Ala {N-Boc- β -[4-(2,3-dimethylbenzo[b]thien-7-yl)phenylsulfanyl]}-OMe (13): The procedure described above was followed using compound 7a (0.500 mmol, 0.250 g), with heating for 5 h. Column chromatography using a solvent gradient, from neat petroleum ether to 20% diethyl ether/petroleum ether, gave product 13 as a white solid (0.210 g, 72%). Recrystallization from petroleum ether gave colorless crystals, m.p. 79.5-80.7 °C. ¹H NMR (CDCl₃): δ = 1.48 (s, 18 H, Boc CH₃), 2.34 (s, 3 H, ArCH₃), 2.49 (s, 3 H, ArCH₃), 3.54 (dd, J = 14.6, 9.9 Hz, 1 H, β CH₂), 3.76 (s, 3 H, OCH₃), 3.82 (dd, J = 14.6, 4.5 Hz, 1 H, β CH₂), 5.19 (dd, J = 9.9, 4.5 Hz, 1 H, α CH), 7.27 (dd, J = 7.4, 1.2 Hz, 1 H, 4' or 6'-H), 7.41–7.49 (m, 3 H, 2 × ArH and 5'-H), 7.58 (dd, J = 8.0, 1.2 Hz, 1 H, 6' or 4'-H), 7.64 (d, J = 8.4 Hz, 2 H, 2 × ArH) ppm. ¹³C NMR (CDCl₃): $\delta = 11.5$ (CH₃), 13.6 (CH₃), 27.9 [C(CH₃)₃], 34.6 (βCH₂), 52.4 (OCH₃), 57.8 (αCH), 83.4 [OC(CH₃)₃], 120.2 (CH), 123.5 (CH), 124.6 (CH), 127.4 (C), 128.8 (CH), 129.5 (CH), 134.2 (C), 135.3 (C), 135.3 (C), 136.8 (C), 138.9 (C), 141.7 (C), 151.8 (C= O), 170.2 (C=O) ppm. C₃₀H₃₇NO₆S₂ (571.76): calcd. C 63.02, H 6.52, N 2.45, S 11.21; found C 63.23, H 6.66, N 2.49, S 10.98.

Boc-Ala {N-Boc-B-[4-(2,3-dimethylbenzo[b]thien-5-v])phenylsulfanyl]}-OMe (14): The procedure described above was followed using compound 7a (0.39 mmol, 0.190 g) with heating for 5 h. Column chromatography using a solvent gradient, from neat petroleum ether to 20% diethyl ether/petroleum ether, gave product 14 as a white solid (0.110 g, 50%). Recrystallization from diethyl ether gave colorless crystals, m.p. 175.2-177.2 °C. ¹H NMR $(CDCl_3)$: $\delta = 1.48$ (s, 18 H, Boc CH₃), 2.35 (s, 3 H, ArCH₃), 2.52 (s, 3 H, ArCH₃), 3.48-3.53 (m, 1 H, βCH₂), 3.75-3.82 (m, 4 H, β CH₂ and OCH₃), 5.16 (dd, J = 9.8, 4.2 Hz, 1 H, α CH), 7.45–7.50 (m, 3 H, 2 × ArH and 6'-H), 7.59 (d, J = 8.4 Hz, 2 H 2 × ArH), 7.73 (d, J = 1.5 Hz, 1 H, 4'-H), 7.79 (d, J = 8.4 Hz, 1 H, 7'-H) ppm. ${}^{13}C$ NMR (CDCl₃): δ = 11.4 (CH₃), 13.9 (CH₃), 27.9 [C(CH₃)₃], 35.2 (βCH₂), 52.5 (OCH₃), 57.9 (αCH), 83.3 [OC(CH₃)₃], 119.4 (CH), 122.3 (CH), 122.7 (CH), 127.2 (C), 127.9 (CH), 130.4 (CH), 134.3 (C), 134.7 (C), 136.5 (C), 137.3 (C), 140.1 (C), 141.6 (C), 151.9 (C=O), 170.3 (C=O) ppm. C₃₀H₃₇NO₆S₂ (571.76): calcd. C 63.02, H 6.52, N 2.45, S 11.21; found C 62.71, H 6.55, N 2.50, S 11.15.

Boc-(*E***)-ΔAla {β-[4-(benzo[***b***]thien-3-yl)phenylsulfanyl]}-OMe [(***E***)-15]: The procedure described above was followed using compound (***E***)-9a (0.390 mmol, 0.150 g) with heating for 4 h. Column chromatography using a solvent gradient, from neat petroleum ether to 20% diethyl ether/petroleum ether, gave product (***E***)-15 (0.150 g, 85%) as a white solid. Recrystallization from diethyl ether/***n***-hexaue gave colorless crystals, m.p. 98.9–100.0 °C. ¹H NMR (CDCl₃): δ = 1.54 (s, 9 H, Boc CH₃), 3.82 (s, 3 H, OCH₃), 6.36 (br s, 1 H, αNH), 7.40–7.44 (m, 3 H, ArH), 7.51 (s, 1 H, βCH), 7.60 (br s, 4 H, ArH) 7.89–7.96 (m, 2 H, ArH) ppm. ¹³C NMR (CDCl₃): δ = 28.2 [C(CH₃)₃], 52.5 (OCH₃), 81.1 [OC(CH₃)₃], 122.6 (CH), 123.0 (CH), 124.0 (CH), 124.5 (CH), 124.5 (CH), 129.4 (CH), 131.2 (CH), 133.6 (C), 135.8 (C), 136.8 (C), 137.5 (C), 140.7 (C), 152.4 (C=O), 163.6 (C=O) ppm. C₂₃H₂₃NO₄S₂ (441.58): calcd. C 62.56, H 5.25, N 3.17, S 14.52; found C 62.20, H 5.35, N 3.07, S 14.57.**

Boc-(*E*)-ΔAla{β-[4-(benzo[*b*]thien-3-yl)phenylsulfanyl]}-OMe [(*E*)-15] and Boc-(*Z*)-ΔAla{β-[4-(benzo[*b*]thien-3-yl)phenylsulfanyl]}-OMe [(*Z*)-15]: The procedure described above was followed using compound 8a (0.500 mmol, 0.270 g) and benzo[*b*]thiophene 3-boronic acid (1.1 equiv.) in DME/H₂O (6:1), with heating for 5 h. Column chromatography using a solvent gradient, from neat petroleum ether to 10% diethyl ether/petroleum ether, gave compound (*Z*)-15 (0.0260 g, 12%), as an oil, as the less-polar product {¹H NMR (CDCl₃): δ = 1.49 (s, 9 H, Boc CH₃), 3.94 (s, 3 H, OCH₃), 6.80 (br s, 1 H, αNH), 7.40–7.43 (m, 3 H, ArH), 7.59 (d, J = 8.7 Hz, 2 H, 2 × ArH), 7.64 (d, J = 8.7 Hz, 2 H, 2 × ArH), 7.90–7.97 (m, 2 H, ArH), 8.07 (br s, 1 H, βCH) ppm} followed by (*E*)-15 as a white solid (0.110 g, 48%) with spectroscopic data identical to those described above.

Boc-(*E*)- Δ Ala{ β -[4-(2,3-dimethylbenzo[*b*]thien-7-yl)phenylsulfanyl]}-OMe [(E)-16]: The procedure described above was followed using compound (E)-9a (0.390 mmol, 0.150 g) with heating for 4 h. Column chromatography using a solvent gradient, from neat petroleum ether to 30% diethyl ether/petroleum ether, gave product (E)-16 as a white solid (0.160 g, 86%). Recrystallization from diethyl ether/ petroleum ether gave colorless crystals, m.p. 133.7-134.4 °C. ¹H NMR (CDCl₃): $\delta = 1.54$ (s, 9 H, Boc CH₃), 2.35 (s, 3 H, ArCH₃), 2.50 (s, 3 H, ArCH₃), 3.82 (s, 3 H, OCH₃), 6.31 (br s, 1 H, αNH), 7.30 (dd, J = 7.5, 0.9 Hz, 1 H, 4'-H or 6'-H), 7.46 (t, J = 7.5 Hz, 1 H, 5'-H), 7.53 (s, 1 H, βCH), 7.57–7.62 (m, 3 H, 2 \times ArH and 6'-H or 4'-H), 7.72 (d, J = 8.1 Hz, 2 H, 2 × ArH) ppm. ¹³C NMR $(CDCl_3): \delta = 11.5 (CH_3), 13.7 (CH_3), 28.2 [C(CH_3)_3], 52.5 (OCH_3),$ 81.1 [OC(CH₃)₃], 120.5 (CH), 123.6 (CH), 124.7 (CH), 127.5 (C), 129.0 (CH), 131.1 (CH), 133.7 (CH), 134.3 (C), 134.9 (C), 136.7 (C), 140.7 (C), 141.8 (C), 152.5 (C=O), 163.6 (C=O) ppm. C₂₅H₂₇NO₄S₂ (469.63): calcd. C 63.94, H 5.79, N 2.98, S 13.65; found C 63.78, H 5.87, N 3.06, S 13.45.

Boc-(*E*)- Δ Ala{ β -[4-(2,3-dimethylbenzo[*b*]thien-5-yl)phenylsulfanyl]}-OMe [(E)-17]: The procedure described above was followed using compound (E)-9a (0.390 mmol, 0.150 g), with heating for 7 h. Column chromatography using a solvent gradient, from neat petroleum ether to 30% diethyl ether/petroleum ether, gave product (E)-17 (0.100 g, 55%) as a white solid. Recrystallization from diethyl ether/ petroleum ether gave colorless crystals, m.p. 75.0-76.2 °C. ¹H NMR (CDCl₃): $\delta = 1.53$ (s, 9 H, Boc CH₃), 2.35 (s, 3 H, ArCH₃), 2.52 (s, 3 H, ArCH₃), 3.81 (s, 3 H, OCH₃), 6.32 (br s, 1 H, αNH), 7.49 (dd, J = 8.1, 1.2 Hz, 1 H, 6'-H), 7.50 (s, 1 H, β CH), 7.57 (d, J = 8.4 Hz, 2 H, 2 × ArH), 7.67 (d, J = 8.4 Hz, 2 H, 2 × ArH), 7.76 (d, J = 1.2 Hz, 1 H, 4'-H), 7.81 (dd, J = 8.1, 1.2 Hz, 1 H, 7'-H) ppm. ¹³C NMR (CDCl₃): $\delta = 11.4$ (CH₃), 13.9 (CH₃), 28.2 [C(CH₃)₃], 52.5 (OCH₃), 81.1 [OC(CH₃)₃], 119.5 (CH), 122.3 (CH), 122.7 (CH), 127.2 (C), 128.2 (CH), 131.4 (CH), 132.9 (C), 134.2 (CH), 134.8 (C), 136.0 (C), 137.6 (C), 141.5 (C), 141.6 (C), 152.5 (C=O), 163.6 (C=O) ppm. C₂₅H₂₇NO₄S₂ (469.63): calcd. C 63.94, H 5.79, N 2.98, S 13.65; found C 63.56, H 5.90, N 3.04, S 13.68.

Boc-Ala{*N*-**Boc-β-[3-(benzo[***b***]thien-3-yl)benzylamino]}-OMe** (18): The procedure described above was followed using compound 7c (0.280 mmol, 0.150 g) with heating for 7 h. Column chromatography using a solvent gradient, from neat petroleum ether to 30% diethyl ether/petroleum ether, gave product 18 (0.110 g, 71%) as an oil, which failed all attempts to crystallize it. ¹H NMR (CDCl₃): $\delta = 1.44$ (s, 18 H, Boc CH₃), 3.42–3.56 (m, 2 H, βCH₂), 3.73 (s, 3 H, OCH₃), 4.40–4.72 (m, 3 H, αCH and CH₂), 5.61 (br s, 1 H, NH), 7.36–7.54 (m, 7 H, ArH), 7.86–7.97 (m, 2 H, ArH) ppm. ¹³C NMR (CDCl₃): $\delta = 28.2$ [C(CH₃)₃], 47.5 (CH₂), 51.0 (CH₂), 52.4 (OCH₃), 52.8 (αCH), 80.6 [OC(CH₃)₃], 122.7 (CH), 122.8 (CH), 123.5 (CH), 124.3 (CH), 124.4 (CH), 126.3 (CH), 127.7 (CH), 129.0 (CH), 136.2 (C), 137.6 (C), 138.0 (C), 138.4 (C), 140.6 (C), 155.3 (C=O), 171.4 (C=O) ppm. C₂₉H₃₆N₂O₆S HMRS (FAB) [M + H]⁺ found (calcd.) 541.2386 (541.2372).

Boc-Ala{N-Boc-\beta-[3-(2,3-dimethylbenzo[*b***]thien-7-yl)benzylamino]}-OMe (19):** The procedure described above was followed using compound 7c (0.300 mmol, 0.160 g) with heating for 7 h. Column chromatography using a solvent gradient, from neat petroleum ether to 30% diethyl ether/petroleum ether, gave product 19 (0.090 g, 50%)

as a light-yellow oil, which failed all attempts to crystallize it. ¹H NMR (CDCl₃): δ = 1.44 (s, 18 H, ArCH₃, Boc), 2.34 (s, 3 H, ArCH₃), 2.48 (s, 3 H, ArCH₃), 3.40–3.58 (m, 2 H, β CH₂), 3.73 (s, 3 H, OCH₃), 4.38–4.76 (m, 3 H, α CH and CH₂), 5.64 (br d, 1 H, J = 6.6 Hz, NH), 7.22–7.34 (m, 2 H, ArH), 7.41–7.49 (m, 2 H, ArH), 7.55–7.65 (m, 3 H, ArH) ppm. ¹³C NMR (CDCl₃): δ = 11.5 (CH₃), 13.6 (CH₃), 28.3 [C(CH₃)₃], 47.5 (CH₂), 51.0 (CH₂), 52.5 (OCH₃), 52.9 (α CH), 80.6 [OC(CH₃)₃], 120.2 (CH), 123.6 (CH), 124.6 (CH), 126.6 (CH), 126.9 (CH), 127.2 (CH), 128.9 (CH), 134.1 (C), 135.1 (C), 135.7 (C), 136.8 (C), 138.3 (C), 141.2 (C), 141.7 (C), 155.4 (C=O), 171.5 (C=O) ppm. C₃₁H₄₀N₂O₆S HMRS (FAB) [M + H]⁺ found (calcd.) 569.2677 (569.2685).

General Procedure for C–N Coupling: A dried Schlenk tube was charged under Ar with dry toluene (2 mL), the bromo compound was added and the mixture heated for 10 min at 80 °C. Pd(OAc)₂ (10 mol %), BINAP (15 mol %), and Cs₂CO₃ (1.4 equiv.) were added and the mixture was heated for another 10 min at 80 °C. The amine was added in dry toluene (2 mL) and the mixture was heated with stirring at 100 °C under Ar for ca. 5 h (Table 3). The reactions were monitored by TLC and stopped when no amino acid seemed to be present. Water and diethyl ether were added, the phases were separated, and then the aqueous phase was washed with diethyl ether (3 × 10 mL). The organic phase was collected, dried (MgSO₄), filtered, and then the solvent was evaporated to give a brown oil, which was subjected to column chromatography after traces of toluene were evaporated using MeOH. Solvent gradient was used from neat petroleum to 30% diethyl ether/petroleum ether.

Boc-Ala{N-Boc-β-[4-amino-(2,3-dimethylbenzo[b]thien-7-yl)phenylsulfanyl]}-OMe (20): The procedure described above was followed using compound 7a (0.400 mmol, 0.200 g) and amine 4b (1 equiv.). Column chromatography gave product 20 as a light-yellow solid (0.140 g, 60%). Recrystallization from diethyl ether/petroleum ether gave light-yellow crystals, m.p. 97.8-99.7 °C. ¹H NMR $(CDCl_3): \delta = 1.49$ (s, 18 H, Boc CH₃), 2.31 (s, 3 H, ArCH₃), 2.49 (s, 3 H, ArCH₃), 3.38 (dd, J = 14.4, 9.9 Hz, 1 H, β CH₂), 3.63 (dd, J = 14.4, 4.5 Hz, 1 H, β CH₂), 3.72 (s, 3 H, OCH₃), 5.09 (dd, J =9.9, 4.5 Hz, 1 H, α CH), 5.61 (br s, 1 H, NH), 6.95 (d, J = 8.7 Hz, 2 H, 2 × ArH), 7.14-7.18 (m, 1 H, 6'-H), 7.29-7.32 (m, 2 H, 4' and 5'-H), 7.36 (d, J = 8.7 Hz, 2 H, 2 × ArH) ppm. ¹³C NMR $(CDCl_3): \delta = 11.6 (CH_3), 13.8 (CH_3), 27.9 [C(CH_3)_3], 37.1 (\beta CH_2),$ 52.3 (OCH₃), 57.9 (aCH), 83.2 [OC(CH₃)₃], 113.5 (CH), 115.9 (CH), 117.8 (CH), 124.9 (CH), 125.4 (C), 128.1 (C), 130.2 (C), 133.1 (C), 133.5 (CH), 136.4 (C), 142.7 (C), 142.9 (C), 151.9 (C= O), 170.3 (C=O) ppm. $C_{30}H_{38}N_2O_6S_2$ (586.78): calcd. C 61.41, H 6.53, N 4.77, S 10.93; found C 61.35, H 6.51, N 4.72, S 10.40.

Compound **20** was also obtained following the same procedure by using compound **7b** (0.380 mmol, 0.160 g) and **1b** (1.5 equiv.). Column chromatography gave product **20** as a light-yellow solid (0.120 g, 52%) which displayed identical spectroscopic data to those described above.

Boc-Ala {*N*-**Boc-**β-[4-amino-(2,3-dimethylbenzo[*b*]thien-5-yl)phenylsulfanyl]}-OMe (21): The procedure described above was followed using compound 7b (0.500 mmol, 0.210 g) and 1a (1.5 equiv.). Column chromatography gave product 21 as a light-brown solid (0.160 g, 55%). Recrystallization from diethyl ether/petroleum ether gave beige crystals, m.p. 98.8–100.5 °C. ¹H NMR (CDCl₃): $\delta = 1.50$ (s, 18 H, Boc CH₃), 2.24 (s, 3 H, ArCH₃), 2.48 (s, 3 H, ArCH₃), 3.37 (dd, J = 14.4, 9.9 Hz, 1 H, β CH₂), 3.61 (dd, J =14.4, 4.5 Hz, 1 H, β CH₂), 3.71 (s, 3 H, OCH₃), 5.08 (dd, J = 9.9, 4.5 Hz, 1 H, α CH), 5.78 (br s, 1 H, NH), 6.96 (d, J = 8.7 Hz, 2 H, 2 × ArH), 7.05 (dd, J = 8.4, 1.8 Hz, 1 H, 6'-H), 7.32 (d, J =

FULL PAPER

1.8 Hz, 1 H, 4'-H), 7.35 (d, J = 8.7 Hz, 2 H, 2 × ArH), 7.63 (d, J = 8.4 Hz, 1 H, 7'-H) ppm. ¹³C NMR (CDCl₃): δ = 11.4 (CH₃), 13.9 (CH₃), 27.9 [C(CH₃)₃], 37.3 (βCH₂), 52.4 (OCH₃), 57.9 (αCH), 83.2 [OC(CH₃)₃], 111.8 (CH), 116.6 (CH), 117.5 (CH), 122.6 (CH), 124.4 (C), 126.7 (C), 132.0 (C), 133.9 (CH), 135.0 (C), 138.7 (C), 142.1 (C), 144.2 (C), 152.0 (C=O), 170.4 (C=O) ppm. C₃₀H₃₈N₂O₆S₂ (586.78): calcd. C 61.41, H 6.53, N 4.77, S 10.93; found C 61.57, H 6.69, N 4.84, S 10.58.

Boc-(E)- Δ Ala{ β -[4-amino(2,3-dimethylbenzo[b]thien-7-yl)phenylsulfanyl]}-OMe [(E)-22] and Boc-(Z)- Δ Ala{ β [-4-amino(2,3-dimethylbenzo[b]thien-7-yl)phenylsulfanyl]}-OMe [(Z)-22]: The procedure described above was followed using compound (E)-9b (0.310 mmol, 0.100 g) and 1b (1.5 equiv.). Column chromatography gave (Z)-22 as a light-yellow solid (0.200 g, 14%) as the less-polar product. Recrystallization from diethyl ether/petroleum ether gave light-yellow crystals, m.p. 133.4–134.4 °C. ¹H NMR (CDCl₃): $\delta =$ 1.47 (s, 9 H, Boc CH₃), 2.32 (s, 3 H, ArCH₃), 2.50 (s, 3 H, ArCH₃), 3.91 (s, 3 H, OCH₃), 5.71 (br s, 1 H, NH), 6.68 (br s, 1 H, αNH), 6.98 (d, J = 8.7 Hz, 2 H, 2 × ArH), 7.19–7.23 (m, 1 H, 6'-H), 7.30-7.38 (m, 2 H, 5' and 4'-H), 6.98 (d, J = 8.7 Hz, 2 H, 2 \times ArH), 7.41 (d, J = 8.7 Hz, 2 H, 2 × ArH), 7.87 (br s, 1 H, β CH) ppm. ¹³C NMR (CDCl₃): $\delta = 11.7$ (CH₃), 13.9 (CH₃), 28.3 [C(CH₃)₃], 52.4 (OCH₃), 80.5 [OC(CH₃)₃], 114.3 (CH), 116.3 (CH), 117.6 (CH), 118.6 (C), 125.0 (CH), 126.4 (C), 128.2 (C), 132.9 (CH), 133.3 (C), 136.1 (C), 142.8 (C), 143.7 (C), 152.9 (C=O), 163.6 (C=O) ppm. C₂₅H₂₈N₂O₄S₂ (484.65): calcd. C 61.96, H 5.82, N 5.78, S 13.23; found C 61.90, H 6.12, N 5.64, S 12.81. Product (E)-22 eluted next and was isolated as a white solid (0.500 g, 35%). Recrystallization from ethyl acetate/diethyl ether gave colorless crystals, m.p. 192.8–194.3 °C. ¹H NMR (CDCl₃): $\delta = 1.52$ (s, 9 H, Boc CH₃), 2.32 (s, 3 H, ArCH₃), 2.50 (s, 3 H, ArCH₃), 3.77 (s, 3 H, OCH₃), 5.71 (br s, 1 H, NH), 6.20 (br s, 1 H, aNH), 6.96 (d, J = 8.7 Hz, 2 H, 2 × ArH), 7.20 (dd, J = 6.9, 1.8 Hz, 1 H, 6'-H), 7.30–7.40 (m, 5 H, $\beta CH,$ 2 \times ArH, 4' and 5'-H) ppm. ^{13}C NMR $(CDCl_3): \delta = 11.6 (CH_3), 13.8 (CH_3), 28.1 [C(CH_3)_3], 52.3 (OCH_3),$ 80.9 [OC(CH₃)₃], 114.8 (CH), 116.6 (CH), 117.2 (CH), 121.0 (C), 123.6 (C), 124.9 (CH), 128.1 (C), 131.1 (C), 133.4 (CH), 135.7 (C), 137.2 (CH), 142.8 (C), 144.2 (C), 152.5 (C=O), 163.6 (C=O) ppm. C₂₅H₂₈N₂O₄S₂ (484.65): calcd. C 61.96, H 5.82, N 5.78, S 13.23; found C 61.70, H 5.81, N 5.71, S 12.76.

Acknowledgments

We thank the Foundation for Science and Technology (Portugal) for financial support to IBQF-Univ. Minho, project POCTI/99/ QUI/32689 (also financial support to N. O. S.) and to SFRH/BD/ 4709/2001 for financial support of the PhD of A. S. Abreu.

- ^[1] ^[1a] U. Schmidt, A. Lieberknecht, J. Wild, Synthesis 1988, 159-171. ^[1b] G. Jung, Angew. Chem. 1991, 103, 1067-1084; G. Jung, Angew. Chem. Int. Ed. Engl. 1991, 30, 1051-1058. ^[1c] A. Giannis, T. Kolter, Angew. Chem. 1993, 105, 1303-1326; Angew. Chem. Int. Ed. Engl. 1993, 32, 1244-1267.
- [2] F. Ikegami, Y. Komada, M. Korobi, D. R. Hawkins, I. Murakoshi, *Phytochemistry* 1990, 29, 2507-2508.
- [3] P. M. T. Ferreira, H. Maia, L. S. Monteiro, J. Sacramento, J. Chem. Soc., Perkin Trans. 1 1999, 3697–3703.
- ^[4] ^[4a] P. M. T. Ferreira, H. Maia, L. S. Monteiro, J. Sacramento, J. Sebastião, J. Chem. Soc., Perkin Trans. 1 2000, 3317-3324.
 ^[4b] P. M. T. Ferreira, H. Maia, L. S. Monteiro, J. Sacramento, J. Chem. Soc., Perkin Trans. 1 2001, 3167-3172.
- ^[5] ^[5a] E. Campaigne, in *Comprehensive Heterocyclic Chemistry* (Eds.: A. R. Katritzky, C. W. Rees), Pergamon Press, Oxford, **1984**; Vol. 4, 863–934. ^[5b] K. R. Ronald, B. P. Jefery, in *Comprehensive Heterocyclic Chemistry II* (Eds.: A. R. Katritzky, C. W. Rees, E. F. V. Scriven), Pergamon Press, Oxford, **1996**; Vol. 2, 679–729.
- ^[6] N. O. Silva, A. S. Abreu, P. M. T. Ferreira, L. S. Monteiro, M.-J. R. P. Queiroz, *Eur. J. Org. Chem.* **2002**, 2524–2528.
- [7] P. Cagniant, P. Faller, D. Cagniant, Bull. Soc. Chim. Fr. 1966, 3055-3065.
- ^[8] ^[8a] M. Prashad, B. Hu, Y. Lu, R. Draper, D. Har, O. Repic, T. J. Blacklock, *J. Org. Chem.* 2000, 65, 2612–2614. ^[8b] J. P. Wolfe, J. Ahman, J. P. Sadighi, R. A. Singer, S. L. Buchwald, *Tetrahedron Lett.* 1997, 38, 6367–6370. ^[8c] I. C. F. R. Ferreira, M.-J. R. P. Queiroz, G. Kirsch, *Tetrahedron* 2003, 59, 975–981.
- [9] M.-J. R. P. Queiroz, R. Dubest, J. Aubard, R. Faure, R. Guglielmetti, Dyes and Pigments 2000, 47, 219-229.
- [10] [10a] J. P. Wolfe, S. L. Buchwald, *Tetrahedron Lett.* 1997, 38, 6359–6362.
 [10b] J. P. Wolfe, S. L. Buchwald, *J. Org. Chem.* 2000, 65, 1144–1157.
- [^{11]} I. C. F. R. Ferreira, M.-J. R. P. Queiroz, G. Kirsch, *Tetrahedron* 2002, 58, 7943–7947.

Received October 23, 2002 [O02591]