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Abstract: 

  A new biothiol-selective fluorescent probe 1 based on photoinduced electron 

transfer (PET) mechanism was designed and synthesized. The UV-Vis absorption and 

fluorescent emission properties of probe 1 towards various analytes were studied in 

detail. The probe exhibited a large stokes shift (~200 nm) after reacted with biothiols 

and could selectively detect cysteine (Cys) in dimethyl sulfoxide (DMSO)/H2O 

solution (9:1, v/v, 10 mM phosphate buffer saline, pH 3.5) over glutathione (GSH), 

homocysteine (Hcy) and other analytes with a detection limit of 0.117 µM. In addition, 

probe 1 responded well to GSH, Hcy and Cys in the same above solution with pH 5.5 

and got the detection limits of 0.151 µM, 0.128 µM and 0.037 µM, respectively. 

Probe 1 was of very low cytotoxicity and successfully applied for imaging of thiols in 

living cells.  

 

Keywords:  

Fluorescent probe; Photoinduced electron transfer; Imaging; Biothiols



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

3 

 

1. Introduction 

  Recently, the selective and sensitive fluorescent probes for thiols have increasingly 

received attention on account of their operation simplicity and capability of imaging 

intracellular thiols in vivo studies. Intracellular biothiols, such as cysteine (Cys), 

homocysteine (Hcy) and glutathione (GSH), play momentous roles in cellular growth 

and redox homeostasis in biological systems through the adjustment between the 

reduced free thiols and oxidized disulfide forms [1−4]. In general, the abnormal level 

of cellular thiols is closely related to many diseases. A deficiency of Cys would cause 

many syndromes, like retarded growth, hair depigmentation, lethargy, liver damage, 

muscle and fat loss, skin lesions and weakness [5−8]. While an elevated level of Hcy 

in human plasma is proved to be involved in cardiovascular and Alzheimer’s disease 

[9−11]. And GSH, the most abundant intracellular thiol, serves many cellular 

functions including xenobiotic metabolism, intracellular signal transduction, and gene 

regulation [12−17]. Therefore, it is of great scientific and technological interest to 

recognize and detect special sulfhydryl-containing biomolecules in biochemistry and 

biomedicine fields. 

  Over the past several decades, a lot of effective analytical methods have been 

developed for the detection of thiols in biological systems including high performance 

liquid chromatography (HPLC) [18], capillary electrophoresis [19], 

spectrophotometry [20], electrochemical method [21], mass spectrometry (MS) [22], 

and HPLC−MS [23]. Most of these methods need complicated and costly instruments 

and troublesome pretreatment procedures such as separation and purification before 
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instrumental analyses. Moreover, few of them are convenient to be applied in 

intracellular tests due to their limitation in in vivo studies. Compared with these, 

fluorometry has its own advantages with high sensitivity, economy, real-time 

detection, noninvasiveness and good compatibility with biological samples. As a 

consequence, numerous fluorescent probes for biothiols based on various mechanisms 

have been developed [24], including cleavage reaction by thiols [25−34], cyclization 

reaction with aldehyde [35−43], Michael addition [44−54], metal complexes [55,56], 

nanomaterials [57−59] and others [60,61].  

  Rhodamine dyes are widely used as fluorescent probes owing to their high 

absorption coefficient and broad fluorescence in the visible region of electromagnetic 

spectrum, high fluorescence quantum yield and photostability [62]. For example, Li 

group reported a probe for Hg
2+

 based on rhodamine derivative bearing phthalimido 

Gly [63]. Das and his coworkers reported two rhodamine derivative probes for Hg
2+

 

based on through-bond energy transfer (TBET) process [64,65] and a förster 

resonance energy transfer (FRET) based probe for monitoring pH changes in 

lipid-dense region of Hct116 cells [66]. 

  Herein, we report a highly selective and sensitive fluorescent probe 1 for 

quantitative detection of biothiols in living cells. The probe 1 was designed basing on 

the cleavage of sulfonate ester by mercapto compound (RSH). The compound 2 

containing rhodamine B structure is selected as the fluorophore, which has a large 

stokes shift and long emission wavelength. 2, 4-dinitrophenylsulfonyl moiety is 

chosen as the PET acceptor, which serves as not only an electrophile but also a 
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quencher of compound 2 (Scheme 1). 

(Scheme 1) 

2. EXPERIMENTAL SECTION 

2.1. Materials  

Cys and GSH were purchased from Sangon Biotech. Co., LTD. (Shanghai, China). 

Hcy was obtained from J&K (Beijing, China). 2, 4-Dinitrobenzenesulfonyl chloride 

was purchased from Alfa Aesar (Tianjin, China). Ultrapure water, which was used 

throughout the experiments, was obtained from an ALH-6000-U (Aquapro 

International Company, USA) purification system. HPLC-grade acetonitrile was 

purchased from Dima Technology (RichmondHill, USA). HeLa cells were obtained 

from Department of Cell Biology, School of Life Sciences, Lanzhou University 

(Lanzhou, China). All other chemicals were obtained from qualified reagent suppliers 

with analytical grade. 

2.2. Instruments 

Fluorescence spectra were recorded on a Fluorescence spectrophotometer 

RF-5301pc (SHIMADZU, Japan) with a Xenon lamp and 1.0-cm quartz cells at the 

slits of 10/10 nm. The fluorescence quantum yields were determined on fluorescence 

spectrometer FLSP920 (Edinburgh Instruments Ltd., UK). Absorption spectra were 

measured on a UV-Vis spectrophotometer TU-1810 (PUXI, China). Mass spectra 

were measured using a mass spectrometer micrOTOF II with ESI mode (Bruker, 

America). High resolution mass spectra (HRMS) were measured using a spectrometer 

APEX II 47e FT-ICR with ESI or APCI positive ion mode (Bruker Daltonics, 
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America). NMR spectra were measured using a 400 MHz instrument (JEOL, Japan). 

The pH values were measured using a digital pH-meter PHSJ-3F (Leici, China). The 

fluorescence images of cells were taken using a confocal laser scanning microscope 

TCS SP8 (Leica, Germany) with an objective lens (×40). 

2.3. Synthesis 

  Scheme S1 depicts the synthesis route of probe 1 and compound 2. Probe 1 was 

obtained from compound 3 and 4, both of which were synthesized according to 

previous reported methods [67,68]. 

2.3.1. Synthesis of compound 2 

  Compound 3 (456.0 mg, 1.0 mmol) was dissolved in 10 mL of ethanol, and then 

added 4-hydroxybenzaldehyde (122.0 mg, 1.0 mmol) into the solution. The stirred 

mixture was heated to reflux under nitrogen for 6 h and then the solvent was 

evaporated. The solid was purified by flash column chromatography (CH2Cl2/CH3OH 

= 100/1) on silica gel, affording the desired compound 2 as an offwhite solid (504.0 

mg, yield 90%). m.p. 153–155 °C. 
1
H NMR (400 MHz, DMSO-d6): δ = 9.90 (s, 1H), 

8.79 (s, 1H), 7.87 (d, J = 6.6 Hz, 1H), 7.61 – 7.51 (m, 2H), 7.26 (d, J = 8.7 Hz, 2H), 

7.07 (d, J = 7.0 Hz, 1H), 6.72 (d, J = 8.6 Hz, 2H), 6.42 (d, J = 2.4 Hz, 2H), 6.40 (d, J 

= 8.8 Hz, 2H), 6.32 (dd, J = 8.9, 2.4 Hz, 2H), 3.32 – 3.25 (m, 8H), 1.07 (t, J = 7.0 Hz, 

12H) ppm. 
13

C NMR (100 MHz, DMSO-d6): δ = 163.89, 160.11, 153.19, 151.63, 

149.75, 148.87, 134.03, 129.66, 129.15, 128.17, 126.02, 124.24, 123.33, 116.17, 

108.42, 106.19, 97.77, 65.87, 55.45, 44.16, 12.93 ppm. HRMS (ESI, m/z) Calcd. for 

[C35H36N4O3 + H] : 561.2860, found: 561.2865. 
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2.3.2. Synthesis of probe 1 

  Compound 3 (456.0 mg, 1.0 mmol) was dissolved in 10 mL ethanol, then added 

compound 4 (352.0 mg, 1.0 mmol) into the solution. The mixture was stirred and 

heated to reflux under nitrogen. After 6 h, the reaction mixture was concentrated 

under reduced pressure to give crude solid, which was purified by silica gel column 

chromatography using CH2Cl2/0-2% methanol as eluent to afford desired brown 

products (624.0 mg, yield 79%). m.p. 162–164 °C. 
1
H NMR (400 MHz, CDCl3) δ = 

8.76 (s, 1H), 8.63 (d, J = 2.1 Hz, 1H), 8.51 – 8.32 (m, 1H), 8.07 (d, J = 8.7 Hz, 1H), 

8.00 – 7.88 (m, 1H), 7.50 (t, J = 8.1 Hz, 4H), 7.12 (d, J = 7.1 Hz, 1H), 7.08 (d, J = 8.6 

Hz, 2H), 6.47 (d, J = 8.7 Hz, 2H), 6.41 (d, J = 2.4 Hz, 2H), 6.23 (dd, J = 8.9, 2.4 Hz, 

2H), 3.31 (q, J = 7.1 Hz, 8H), 1.15 (t, J = 7.0 Hz, 12H) ppm. 
13

C NMR (100 MHz, 

CDCl3) δ = 164.99, 153.20, 151.39, 150.80, 149.21, 148.85, 144.96, 135.58, 134.06, 

133.58, 133.32, 129.22, 129.03, 128.42, 128.01, 126.40, 123.97, 123.38, 121.82, 

120.27, 107.82, 105.78, 97.67, 66.13, 44.28, 12.56 ppm. HRMS (ESI, m/z) Calcd. for 

[C41H38N6O9 + H] : 791.2494, found: 791.2477. 

2.4. General procedure for spectra measurement 

  The stock solution of probe 1 (1.0 mM) was prepared in DMSO. The analytes (Cys, 

Hcy, GSH, Phe, Ala, Gly, Glu, Lys, Tyr, Trp, Ser, Asp, Val, Ile, His and CN
-
) solutions 

(8.0 mM) were prepared in deionized water. The test concentration of probe 1 was 10 

μM by diluting the stock solution to 4 mL DMSO/H2O solution (9: 1, v/v, 10 mM 

phosphate buffer saline (PBS)) at various pH. The resulting solution was shaken well 

at 37 °C for 80 min, and then the fluorescence and UV absorption spectra were 
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recorded. Fluorescence spectra were measured using a fluorescence spectrometer (λex 

= 328 nm, slit: 10/10 nm). 

2.5. Cell culture 

  HeLa cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with heat-inactivated fetal bovine serum (10%), penicillin (100 U/mL), 

and streptomycin (100 U/mL) at 37 °C in a 95% humidity atmosphere under 5% CO2 

environment. 

2.6. Confocal microscope imaging 

  The cells were seeded in 35 mm diameter glass-bottomed dishes at a density of 3 × 

10
5
 cells per dish in RPMI 1640 medium for 24 h. For living cells imaging experiment 

of probe 1, cells were incubated with 20 μM probe 1 for 45 min at 37 °C and washed 

three times with the PBS (pH 5.5 at 37 °C containing 1% DMSO), and then imaged. 

For N-methylmaleimide (NMM, a thiol blocking agent) treated experiments, HeLa 

cells were pretreated with NMM (1 mM) for 30 min at 37 °C, washed three times with 

the PBS, and then incubated with 20 μM probe 1 (or incubated with 200 μM of Cys, 

GSH or Hcy for 30 min prior to addition of probe 1) for 45 min at 37 °C. Cell imaging 

was then carried out after washing cells three times with the PBS. 

2.7. Cytotoxicity assay 

  The cytotoxic effects of probe 1 and compound 2 were determined by MTT 

(3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assays. HeLa 

cells (1×10
4
 cells/well) were placed in a flat bottom 96-well plate in 100 μL culture 

medium and incubated in 5% CO2 at 37 °C for 24 h. The cells were treated with probe 
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1 (0–80 μM) and compound 2 respectively for 24 h, then MTT solution (5.0 mg/mL, 

PBS) was added into each well (10 μL/well, 0.5 mg/mL) and the residual MTT 

solution was removed after 4 h. After shaking for 10 min, the absorbance values of the 

wells were recorded using a microplate reader at 490 nm. The cytotoxic effect (VR) of 

probe 1 and compound 2 were assessed using the following equation: VR = A/A0 × 

100%, where A and A0 were the absorbance of the experimental group and control 

group, respectively. The assays were performed in six sets for each concentration. 

3. Results and discussion 

3.1. Synthesis of probe 1 

Both probe 1 and compound 2 were obtained by the reaction between aldehyde and 

amine under the heat and reflux condition in ethanol with a yield of 79% and 90%, 

respectively. The chemical structures of probe 1 and compound 2 were confirmed by 

1
H-NMR, 

13
C-NMR, and HRMS (ESI), as shown in supporting information (Fig. 

S12–S17). 

3.2. Effect of pH 

  The pH dependence of the thiol-induced increase of fluorescent intensity at 520 nm 

was investigated. As shown in Fig. 1, the fluorescence of probe 1 enhanced gradually 

when pH ≥ 6. The pH titration spectra were provided in Fig. S2. On the other hand, 

upon the addition of Cys, GSH or Hcy, a large emission enhancement was observed 

over a wide pH range of 4–10. There was little emission enhancement of probe 1 upon 

addition of RSH when pH ≤ 3.5. These findings proved that probe 1 could be used for 

selective detection of biothiols within physiological pH range. We studied the 
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fluorescent responses at pH 5.5 or 3.5 to further verify these results. 

(Fig. 1) 

  The spectral properties of probe 1 were measured in the DMSO/H2O solution (9:1, 

v/v, 10 mM PBS). At pH 3.5 (Fig. S1A and S1B), probe 1 showed two absorption 

bands at 277 nm and 315 nm (ε = 3.47 × 10
4
 M

-1
 cm

-1
) and weak fluorescence (Φ = 

0.010, Table S1). Upon the addition of Cys, the absorption at 277 nm enhanced and a 

new absorption maximum 321 nm appeared with a 6 nm red shift compared with 

probe 1 itself. The resulting absorption spectrum was similar with that of compound 2 

(the expected product, λmax = 321 nm, ε = 4.15 × 10
4
 M

−1
 cm

−1
). Meanwhile, a 

remarkable enhanced fluorescence emission peak at 518 nm appeared after probe 1 

reacted with Cys, which was same as that of compound 2 (Φ = 0.029). The similar 

results were obtained at pH 5.5 (Fig. S1C and S1D, Table S1). 

3.3. Response time of probe 1 to biothiols 

  To achieve a better understanding of the reaction rate, we also carried out 

time-dependent analysis of probe 1 with thiols at 37 
o
C. The fluorescent intensity at 

520 nm was plotted vs time. As depicted in Fig. 2, at pH 3.5, probe 1 only observably 

responded to Cys and the equilibrium was gotten within 80 min. However, probe 1 

responded to the three mercapto compounds at pH 5.5 but showed a much slower 

equilibrium for GSH and Hcy than Cys. This suggested that probe 1 could 

differentiate Cys from the others according to the reaction rate at pH 3.5. Pitman et al. 

reported that the pKa of the sulfhydryl groups on Cys, Hcy and GSH are 8.35, 8.87 

and 8.75, respectively [69]. According to these pKa values, Cys should be dissociated 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

11 

 

more easily than Hcy and GSH. In addition, Wang et al. reported that Cys has 

stronger reducing ability [70]. Cys should be a stronger nucleophile. Therefore, probe 

1 is more reactive towards Cys. The long response equilibrium time to thiols was 

perhaps owing to the large structure of probe 1, which would not greatly influence its 

application. There are some probes reported which need long response equilibrium 

time to analytes, such as a probe for the detection of hydrogen sulfide which needed 

80 min [71] and another probe for detecting GSH whose response equilibrium time 

was over 90 min [72].  

(Fig. 2) 

3.4. Specificity of probe 1  

  To investigate the ability of probe 1 to discriminate thiols from other analytes, the 

selectivity experiments were carried out using natural amino acids (Ala, Glu, Asp, Gly, 

His, Ile, Tyr, Lys, Phe, Trp, Ser, Val) and CN
-
. As illustrated in Fig. 3 and Fig. S3, 

probe 1 could selectively detect Cys at pH 3.5, and as well as Cys, GSH and Hcy at 

pH 5.5. 

(Fig. 3) 

3.5. Quantitative responses of probe 1 to thiols 

  In order to measure the fluorescence sensitivity of probe 1 for thiols, fluorescence 

and UV titration were carried out (Fig. 4, Fig. S4−S7). As shown in Fig. 4, at pH 3.5, 

the fluorescent intensity at 520 nm gradually increased with the increase of the 

concentration of Cys. The fluorescent intensity of probe 1-Cys solution was linearly 

proportional to the amount of Cys added. The limit of detection (LOD) calculated by 
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the formula (3σ/k) was 0.117 µM, where σ is the standard deviation of blank 

measurements and k is the slope obtained from the calibration curve. With increasing 

concentration of Cys, the UV absorption of probe 1 enhanced with a red shift. Similar 

phenomena were observed in the titration experiments of probe 1 to Cys, GSH and 

Hcy at pH 5.5. The LODs were 0.037 µM for Cys, 0.151 µM for GSH, 0.128 µM for 

Hcy, respectively. The probe 1 was demonstrated to be a sensitive fluorescent sensor 

for the quantitative detection of biothiols. 

(Fig. 4) 

3.6. Study on sensing mechanism 

  The mechanism of probe 1 responding to biolthiols is based on cleavage of O–S by 

hydrosulfuryl, which generates compound 2, SO2 and compound 5 (Scheme 1). In 

order to further confirm the sensing mechanism, HPLC analysis was performed (Fig. 

S8). The decrease of probe 1 signal was observed after mixing 5.0 equiv Cys, while 

the signal ascribed to compound 2 appeared. In addition, the mass spectrometry 

analysis of probe 1 (10 μM) treated with Cys (20 equiv) also demonstrated the 

generation of expected compound 2 (m/z 561.2373) (Fig. S9). Moreover, the product 

of probe 1 with Cys was isolated and checked by thin layer chromatography (TLC). 

The results showed that the reaction did produce the compound 2 (Fig. S10). 

  To further explain the fluorescence “off-on” process, the structures of probe 1 and 

compound 2 were optimized and their frontier molecular orbital energies were 

calculated by using Gaussian 09 [DFT at the B3LYP/6-311G (d, p) level] [73,74]. As 

shown in Fig. 5, the HOMO and LUMO levels support a possible PET process in 
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probe 1. The electron transfer from compound 2 fragment (PET donor) to the 

2,4-dinitrophenylsulfonyl (PET acceptor) diminishes the fluorescence of the original 

fluorophore, resulting in fluorescence being “switched off”. However, the 

thiol-promoted specific O–S cleavage of probe 1 releases free compound 2, which 

eliminates the PET fluorescence quenching process. As a result, the fluorescence is 

“switched on”. Furthermore, the energy gaps (HOMO−LUMO) of probe 1 and 

compound 2 were calculated as 1.40 ev and 3.71 ev, respectively. The difference of 

the energy gaps also indicates the PET process. 

(Fig. 5) 

3.7. Fluorescence microscopic images in living cells and cell viability 

  Confocal microscopy experiments were carried out with living Hela cells to detect 

intracellular thiols by probe 1. As shown in Fig. 6, Hela cells show no intracellular 

background fluorescence. After Hela cells were incubated with probe 1 (20 μM) for 

45 min at 37 
o
C, green fluorescence could be observed inside the cells. In contrast, in 

the control experiment, the cells were treated with NMM and the probe subsequently 

and a remarkable fluorescence quenching was observed. The cells treated with NMM 

followed by thiols and probe 1 displayed green fluorescence again. These results 

reveal that probe 1 can penetrate cell membranes and could be applied for thiol 

imaging in living cells. 

  The cytotoxicity of probe 1 in HeLa cells was determined by the MTT assay (Fig. 

S11). Upon exposure to probe 1 (0–80 μM) and compound 2 for 24 h, over 90% of the 

HeLa cells remained viable, which indicated that the probe 1 was of very low toxicity 
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and suitable for imaging of thiols in living cells. 

(Fig. 6) 

4. Conclusion 

  In summary, a new turn-on fluorescent probe was successfully designed and 

synthesized basing on PET for selective detection of thiols. Probe 1 exhibited a large 

stokes shift (~200 nm) after reacted with thiols and could selectively detect Cys at pH 

3.5, and responded well to GSH, Hcy and Cys at pH 5.5, too. Probe 1 is of very low 

cytotoxicity and good cell permeability, which could be applied in the fluorescence 

imaging of thiols in living cells. 
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Figure and Scheme captions 

Scheme 1. Proposed sensing mechanism of probe 1 to biothiols. 

Fig. 1. The fluorescent intensity of probe 1 (10 μM) in the absence and presence of 15 

equiv Cys, GSH, Hcy at various pH after 80 min (λex = 328 nm, slit: 10/10 nm). 

Fig. 2. Time-dependent fluorescence intensities of probe 1 (10 μM) at 520 nm in 

presence of 15 equiv thiols in DMSO/H2O solution (9: 1, v/v, 10 mM PBS) at 37 
o
C. 

(A) pH 3.5, (B) pH 5.5. 

Fig. 3. Fluorescence responses of probe 1 (10 μM) to various analytes (15 equiv), Ala, 

Glu, Asp, Gly, His, Ile, Tyr, Lys, Phe, Trp, Ser, Val, Cys, Hcy, GSH and CN
-
 for 80 

min in DMSO/H2O solution (9: 1, v/v, 10 mM PBS). (A) pH 3.5, (B) pH 5.5. 

Fig. 4. (A) Fluorescence titration of probe 1 (10 μM) upon addition of Cys (0-15.0 

equiv) at pH 3.5. (B) A linear relationship of fluorescence intensity changes at 520 nm 

of probe 1 against [Cys] from 0 to 100 μM. LOD (3σ/k) calculated as 0.117 µM. 

Fig. 5. Density functional theory (DFT) optimized structures and frontier molecular 

orbitals (MOs) of (A) probe 1 and (B) compound 2. Calculations were based on 

ground state geometry by DFT at the B3LYP/6-311G (d, p)/level using Gaussian 09. 

Fig. 6. Confocal microscope images of probe 1 in HeLa cells at pH 5.5. (A) Blank 

HeLa cells. (B) HeLa cells incubated with probe 1 (20 μM) for 45 min. (C) HeLa cells 

pretreated with NMM (1 mM) for 30 min and followed with probe 1 (20 μM) for 45 

min. (D) HeLa cells pretreated with NMM (1 mM) for 30 min and then with GSH 

(200 μM) for 30 min and with probe 1 (20 μM) for 45 min. (E) Same as (D) except 

replacing GSH with Hcy. (F) Same as (D) except replacing GSH with Cys. Top: 
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Differential interference contrast (DIC) images; Middle: Fluorescence images; 

Bottom: Merge. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Graphical abstract 
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Highlights 

 A new fluorescence turn-on probe for biothiols was developed. 

 The probe could selectively detect cysteine at pH 3.5. 

 The probe responded well to cysteine, glutathione and homocysteine at pH 5.5. 

 The probe was successfully applied for imaging of thiols in living cells. 


