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Abstract—The dipeptidyl epoxyesters 3 and 4 are potent, irreversible inhibitors of cruzain and rhodesain.
� 2007 Elsevier Ltd. All rights reserved.
Cysteine proteases are an important class of enzymes
involved in the hydrolysis of peptides and proteins.1,2

The papain family of cysteine proteases includes
cathepsins, calpains, and the parasitic cysteine prote-
ases cruzain and rhodesain which are essential for
the development and survival of the protozoan Try-
panosoma cruzi and Trypanosoma brucei, respectively.3

T. cruzi causes Chagas’ disease in humans in South
and Central America,4,5 whereas T. brucei causes
sleeping sickness in humans in large areas of central
and southern Africa.6,7 Consequently, inhibition of
cysteine proteases has emerged as an important strat-
egy for the treatment of these diseases.

In 1998 dipeptidyl a,b-epoxy ketones 1 and 2 were re-
ported as cysteine protease inhibitors.8 For improved
potency and selectivity, we envisioned a new class of
inhibitors, represented by structures 3 and 4, which
incorporated the epoxyester unit.

We report herein the design and synthesis of a new class
of cysteine protease inhibitors, represented by structures
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3 and 4, that combine the reactivity of the E-64c9,10

epoxide electrophile with the Cbz-Phe-HPhe sequence
already known as a selective moiety for effective cruzain
inhibition.11–13

Although the stereochemistry of the epoxide in E-64c is
2(S),3(S) and precedents8 of epoxy inhibitors pointed to
2(S) as the best selection, we carried out a synthesis of
both isomeric epoxides 3 and 4.

The preparation of these inhibitors involved an enantio-
selective anti aldol14 reaction using thiazolidinethione 5
(prepared by acylation of thiazolidinethione derived
from LL-phenylalanine), ethyl 4-oxo butenoate (prepared
from furfural),15 and MgBr2 as a catalyst (Scheme 1).
The crude mixture of protected aldols was then treated
with 1 M aq HCl and separated by chromatography,
affording a 4:1 mixture of free aldols 6 and 7. Then pro-
tection and removal of the chiral auxiliary in 6 with
H2O2 and LiOH gave carboxylic acid 8 which was sub-
mitted to Curtius reaction16 using DPPA and Et3N
affording isocyanate 9. Compound 9 was then directly
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Scheme 1. Synthetic scheme for the preparation of dipeptidyl epoxyesters 3 and 4.
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coupled17 with Cbz-Phe and 4-DMAP furnishing dipep-
tidyl enoate 10. Then compound 10 was deprotected and
epoxidized with TBPLi giving a 7:3 mixture of syn/anti
epoxyalcohols which were separated by chromatogra-
phy. The selectivity of the epoxidation reaction is in
agreement with our previous results related to the nucle-
ophilic epoxidation of c-hydroxy a,b-unsaturated es-
ters.18 Finally Dess–Martin oxidation19 of 11 syn
afforded ketone 3. The isomeric dipeptidyl epoxyester
4 was prepared by an analogous sequence starting from
aldol 7. In this case, the epoxidation of the dipeptidyl
allylic alcohol gave a 7:3 mixture, with the syn isomer
15 predominating.

The stereochemical assignments of 6 and 7 were verified
by NMR experiments of oxazolidinones 16 and 17,
respectively (Fig. 1). The derivatization of the aldols
into the cyclic compounds was accomplished by thiazoli-
dinethione removal and Curtius degradation sequence.
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Figure 1. Stereochemical assignments of 6 and 7 determined using the oxazo
The stereochemistries of 16 and 17 were assigned on
the basis of coupling constant analysis (J4,5 = 5.5 Hz
for 16 and J4,5 = 7.5 Hz for 17) and by NOE experi-
ments: 16 gave NOE between H-4 and homobenzylic
protons, whilst 17 gave NOE between H-4 and H-5.

The stereochemistries of the epoxides were assigned
through NMR experiments applied to lactones 18 and
19 (Fig. 2). Epoxides 11 and 15 were treated with so-
dium thiophenolate and the resulting diols were further
cyclized in acidic media. In both cases the resulting lac-
tones 18 and 19 gave NOE between H-2 and H-4 denot-
ing the relative syn stereochemistry of the preceding
epoxyalcohols.

The dipeptidyl epoxyesters 3 and 4 and their preceding
epoxyalcohols 11 and 15 were screened against cruzain,
rhodesain, and T. brucei cathepsin B20 (Table 1). Alco-
hols 9 and 13 did not inhibit cysteine proteases whilst
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Figure 2. Stereochemical assignments of epoxides 11 and 15 determined from lactone derivatives 18 and 19.

Table 1. Inhibitory effect and determination of IC50 values for novel dipeptidyl epoxyester inhibitors and previous inhibitors

Inhibition IC50 (nM)

Compound Tbb in vitro (%) Cruzain (%) Rhodesain (%) Tbb CathB (%) Cruzain Rhodesain Tbb CathB

11 �37 5 �4 6 n.d. n.d. n.d.

15 17 1 3 3 n.d. n.d. n.d.

3 42 93 98 51 20 3.5 �1000

4 �2 55 80 47 50 30 400

1 >1000

2 10

K11777 99 100 72 5 5 2000

Tbb, Trypanosoma brucei brucei.
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3 and 4 inhibited cruzain and rhodesain. IC50 determina-
tions21 indicated that 3 and 4 are potent inhibitors of
cruzain and rhodesain, with 3 being more potent than
4, especially against rhodesain. Curiously, compound
3, having stereochemistry opposite to that of E-64c,
was the most active inhibitor. Neither 3 nor 4 inhibited
cathepsin B. In addition, dipeptidyl epoxyester 3 was
much more potent than its analog 1, while 4 was slightly
less potent than the corresponding epoxyketone 2. Com-
pound 3 was also the most active against Trypanosoma
brucei brucei in vitro.22

Kinetic analyses were performed on the most interesting
compounds,23 which confirmed that they are time-
dependent inhibitors of cysteine proteases (Table 2).
The second order rate constant for inactivation of cruz-
ain by 3 is 3-fold greater than that of 4 and 4-fold great-
er in the case of rhodesain. Compound 3 displayed a
second order rate constant higher than that for E-64c,
Table 2. Second order rate constants, kinact/Ki or kass (s�1 M�1), of

inhibitors 1, 2, 3, 4 and E-64c against cruzain, rhodesain, and T. brucei

cathepsin B21

Compound Versus cruzain

kinact/Ki

Versus rhodesain

kinact/Ki

Versus Tbb

CathB kass

3 82,900 92,090 120

4 25,200 23,500 84.5

1 128,200 — —

2 330,000 — —

E-64c 70,600 — —
and both dipeptidyl epoxyesters 3 and 4 showed second
order rate constants that were lower than the values for
epoxyketones 1 and 2.

Further studies on the development of the dipeptidyl
epoxyesters series as cysteine protease inhibitors are
ongoing and the results will be reported.
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