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The proteome-wide potential for reversible covalency at cysteine
Kristine Senkane,? Ekaterina V. Vinogradova,*? Radu M. Suciu,”™ Vincent M. Crowley, Balyn W.

Zaro, J. Michael Bradshaw,® Ken A. Brameld,” and Benjamin F. Cravatt*®

Abstract: Reversible covalency, achieved with, for instance, highly
electron-deficient olefins, offers a compelling strategy to design
chemical probes and drugs that benefit from the sustained target
engagement afforded by irreversible compounds, while avoiding
permanent protein modification that persists following unfolding
and/or proteolytic processing. So far, reversible covalency has
mainly been evaluated for cysteine residues in individual kinases
and the broader potential for this strategy to engage cysteines
across the proteome remains unexplored. Here we describe a mass-
spectrometry-based platform that integrates gel filtration (GF) with
activity-based protein profiling (ABPP) to assess cysteine residues
across the human proteome for both irreversible and reversible
interactions with small-molecule electrophiles. Using this method, we
identify numerous cysteine residues from diverse protein classes
that are reversibly engaged by cyanoacrylamide fragment
electrophiles, revealing the broad potential for reversible covalency
as a strategy for chemical probe discovery.

Chemical probes and drugs that operate by a covalent
irreversible mechanism have several potentially advantageous
properties, including increased duration of action, reduced
pharmacokinetic sensitivity, and the potential for improved
potency at otherwise shallow small-molecule binding pockets.&
A number of FDA-approved drugs act by a covalent irrever;
mechanism, including multiple recently approved
inhibitors used to treat diverse cancers.”” These co
react with non-catalytic cysteine residues in the activ,
target kinases like EGFR and BTK. Despite the
success of drugs that act by a covalent irreversibl
concerns remain about the potential safety and i

Advanced chemical proteomic methods have emerged
facilitate the characterization and optimization of tgrget
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ctrophiles are target-specific, often
expressed proteins, and, to our
knowledge, strate aluate reversible covalency on a
proteome-wide scale have not yet been described. Establishing
g, robust mw to profile the landscape of protein targets of

ible electrophiles in native biological systems
Id enable the optimization of compound selectivity, as well
discovery of additional proteins amenable to this form of
cological perturbation. Here, we describe a quantitative
at combines gel filtration (GF) with activity-based
(ABPP) to evaluate the proteome-wide target
a-cyanoacrylamide fragments as a prototype
cysteine-directed covalent reversible electrophile.

We adapted a competitive isoTOP-ABPP (isotopic tandem
ortRpgonal proteolysis-ABPP) method, which has been used to

alent reversible interactions of a-cyanoacrylamide fragments
ith cysteine residues in the human proteome (Fig. 1A). We
hypothesized that introducing a GF step after fragment
treatment could distinguish fragments that reversibly versus
irreversibly bind to cysteines, as the former, but not latter events
should show substantially reduced competitive isoTOP-ABPP
ratios, or R values (DMSO-treated/fragment-treated), following
GF (Fig. 1B).

The human Ramos B cell line proteome was prepared and
treated with DMSO, a-chloroacetamide fragment 1, or one of two
a-cyanoacrylamides (2 or 3) (Fig. 2A). a-Chloroacetamide 1 was
chosen because this electrophilic fragment has been found to
show broad reactivity with cysteines in the human proteome,
enabling its deployment as a “scout” fragment to discover
druggable cysteines at protein-protein interfaces!'” * and that
support E3 ligase-mediated protein degradation.®® The electron-
withdrawing nitrile group on the a-cyanoacrylamide of the
corresponding 6-methoxy-tetrahydroquinoline fragments 2 and 3
elevates the reactivity of the Michael acceptor towards
nucleophilic addition at the p-carbon compared to the
corresponding acrylamide group and also increases the acidity
of the Ca—H bond due to stabilization of the a-carbanion,
rendering the reaction reversible.!"®?”! ¢-Cyanoacrylamides have
been used to create potent and selective kinase inhibitors that
act by a covalent reversible mechanism.""*?? In most of these
cases, however, a-cyanoacrylamides were appended to high-
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Figure 1. isoTOP-ABPP (A) and GF-isoTOP-ABPP (B) for proteome-wide evaluation of reactivity and reve!l

affinity binding elements targeting the kinase

extent to which the hyper-electrophilic a-cyanoacrylamide group
can reversibly bind to cysteine residues in other proteins across

the human proteome remains unknown.

Following treatment with compounds (500 uM each,
1h) or DMSO, Ramos cell proteome samples were split in half,
with one portion undergoing GF on a Zeba Spin Desalting
Column (7K MWCO, 2 mL) to remove compounds. Both gel-
filtered and unfiltered samples were then treated separately with
an iodoacetamide (lA)-alkyne probe (100 uM, 1h), which broadly
reacts with cysteine residues, and analyzed by isoTOP-ABPP to
identify compound-sensitive cysteines. In total, more than 50Q0
cysteines were quantified on 2499 proteins (Suppleme
Table 1) and individual sites were considered: 1)
they displayed R values = 4 (= 75% reduction in |A-alkyne

labeling) before GF, and 2) reversibly liganded, if thf’btlon

in R value (AR) following GF was = 2 fold
(=2 50%).

Both chloroacetamide 1 and a-
cyanoacrylamide 2  showed broad
reactivity profiles, with each electrophilic
fragment liganding more than 100
cysteines in the Ramos cell proteome (Fig.
2B, Supplementary Fig. 1A and 1B, and
Supplementary Table 2).
Cyanoacrylamide 3, on the other
was much less reactive with the ¢
proteome, likely reflecting the sterically
obstructive impact of the larger tert-butyl

a-
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(Fig. 2B and C).
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REP5 C18 with 1 and 2, and the selective reversibility of the
interaction by gel-based ABPP, using recombinantly
ed wild type and C18A mutant forms of this protein (Fig.

ines liganded by 2 were broadly distributed across
classes, including proteins such as
transcriptional regulators and adapters that have historically

) ligan )

B
2504 Reversibly Liganded
Yes
_o D 0 2004 = No
\©\/j N N §
3 150
N H 150
O}\/c' OJ\I/Y OW 2 ool —
CN CN
1 2 3 50-1
c 1 c 2 ¢ 3
c
Compound 1 Compound 3

Compound 2

R (pre-GF)

F

R (post-GF)

Figure 2. Proteome-wide assessment of reversibility of cysteine-electrophilic compound interactions by
GF-isoTOP-ABPP. (A) Structures of covalent irreversible (1) and covalent reversible (2 and 3) electrophiles
used in the study. (B) Bar graph showing cysteines that are liganded irreversibly (purple) or reversibly
(green) by compounds 1-3. (C) Scatter plot comparisons of isoTOP-ABPP R values for cysteines before
and after GF. The color-coding matches that used in part B to designate cysteines that are reversibly or
non-reversibly liganded by compounds 1-3. Red line denotes limit of reversibility (R = 4 pre-GF and AR =
50% post-GF). Identity line (Rye.cF = Rpost.ar) is dotted grey. Cysteines that were not liganded (R < 4 pre-
GF) are depicted in grey.
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Figure 3. Comparison of protein targets of chloroacetamide 1
cyanoacrylamide 2. (A) Scatter plot showing pre-GF targets of 1 (bluejand 2
(red), with overlapping targets shown in purple. Areas of high sele:
individual compounds (> 3-fold) are shaded. (B—-E) Represent
spectra showing examples of cysteines that were preferentially |
compounds 1 or 2 — (B) C113 of PIN1, (C) C757 of IPO7, (D) C;
— or generally liganded by both — (E) C18 of REEP5. Exampl
(C, E) and non-reversible (D) liganding with 2 are shown. (F),
and Western blot confirmation of non-reversible and reversi
C18 of REEPS5 with 1 and 2, respectively. Top, gel-based ABP
cells expressing recombinant REEP5, REEP5_C18A or empty vec
M) treated with DMSO, 1, or 2 with and without GF and then subseq
labeled with an alkyne analogue of 1 (1-alkyne) and conjugated to an azide-
rhodamine tag by copper-catalyzed azide-alkyne cycloaddition chemistry for
visualization (see Sl for details). Bottom, recombinant protein expression
confirmed by anti-FLAG Western blotting.

represented challenging targets for ¢
(Fig. 4 and Supplementary Table 4).
cysteines interacted with 2 in a reversible
compelling examples of cystei
with 2 post-GF, including so

(C95) in the ubiquitin hy
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Other enzymes
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’A-alkyne exposure and
ate cysteines that interact

cysteines across diverse protein
classes, in many c selectivity over a structurally related
a-chloroacetamide. These data indicate that even the
pgesumably est degree of binding affinity afforded by the 6-
ydroquinoline fragment recognition group is
to stabilize a large number of cysteine-a-
acrylamide interactions in native proteomes. That most of
interactions are reversed following GF, unlike the
TK interaction, indicates future studies could use the
ade of IA-reactivity following GF as a convenient
uate analogue compounds for improved potency of
binding to specific targets of interest. As one qualification to the
approach, we should note that some proteins, such as those that
arey part of dynamic complexes or that require small
le/metal cofactors for stability, may unfold following GF
roduce profiles that are accordingly challenging to interpret
ligand interactions. We found, for instance, that several
steines showing apparently reversible engagement by a-
chloroacetamide 1 are in ribosomal proteins (Supplementary
Table 2), and it is possible that these proteins undergo complex
disassembly (or unfolding) following GF to expose a greater
fraction of cysteines for labeling by the IA-alkyne probe. This
caveat notwithstanding, we envision the application of the
chemical proteomic platform described herein to additional cell
types and electrophilic chemotypes to create a comprehensive
map of cysteines amenable to reversible covalency for chemical
probe and drug development, as well as to other nucleophilic
amino acid residues and corresponding reversible covalent
chemistries.**
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