

Tetrahedron Letters 44 (2003) 6717-6720

TETRAHEDRON LETTERS

Vicinal dianions of diethyl α -aroylsuccinates: a general synthetic route to α -aroyl- and α -arylidene- γ -butyrolactones

Manat Pohmakotr,* Laddawan Sampaongoen, Arisara Issaree, Patoomratana Tuchinda and Vichai Reutrakul

Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand

Received 29 May 2003; revised 14 June 2003; accepted 27 June 2003

Abstract—Vicinal dianions derived from diethyl α -aroylsuccinates were found to react with carbonyl compounds β -regioselectively to afford α -aroyl- γ -butyrolactones, which were converted into α -arylidene- γ -butyrolactones by reduction with H₂/Pd–C followed by elimination employing methanesulfonyl chloride in pyridine. The method provides a general and convenient route to α -aroyl-and α -arylidene- γ -butyrolactones.

© 2003 Elsevier Ltd. All rights reserved.

Carbon-carbon bond forming reactions based on the reactions of dianions are of interest, because high regioand stereoselectivities towards electrophiles have been achieved.¹ Among these dianions, the vicinal dianions of succinic acid derivatives were extensively demonstrated to be useful reagents for the preparation of various classes of compounds.² In the course of our study on using succinic acid derivatives as versatile building blocks for synthesis of some natural products containing the γ -butyrolactone nucleus including lignans, we have recently reported the syntheses of (±)-lichesterinic acid, (±)-phaseolinic acid, (±)-nephromopsinic acid and (\pm) -dihydroprotolichesterinic acid by making use of the vicinal dianion derived from triethyl ethanetricarboxylate.³ In continuation of our above results, we wish to report herein the reactions of vicinal dianions of α -aroylsuccinic esters with carbonyl compounds. It could be envisaged that these vicinal dianions would react with carbonyl compounds βregioselectively to provide α -aroyl- γ -butyrolactones, which would be useful as the precursors for many synthetic manipulations. In this communication, the preparation of α -arylidene- γ -butyrolactones⁴ from α -aroyl- γ -butyrolactones is also reported.

The vicinal dianion 2a was readily generated by treatment of α -benzoylsuccinic ester $1a^5$ with lithium diisopropylamide (LDA, 2.1 equiv.) in tetrahydrofuran (THF) at -78° C for 1 h. The reaction of the vicinal dianion 2a with benzaldehyde (1.1 equiv.) in the presence of ZnCl₂ (1.1 equiv.) at -78° C for 2 h, followed by slowly warming up to rt overnight afforded the expected α -aroyl- γ -butyrolactone 3a in 74% yield as a mixture of diastereomers after quenching with 2N HCl. The formation of γ -butyrolactone 3a revealed that the vicinal dianion 2 combined with benzaldehyde regioselectively at the β -carbon to furnish the β -hydroxy adduct which underwent lactonisation upon acidic

Scheme 1.

Keywords: dianions; diethyl α -aroylsuccinates; α -arylidene- γ -butyrolactones; α -aroyl- γ -butyrolactones. * Corresponding author. Tel.: 066-02-2015158; fax: 066-02-6445126; e-mail: scmpk@mahidol.ac.th

^{0040-4039/\$ -} see front matter @ 2003 Elsevier Ltd. All rights reserved. doi:10.1016/S0040-4039(03)01622-8

work-up. Exclusive β -regioselectivities of the vicinal dianion **2a** with other aromatic aldehydes and isobutyraldehyde, as well as acetone and cyclohexanone (Table 1, entries 1–3 and 10–12) were observed (Scheme 1). Moderate to good yields of the corresponding γ -butyrolactones **3** as diastereomeric mixtures were obtained. The reactions of vicinal dianions **2b** and **2c** with aromatic aldehydes under the same conditions gave moderate yields of γ -butyrolactones **3** as mixtures of diastereomers (Table 1, entries 4–9). The 3,4-*trans*-4,5-*cis*-isomer (TC-isomer) of γ -butyrolactones **3a**–i could be obtained in pure form by preparative thin-layer chromatography (silica gel). The relative stereochemistries of the TC-isomer of **3a** was concluded from NOE experiments.⁶

Table 1	1.	Preparation	of	α-aroyl-γ-butyrola	cones 3	and	α-arylidene-	y-lactones	5
---------	----	-------------	----	--------------------	---------	-----	--------------	------------	---

Entry	1	Electrophile	Ar ¹	Ar ²	% Yields		
	1				3 ^{a, b, c}	4 ^a (diastereomeric ratio)	5 ^a
1	1a	Benzaldehyde	Ph	Ph	3a , 74 (61)	4a , quant. (90 :10)	5a , 60 ^f
2	1a	Piperonal	Ph	$\langle \mathbf{r} \rangle$	3b , 71 (63)	4b , 61 (84 : 16)	5b , 92
3	1a	4-Methoxybenzaldehyde	Ph	4-MeOPh	3c , 65 (52)	4c , 65 (88 : 12)	5c , 91
4	1b	Benzaldehyde	$\langle \downarrow \downarrow \rangle$	Ph	3d , 50 (43)	4d , quant. ^d	5d , 75 ^f
5	1b	Piperonal		$\langle \mathbf{U} \rangle$	3e , 47 (37)	4e , 93 ^e	5e , 90
6	1b	4-Methoxybenzaldehyde	$\langle \downarrow \downarrow \downarrow$	4-MeOPh	3f , 51 (43)	4f , quant. (90 :10)	5f , 75 ^f
7	1c	Benzaldehyde	4-MeOPh	Ph	3g , 64 (55)	4g , 80 (88 : 12)	5g , 95
8	1c	Piperonal	4-MeOPh	$\langle \mathbf{T} \rangle$	3h , 65 (56)	4h , 87 ^d	5h , 91
9	1c	4-Methoxybenzaldehyde	4-MeOPh	4-MeOPh	3i , 57 (50)	_g	_g
10	1a	Acetone	Eto	Ph O O	3j (50)	Eto M. O Ph	EtO ₂ C Ph
11	1a	Cyclohexanone	Eto	Ph O	3k (70)	4i , 83 (65 : 35) _ ^g	5i , 83 _g
12	1a	Isobutyraldehyde	Eto Pr ⁱ	Ph O	31 , 63	_g	_8

^a Isolated yields.

^b Yields of the isolated 3,4-*trans*-4,5-*cis*-isomers of **3a-i** and the *trans*-isomers of **3j** and **3k** are given in parentheses.

^c Obtained as mixtures of diastereomers.

^d The ratio of diastereomers was not determined.

^e Obtained as a single diastereomer.

^f Overall yields based on compounds **3a**, **3d** and **3f**.

^g The reactions were not carried out.

Scheme 2.

Having obtained functionalized γ -butyrolactones 3 in an efficient way, we next demonstrated the synthetic utility of these γ -butyrolactones as precursors for syntheses of α -arylidene- γ -butyrolactones 5. These synthetic transformations could be simply accomplished by successive reduction and elimination reactions. Thus, TC-3a was subjected to a catalytic hydrogenation $(H_2/$ Pd-C/EtOAc) to furnish alcohol 4a as a 90:10 mixture of diastereomers, which was further treated with methanesulfonyl chloride in pyridine at rt for 3 h followed by heating at 60°C for 1 h to give E-benzylidene- γ -butyrolactone 5a in 60% overall yield (Scheme 2). As shown in Table 1, compounds 5b-i were prepared in good overall yields as E-isomers.⁷ The explanation for the formation of the E-isomer as the sole product could be due to the fact that elimination of the initially formed mesylate group of compound 4 proceeded via an E_2 -elimination followed by a conjugate addition-elimination of pyridine to the initially formed α -arylidene- γ -butyrolactones to lead to the thermodynamically more stable *E*-isomer. An E_{1cb} mechanism may also be responsible for these results. The cis-stereochemistry at C-4 and C-5 was confirmed by the NOE experiments of compound 3h.8

In summary, we have shown that the vicinal dianions derived from α -aroylsuccinic esters react with carbonyl compounds regioselectively at the β -carbon in the presence of ZnCl₂ to furnish α -aroyl- γ -butyrolactones in moderate yields. These compounds could be used as useful precursors for the preparation of α -arylidene- γ -butyrolactones. Thus, our method described herein provides a general synthetic route to α -arylidene- γ -butyrolactones.

Acknowledgements

We thank the Thailand Research Fund for financial support (BRG/22/2544) to M.P. and the award of a Senior Research Scholar to V.R. Thanks are also made to the Higher Education Development Project: Post-graduate Education and Research Program in Chemistry for support. We are grateful to Professor Paul Knochel, LMU, Munich, Germany, for the HRMS and CHN determination of some compounds.

References

- 1. Thompson, C. M. Dianion Chemistry in Organic Synthesis; CRP Press: Boca Raton, 1994.
- 2. (a) Lim, S.-M.; Lang, W.-S. Angew. Chem., Int. Ed. Engl.

2002, *41*, 176–178; (b) Kende, A. S.; Mendoza, J. S.; Fujii, Y. *Tetrahedron* **1993**, *49*, 8015–8038; (c) Izawa, T.; Ogino, Y.; Nishiyama, S.; Yamamura, S.; Kato, K.; Takita, T. *Tetrahedron* **1992**, *48*, 1573–1580; (d) Kende, A. S.; Fujii, Y.; Mendoza, J. S. *J. Am. Chem. Soc.* **1990**, *112*, 9645–9646; (e) Mitsumi, A.; Iwanaga, K.; Furata, K.; Yamamoto, H. *J. Am. Chem. Soc.* **1985**, *107*, 3343–3345.

- Pohmakotr, M.; Harnying, W.; Tuchinda, P.; Reutrakul, V. Helv. Chim. Acta 2002, 85, 3793–3813.
- 4. For some recent syntheses, see: (a) Reddy, G. S.; Neelakantan, P.; Iyengar, D. S.; Synth. Commun. 2002, 32, 2601-2604; (b) Mali, R. S.; Babu, K. N. Helv. Chim. Acta 2002, 85, 3525-2530; (c) Consorti, C.; Ebeling, G.; Dupont, J. Tetrahedron Lett. 2002, 43, 753-755; (d) Grigg, R.; Savic, V. Chem. Commun. 2000, 2381-2382; (e) Jiaang, W.-T.; Wang, C.-L.; Tseng, A.; Chen, S.-T. Heterocycles 2000, 53, 1569-1572; (f) Rossi, R.; Bellina, F.; Bechini, C.; Mannina, L. Synthesis 1997, 1061–1066; (g) Ishibashi, H.; Ito, K.; Tabuchi, M.; Ikeda, M. Heterocycles 1991, 32, 1279–1282; (f) Lee, E.; Hur, C.-U.; Jeong, Y.-C.; Rhee, Y.-H.; Chang, M.-H. J. Chem. Soc., Chem. Commun. 1991, 1314-1315; (g) Jackson, W. R.; Perlmutter, P.; Smallridge, A. J. Aust. J. Chem. 1988, 41, 251-261; (h) Bachi, M. D.; Bosch, E. Tetrahedron Lett. 1986, 27, 641–644; (i) Tanaka, K.; Unema, H.; Yamgishi, N.; Ono, N.; Kaji, A. Chem. Lett. 1978, 653-656; (j) Janecki, T.; Blaszezyk, E. Synthesis 2001, 403–408; (k) Castulik, J.; Mazal, C. Tetrahedron Lett. 2001, 41, 2741-2744.
- 5. α -Aroylsuccinic esters **1** were prepared by reacting α -*N*,*N*-dimethylaminonitriles derived from aromatic aldehydes with diethyl fumarate in ethanol employing NaOEt as a base followed by hydrolysis of the resulting adducts with CuSO₄.⁹ Alternatively, these compounds could also be achieved by conjugate addition of aromatic aldehydes to diethyl fumarate catalysed by Stetter's catalyst [3-benzyl-5-(2-dihydroxy-ethyl)-4-methylthiazolium chloride] in ethanol at 80°C for 15 h.¹⁰

6. Irradiation of H-4 resulted in 7.9% enhancement of H-5, but there was no effect on H-3. The enhancement of 8.5% of H-4 was observed, when H-5 was irradiated, but there was no enhancement of H-3.

- The chemical shifts of the benzylidene protons of compounds 5 appeared as doublets (J=1.5-1.8 Hz) at δ 7.6-7.75 ppm, comparable to the chemical shifts of the *E*-isomers of some related compounds reported in the literature, see for examples: (a) Hwang, E.-I.; Yun, B.-S.; Kim, Y.-K.; Kwon, B.-M.; Kim, H.-G.; Lee, H.-B.; Jeong, W.-J.; Kim, S.-U. J. Antibiot. 2000, 53, 903-911; (b) Banerji, J.; Das, B.; Chatterjee, A.; Shoolery, J. N. *Phytochemistry* 1984, 23, 2323-2327; (c) Stevens, D. R.; Whiting, D. A. J. Chem. Soc., Perkin Trans. 1 1992, 633-637.
- 8. Enhancements of 9.8 and 12.2% of H-4 and H-5 of 5h

were observed upon irradiation of H-5 and H-4, respectively.

- (a) Albright, J. D. *Tetrahedron* 1983, *39*, 3207–3233 and references cited therein; (b) Reutrakul, V.; Nimgirawath, S.; Panichanun, S.; Ratananukul, P. *Chem. Lett.* 1979, 399–400.
- (a) Stetter, H. Angew. Chem., Int. Ed. Engl. 1976, 15, 639–712; (b) Stetter, H.; Kuhlmann, H. Org. React. 1991, 40, 407–438.