Journal of Medicinal Chemistry

Article

Subscriber access provided by University of South Dakota

Discovery of New Monocarbonyl Ligustrazine-Curcumin Hybrids for Intervention of Drug-Sensitive and Drug-Resistant Lung Cancer

Yong Ai, Bin Zhu, Caiping Ren, Fenghua Kang, Jinlong Li, Zhangjian Huang, Yisheng Lai, Sixun Peng, Ke Ding, Jide Tian, and Yihua Zhang

J. Med. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jmedchem.5b01203 • Publication Date (Web): 18 Feb 2016 Downloaded from http://pubs.acs.org on February 19, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of Medicinal Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Discovery of New Monocarbonyl Ligustrazine-Curcumin Hybrids for Intervention of Drug-Sensitive and Drug-Resistant Lung Cancer

Yong Ai,^{‡a,b} Bin Zhu,^{‡c} Caiping Ren,^{*c} Fenghua Kang,^{a,b} Jinlong Li,^c Zhangjian Huang,^{*a,b} Yisheng Lai,^{a,b} Sixun Peng,^{a,b} Ke Ding,^d Jide Tian,^e and Yihua Zhang^{*a,b}

^aState Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China

^bJiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, PR China

^cCancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Changsha 410078, PR China

^dKey Laboratory of Regenerative Biology and Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, PR China

^eDepartment of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, United States **ABSTRACT** The elevation of oxidative stress preferentially in cancer cells by inhibiting thioredoxin reductase (TrxR) and/or enhancing reactive oxygen species (ROS) production has emerged as an effective strategy for selectively targeting cancer cells. In this study, we designed and synthesized twenty-one ligustrazine-curcumin hybrids (**10a-u**). Biological evaluation indicated that the most active compound **10d** significantly inhibited the proliferation of drug-sensitive (A549, SPC-A-1, LTEP-G-2) and drug-resistant (A549/DDP) lung cancer cells but had little effect on non-tumor lung epithelial-like cells (HBE). Furthermore, **10d** suppressed the TrxR/Trx system and promoted intracellular ROS accumulation and cancer cell apoptosis. Additionally, **10d** inhibited the NF-κB, AKT and ERK signaling, P-gp-mediated efflux of rhodamine 123, P-gp ATPase activity and P-gp expression in A549/DDP cells. Finally, **10d** repressed the growth of implanted human drug-resistant lung cancer in mice. Together, **10d** acts a novel TrxR inhibitor and may be a promising candidate for intervention of lung cancer.

INTRODUCTION

Cancer cells are usually exposed to a moderate level of reactive oxygen species (ROS), primarily due to their active metabolism in response to oncogenic signals.¹ In fact, cancer cells take advantage of this moderate oxidative stress for several important processes such as proliferation, angiogenesis, and metastasis.² However, high levels of ROS irreversibly damage DNA and lipids, and ultimately cause cancer cell apoptosis.³ Recently, pharmacological elevation of intracellular ROS has emerged as an effective strategy for selectively targeting cancer cells. While an exogenous ROS insult is tolerable to normal cells it may exceed thethreshold cancer cells can endure and lead to selective cytotoxicity against cancer cells.^{4,5} Actually, there have been increasing efforts to increase the levels of ROS specifically in cancer cells for 'oxidation therapy'.⁶⁻⁸ One strategy for oxidation therapy is to directly deliver ROS promoting agents such as ligustrazine (**1**, Figure 1),⁹ arsenic trioxide (As₂O₃)^{10,11} and glucose oxidase to tumor tissues.^{12,13}

Figure 1. Chemical structures of ligustrazine, curcumin and SCAs.

Ligustrazine is a Chinese medicine for treatment of cardiovascular and cerebrovascular diseases.¹⁴ Recently, ligustrazine has been shown to increase intracellular ROS accumulation, and to induce cancer cell apoptosis.^{9,15,16} More importantly, ligustrazine is a reversal agent against ATP-binding cassette (ABC) transporter-mediated multidrug resistance (MDR).^{17,18} Unfortunately, ligustrazine has a short half-life and low bioavailability in vivo and is required for frequent treatments with a high dose, which results in the drug-accumulation related toxicity.¹⁹ Besides, ligustrazine is usually used in combination with an anticancer drug to circumvent MDR, which may lead to pharmacokinetic interactions of the drugs and to increase adverse effects of the anticancer therapy. Thus, modification of ligustrazine is needed to improve its therapeutic potency.

'Oxidation therapy' is to disrupt the redox balance in cancer cells by suppressing the antioxidant systems.^{6,20-22} The thioredoxin system, one of the key antioxidant systems is composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, and regulates numerous cellular signal pathways involved in cell survival and proliferation.²³⁻²⁵ TrxR is the only known physiological enzyme to catalyze the reduction of oxidized Trx. Importantly, the thioredoxin system is often overexpressed in many tumors,^{26,27} associated with chemoresistance of cancers.²⁸ Recently, accumulating data support that TrxR is a promising target for development of novel anticancer agents, and the efficacy of this redox-modulating method has been demonstrated in models of drug-resistant cancers.²⁹ In the past years, a great endeavor has been witnessed in discovering and developing a variety of TrxR-targeting small molecules, including curcumin (**2**, Figure 1), cinnamaldehydes, acylfulvenes, flavonoids, etc., many of which have been combined with an anticancer drug as a potential therapy against drug-sensitive and drug-resistant

cancers.³⁰⁻³⁷

Curcumin, a yellow spice extracted from the *Curcuma longa*, has been identified as a TrxR inhibitor with anticancer activity.³⁸⁻⁴¹ To improve its potency, many synthetic curcumin analogs (SCAs) have been prepared, including EF24 (**3**), EF31 (**4**), UBS109 (**5**) (Figure 1),⁴² **6**, and others.^{43,44} Among them, those monocarbonyl curcumin analogs display strong anticancer activity by inhibiting cancer cell proliferation and inducing cancer cell apoptosis.⁴⁵⁻⁵⁰

Given that use of an ROS promoting agent together with an inhibitor of ROS scavenging can amplify oxidative stress and be effective for treatment of advanced solid tumors,^{21,51} we hypothesized that new hybrids of ligustrazine scaffold with curcumin moiety might not only elevate ROS production but also diminish the antioxidant defense systems, leading to ROS accumulation preferentially in cancer cells and to subsequent ROS-mediated cytotoxicity against cancer cells. Accordingly, we synthesized hybrids **10a-u** by substituting one of the two aromatic rings of curcumin analogs with ligustrazine via a Claisen-Schmidt condensation reaction, and evaluated their bioactivity in vitro and in vivo.

RESULTS AND DISCUSSION

Chemistry. The synthetic routes to compounds **10a-u** are depicted in Scheme 1. 2-Hydroxymethyl-3,5,6-trimethylpyrazine **7** was prepared by the Boekelheide reaction starting from ligustrazine **1** as described previously.⁵² The generated **7** underwent a 2-iodoxybenzoic acid (IBX) oxidation giving the aldehyde group-containing intermediate **8**, which was directly reacted with the aryl-substituted enones **9a-u**, prepared from corresponding aldehydes **11a-u**,⁵³ in the presence of borontrifluoride-etherate (BF₃·Et₂O) via a Claisen-Schmidt condensation reaction to get the target compounds **10a-u**. The purity of all hybrids was greater than 95% and determined by HPLC analysis. The structures of all hybrids were fully characterized and identified as *E*,*E* configuration.

Scheme 1. Synthetic Routes of Ligustrazine-Curcumin Hybrids 10a-u.^a

^{*a*}Reagents and conditions: (a) 30% H_2O_2 , acetic acid, 70 °C, 8 h.; (b) acetic anhydride, reflux, 2 h; (c) 20% NaOH; (d) IBX, DMSO, room temperature, 0.5 h; (e) Morpholinium trifluoroacetate, acetone, 60 °C, sealing tube reaction for 24 h; (f) $BF_3 \cdot Et_2O$, 1,4-dioxane, reflux, 4-6 h.

BIOLOGICAL EVALUATION

Evaluation of Antiproliferative Activity. Given that compounds **10a-u** we designed may effectively target TrxR expressed in cancer cells, we first examined the levels of

TrxR expression in drug-sensitive human lung cancer A549, drug-resistant human lung cancer A549/DDP cells and human non-tumor bronchial epithelial HBE cells by Western blot assay. We observed that the levels of TrxR expression in A549 cells were significantly higher than that in HBE cells, but significantly lower than that in A549/DDP cells (P < 0.001). Hence, TrxR was up-regulated in lung cancer cells, particularly in drug-resistant A549/DDP cells.

Figure 2. TrxR Expression in HBE, A549 and A549/DDP cells. HBE, A549 and A549/DDP cells were harvested and lyzed. The relative levels of TrxR to control β -actin in HBE, A549 and A549/DDP cell lysates were determined by Western blot. Data are representative of three independent experiments. ****P* < 0.001.

Next, the antiproliferative activity of compounds **10a-u** against A549 and A549/DDP cells was initially screened by the MTT assay using cisplatin (DDP) as a positive control. As shown in Table 1, compounds **10a-l** and **10q** displayed potent inhibitory activity against both A549 (IC₅₀ = 1.16-4.78 μ M) and A549/DDP (IC₅₀ = 0.60-5.20 μ M) cell viability, and their anti-proliferative activity was more potent than DDP (IC₅₀ = 8.10 and 45.14 μ M) their individual moieties, **1** (IC₅₀ > 200 and 200 μ M) and **2** (IC₅₀ = 38.12 and 32.39 μ M), and even the combination of **1** and **2** (IC₅₀ = 24.33 and 25.17 μ M). It was

obvious that R substitutes at benzene ring of the hybrids (Table 1) may be crucial for their anticancer activity. In general, the compounds with an electron-donating group such as methoxy, hydroxy or methyl at benzene ring (**10a-l** and **10q**) usually showed more potent inhibitory activity than those bearing an electron-withdrawing group such as halogen, trifluoromethyl, nitro or benzene (**10n-p** and **10r-u**).

Subsequently, the five potent compounds (**10d**, **10e**, and **10i**-**k**) were further investigated for their antitumor efficacy by MTT (Table 2). We found that all of the five compounds displayed more potent activity (IC₅₀ = 2.34-6.32 μ M) than DDP (IC₅₀ = 14.18-15.51 μ M) against human lung cancer SPC-A-1 and LTEP-G-2 cells that were similar to A549 cells with high levels of TrxR expression. While DDP had similar inhibitory activity against both lung cancer and non-tumor HBE cells, **10d** exhibited a 7~35-fold less antiproliferative activity against HBE cells (IC₅₀ = 21.34 μ M), suggesting that **10d** may have antiproliferative activity selectively against cancer cells.

 Table 1. The antiproliferative activity of target compounds (10a-u) against human lung

 cancer A549 and A549/DDP cells.

Compd	R substituents	$IC_{50} (\mu M)^a$
	8	

ACS Paragon Plus Environment

Page 9 of 55

	2	3	4	5	A549	A549/DDP
10a	ОН	Н	Н	Н	4.78 ± 0.35^{b}	3.90 ± 0.14^{b}
10b	Н	OH	Н	Н	4.30 ± 0.32^{b}	3.70 ± 0.21^{b}
10c	Н	Н	ОН	Н	4.01 ± 0.53^{b}	4.79 ± 0.77^{b}
10d	Н	OCH ₃	ОН	Н	2.19 ± 0.14^b	0.60 ± 0.11^{b}
10e	ОН	OCH ₃	Н	Н	2.85 ± 0.22^{b}	2.19 ± 0.15^{b}
10f	OCH ₃	Н	Н	Н	3.20 ± 0.69^{b}	4.74 ± 0.41^{b}
10g	Н	OCH ₃	Н	Н	3.30 ± 0.12^{b}	3.44 ± 0.24^{b}
10h	Н	Н	OCH ₃	Н	3.50 ± 0.89^{b}	3.61 ± 0.77^{b}
10i	Н	OCH ₃	OCH ₃	Н	3.79 ± 0.22^{b}	2.44 ± 0.24^{b}
10j	OCH ₃	Н	OCH ₃	Н	3.07 ± 1.55^{b}	2.85 ± 0.55^{b}
10k	Н	OCH ₃	OCH ₃	OCH ₃	1.60 ± 0.11^{b}	1.00 ± 0.13^{b}
101	Н	yry ,	-0 -0	Н	4.50 ± 0.54^{b}	5.20 ± 0.97^{b}
10m	Н	Н	Н	Н	12.31 ± 1.11	11.88 ± 0.66^{b}
10n	Н	Н	F	Н	5.90 ± 0.47	7.44 ± 0.59^{b}
100	Н	Н	Cl	Н	15.8 ± 1.23	7.49 ± 0.67^{b}
10p	Н	Н	CF ₃	Н	11.7 ± 1.09	6.90 ± 0.53^{b}
10q	Н	Н	CH ₃	Н	4.3 ± 1.29^{b}	3.99 ± 0.33^{b}
10r	NO ₂	Н	Н	Н	17.33 ± 0.54	6.39 ± 0.21^{b}
10s	Н	NO_2	Н	Н	6.70 ± 0.14	6.69 ± 0.11^{b}

10t	Н	Н	NO ₂	Н	9.60 ± 0.97	7.90 ± 0.17^{b}
10u	Н	2 de la companya de l		Н	7.10 ± 0.74	11.80 ± 0.91^{b}
1					> 200	> 200
2					38.12 ± 2.87	32.39 ± 3.14
1+2					24.33 ± 2.77	25.17 ± 2.89
DDP					8.10 ± 0.97	45.14 ± 2.11

^{*a*}Cells were treated in triplicate with tested compounds for 72 h and the cell viability was determined using MTT assay. ^{*b*}P < 0.01 vs the DDP.

Table 2. The antiproliferative activity of selected compounds against human lung cancer

 SPC-A-1, LTEP-G-2 and non-tumor HBE cells.

Compd -	$\mathrm{IC}_{50}\left(\mu\mathrm{M} ight)^{a}$							
	SPC-A-1	LTEP-G-2	HBE					
10d	3.12 ± 0.41^{b}	2.88 ± 0.13^{b}	21.34 ± 3.76^{b}					
10e	5.71 ± 0.47^b	5.01 ± 0.34^{b}	17.56 ± 1.55^{b}					
10i	5.42 ± 0.38^b	4.36 ± 0.23^{b}	16.23 ± 2.68^{b}					
10j	6.32 ± 0.59^b	5.91 ± 0.45^{b}	20.76 ± 1.55^{b}					
10k	5.35 ± 0.44^b	2.34 ± 0.13^{b}	14.35 ± 1.37					
DDP	15.51 ± 1.23	14.18 ± 1.24	10.37 ± 1.54					

ACS Paragon Plus Environment

_

Journal of Medicinal Chemistry

^{*a*}Cells were treated in triplicate with tested compounds for 72 h and the cell viability was determined using MTT assay. ^{*b*}P < 0.01 vs the DDP.

Inhibition of TrxR by selected compounds in both cell-free and cellular assay. Since **10d**, **10e**, and **10i-k** displayed the promising antiproliferative activity against lung cancer cells, we tested their TrxR inhibitory activity in purified TrxR enzyme and in A549 and A549/DDP cells. Firstly, the TrxR inhibitory activity of 10d, 10e, and 10i-k in purified TrxR enzyme was determined with DTNB assay.³⁷ As shown in Table 3, 10d, 10e, and 10i-k exhibited more potent TrxR inhibitory activity (IC₅₀ = 2.95-7.63 μ M) than curcumin 2 (IC₅₀ = 41.42 \pm 3.21 μ M), while ligustrazine 1 showed little TrxR inhibitory activity at 200 µM. Next, we determined the TrxR inhibitory activity of 10d, 10e, and 10i-k in cells. Briefly, A549 and A549/DDP cells were treated with different concentrations of each compound for 24 h. The activity of TrxR in different groups of cells was determined using a Thioredoxin Reductase Assay Kit (Cayman).⁵⁴ As shown in Table 3, all of the five compounds exerted potent TrxR inhibitory activity (IC₅₀ = 1.22-4.73 µM). As expected, **10d** showed the highest TrxR inhibitory activity, which was ~32-fold more potent than curcumin 2 (IC₅₀s = 40.56, 39.42 μ M), suggesting that 10d may be a novel TrxR inhibitor for further investigation.

Furthermore, we determined the impact of **10d** treatment on the expression of TrxR and Trx in A549 and A549/DDP cells by Western blot. As shown in Figure 3, **10d**

significantly reduced the relative levels of TrxR and Trx to GAPDH expression in A549 and A549/DDP cells. Hence, the decrease in the levels of TrxR and Trx expression by **10d** may contribute to its inhibition on TrxR and anticancer activity in lung cancer cells.

Compd	In cell-free assay	In cellular assay $IC_{50} (\mu M)^b$				
	$IC_{50} (\mu M)^a$	A549	A549/DDP			
10d	2.95 ± 0.17^{c}	1.49 ± 0.11^{c}	1.22 ± 0.13^{c}			
10e	5.30 ± 0.22^{c}	4.73 ± 0.37^{c}	4.64 ± 0.34^{c}			
10i	$7.09 \pm 0.35^{\circ}$	4.17 ± 0.24^{c}	4.22 ± 0.31^{c}			
10j	7.63 ± 0.13^{c}	4.12 ± 0.2^{c}	4.26 ± 0.44^{c}			
10k	3.06 ± 0.21^{c}	2.36 ± 0.21^{c}	1.98 ± 0.14^{c}			
1	> 200	> 200	> 200			
2	41.42 ± 3.21	40.56 ± 3.67	39.42 ± 2.11			

	Table 3. Inh	nibition of	compounds	on TrxR	activity	in cell-	free and	cellular	assays.
--	--------------	-------------	-----------	---------	----------	----------	----------	----------	---------

^{*a*}The TrxR inhibition activities in cell-free assay were measured by DTNB assay as described in the Experimental Section. ^{*b*}The TrxR inhibitory activity of selected compounds in A549 and A549/DDP cells using a Thioredoxin Reductase Assay Kit (Cayman). ^{*c*}P < 0.05 vs the ligustrazine **1** and curcumin **2**.

Figure 3. Effect of **10d** on the relative levels of TrxR and Trx expression in A549 and A549/DDP cells. Cells were treated with **10d** or vehicle for 24 h and the relative levels of TrxR and Trx to control GAPDH expression were determined by Western blot. Data are representative of three independent experiments. *P < 0.05, **P < 0.01 vs the control.

Effect of 10d on the ROS Accumulation in cells. The Trx system is crucial for the intracellular redox balance to prevent excess ROS accumulation.^{34,54,55} The inhibition of TrxR and Trx may disturb the redox balance, leading to intracellular ROS accumulation in cancer cells. Accordingly, we examined the impact of 10d on ROS levels in A549 and A549/DDP cells. A549 and A549/DDP cells were treated in triplicate with various concentrations of 10d, 1, and 2 for 60 min. The cells were collected longitudinally and stained with dihydroethidium (DHE, Beyotime). The levels of intracellular ROS were determined by measuring the fluorescent signals using a fluorescence microplate reader. As shown in Figure 4A and B, treatment with 10d rapidly and significantly increased the

levels of intracellular ROS in both A549 and A549/DDP cells. More importantly, treatment with **10d** significantly reduced the viability of A549 and A549/DDP cells (Figure 4C), which was partially or completely abrogated by pre-treatment with 10 mM N-acetyl-L-cysteine (NAC) or glutathione (GSH), respectively. These data indicated that **10d** promoted ROS accumulation that was cytotoxic to lung cancer cells.

Figure 4. Treatment with 10d induces the accumulation of toxic ROS in A549 (A) and A549/DDP (B) cells. (C) Pre-treatment with 10 mM GSH or NAC for 1 h demolishes the cytotoxicity of 10d against A549 and A549/DDP cells. Data are representative of three independent experiments. **P < 0.01, ***P < 0.001 vs the control. *P < 0.05 vs the 10d group.

Induction of A549 and A549/DDP cell apoptosis. To determine whether the inhibitory effects of 10d on lung cancer cellular proliferation are accompanied by enhanced cancer cell apoptosis, Annexin V-FITC and propidium iodide (PI) staining were carried out, and the percentages of apoptotic cells were tested using flow cytometry assay. A549 and A549/DDP cells were incubated with different concentrations of vehicle, 10d, ligustrazine 1, or curcumin 2 for 24 h. We observed that treatment with 10d induced apoptosis in both A549 and A549/DDP cells (Figure 5), which were significantly stronger than that of 1 and 2.

Figure 5. Apoptosis of A549 (A, C) and A549/DDP (B, D) cells treated with 10d, ligustrazine 1 and curcumin 2 for 24 h. Values are the means \pm SD from at least three

independent experiments. **P < 0.01, ***P < 0.001 vs the ligustrazine 1 and curcumin 2 groups.

Furthermore, Western blot assay revealed that treatment with **10d** dramatically decreased the levels of anti-apoptotic Bcl-2, but increased the levels of pro-apoptotic Bax expression in A549 and A549/DDP cells (Figure 6A). Quantitative analysis revealed that treatment with **10d** significantly increased the ratios of Bax to Bcl-2 (Figure 6B). Caspase activation is a critical event in the initiation and execution of apoptosis in cells. Treatment with **10d** also significantly increased the relative levels of cleaved caspase 3 and poly(ADP-ribose)polymerase (PARP) in A549 and A549/DDP cells.

Figure 6. Effect of **10d** on the relative levels of Bcl-2, Bax, PARP, and Caspase 3 expression in A549 and A549/DDP cells. Cells were treated with **10d** (A549, 2.1 μ M or

Journal of Medicinal Chemistry

4.2 μ M; A549/DDP, 0.6 μ M or 1.2 μ M) or vehicle for 24 h and the relative protein levels of Bcl-2, Bax, PARP, and Caspase 3 to β -actin were determined using Western blot assays. Data are representative of three independent experiments. **P* < 0.05, ***P* < 0.01, ****P* < 0.001 vs the control.

Effects of 10d on the NF-κB, AKT, and ERK Signaling. Recent studies indicate that high levels of ROS in cancer cells directly inhibit the NF-κB, AKT and ERK activation,⁵⁵⁻⁵⁷ and aberrant activation of NF-κB, AKT and ERK are associated with the proliferation and drug resistance of tumor cells.⁵⁸⁻⁶³ To further understand the molecular mechanisms underlying the activity of 10d, we investigated the regulatory effects of 10d on the NF-κB, AKT, and ERK signaling in A549 and A549/DDP cells. The cells were treated with various concentrations of 10d. The levels of NF-κB, AKT, and ERK expression and phosphorylation were determined using Western blotting. Although treatment with 10d did not alter the levels of NF-κB and ERK expression, it significantly suppressed the phosphorylations of NF-κB, AKT and ERK in A549 and A549/DDP cells (Figure 7). These results suggest that 10d may inhibit spontaneous activation of the NF-κB, AKT, and ERK pathways, contributing to its antitumor activity in lung cancer cells. Nevertheless, the precise mechanisms underlying the action of 10d remain to be further investigated.

Figure 7. Effect of **10d** on the NF-κB, AKT and ERK signaling in A549 and A549/DDP cells. Cells were treated with **10d** (A549, 2.1 μM or 4.2 μM; A549/DDP, 0.6 μM or 1.2 μM) or vehicle for 24 h and the relative levels of NF-κB, AKT and ERK expression and phosphorylation were determined using Western blot assays. Data are representative of three independent experiments. **P* < 0.05, ***P* < 0.01, ****P* < 0.001 vs the control.

Journal of Medicinal Chemistry

Effect of 10d on P-gp in A549/DDP cells. Previous studies have shown that over-expression of P-glycoprotein (P-gp) in cancer cells can export anticancer drugs out and cause consequent drug ineffectiveness,^{64,65} which is a leading factor for tumor MDR.⁶⁶⁻⁷¹ Thus, to gain more insights into the role of 10d in suppressing A549/DDP cell proliferation, we examined the effect of 10d on P-gp in A549/DDP cells.

We first determined the levels of P-gp expression in A549 and A549/DDP cells using Western blot assay. As shown in Figure 8A, high levels of P-gp were expressed in A549/DDP cells while only little was detected in A549 cells. Next, the impact of **10d** on the levels of P-gp expression was determined by Western blot and reverse transcription-PCR (RT-PCR). Treatment with **10d** significantly decreased the relative levels of P-gp mRNA transcripts and protein expression in A549/DDP cells (Figure 8B and C).

In addition, the effect of **10d** on P-gp-mediated efflux of rhodamine 123 (Rh123) in A549/DDP cells was examined (Figure 8D). Treatment with different concentrations (0.03-1.2 μ M) of **10d** increased the levels of intracellular Rh123 accumulation in A549/DDP cells and the effect of **10d** at 1.2 μ M was stronger than that of the positive control verapamil (VRP). Collectively, these results suggest that **10d** had potent antiproliferative activity against A549/DDP cells by inhibiting P-gp expression in drug-resistant human lung cancer cells.

Figure 8. (A) Expression profiles of P-gp in cells. (B) Effect of **10d** on the protein expression of P-gp in A549/DDP cells. Cells were treated with **10d** (0.6 or 1.2 μ M) or vehicle for 24 h and the relative levels of P-gp to β -actin expression were determined by Western blot assay. (C) The relative levels of P-gp mRNA transcripts in A549/DDP cells. The cells were treated with compounds for 24 h. The relative levels of P-gp to GAPDH mRNA transcripts were determined by RT-PCR and expressed as fold change of the control (in the presence of 0.1% DMSO). Data are representative of three independent experiments. ***P* < 0.01 vs the DMSO group. (D) The accumulation of rhodamine 123 in A549/DDP cells was analyzed by flow cytometry.

Effect of 10d on P-gp ATPase activity. The efflux of drug by P-gp is dependent on ATP, which is derived from ATP hydrolysis by the ATPase, and the activity of P-gp ATPase is

Page 21 of 55

closely related to the transport capacity of P-gp. To further understand its action, we examined the impact of **10d** on the activity of P-gp ATPase in A549/DDP cells using Pgp-GloTM assay system (Promega, USA), according to a previously described method.^{72,73} We isolated the crude membranes from A549/DDP cells and treated in triplicate with **10d** (40 μ M), 200 μ M Sodium vanadate (Na₃VO₄, a negative control), VRP (the inhibitor of P-gp) or vehicle in the presence of MgATP (5 mM, 37 °C, 40 min). The RLU (relative light unit) representing the ATP consumed by P-gp ATPase was measured using a luminescent detector. The RLU values in the VRP-treated membrane samples were significantly lower than that in the vehicle-treated controls (Table 4). In contrast, treatment with **10d**, similar to that of negative control Na₃VO₄, significantly increased the values of RLU in A549/DDP cell membranes. Given that the values of RLU were negatively correlated with the activities of ATPase in the samples, these data indicated that VRP stimulated the ATPase activity while **10d** inhibited the ATPase activity.

Comment		Luminescence			
Compound	Concentration (µM)	(relative light units) ^a			
Untreated	0	706683 ± 23554			
VRP	200	641490 ± 17014*			
Na ₃ VO ₄	200	790447 ± 12182**			
10d	40	761592 ± 14162*			

Table 4. Effect of 10d on P-gp ATPase activity.

^aRelative light units (RLU) represent the levels of ATP in the samples, and are negatively

correlated with activity of P-gp ATPase. Na₃VO₄, a negative control (not a substrate of P-gp); Verapamil, a positive control (a substrate of P-gp). Data are representative of three independent experiments. *P < 0.05, **P < 0.01 vs the untreated group.

Antitumor Efficacy of 10d in Inhibiting the Growth of A549/DDP Xenograft Tumors

in Mice. To investigate the safety profile of the hybrids, the acute toxicity of **10d** was tested in ICR mice at doses of 200, 250, 300, 350, 400, and 450 mg/kg (ip, n = 10 per group). As shown in Table 5, treatment with **10d** at the lowest dose (200 mg/kg) only killed one mouse at day 3 post treatment. However, treatment with **10d** at 450 mg/kg killed all the mice. Finally, the median lethal dose (LD₅₀) value of **10d** was calculated to be 284.537 mg/kg.

Next, we tested the in vivo antitumor efficacy of **10d** against A549/DDP xenografts. After the solid tumors were established and reached 180-200 mm³, the mice were randomized and treated intraperitoneally with indicated dose (20 mg/kg or 40 mg/kg) of **10d** or the same volume of vehicle consisting of PBS/DMSO/cremophor-EL (8:1:1) daily for 15 consecutive days. As shown in Figure 9, treatment with 20 or 40 mg/kg **10d** significantly reduced the growth of A549/DDP tumor (P < 0.01, P < 0.001 vs the control). Importantly, the tumor weights (0.49 ± 0.13 g) of mice treated with **10d** at 40 mg/kg were significantly reduced by 67 % as compared to the control (1.48 ± 0.11 g, P < 0.01, Table 6). Besides, no mortality or significant weight loss was observed for any of **10d**-treated mice during the post-treatment period (Table 6). Together, these results indicated that **10d** had potent anticancer activity against the growth of implanted drug-resistant human lung cancer cells in mice with little toxicity.

1	
2	
3	
1	
4 5	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
29	
20	
30	
31	
32	
33	
34	
35	
26	
30	
37	
38	
39	
40	
41	
10	
42	
43	
44	
45	
46	
47	
⊿ <u>∧</u>	
40	
49	
50	
51	
52	
53	
50	
54	
55	
56	
57	
58	
59	
60	
1111	

LD_{50}^{a}	Survival (%)	Total	Mouse mortality			No. of	Dose	
(mg/kg)	on day 14	mortality	4-14d	3d	4h	1h	mice	(mg/kg)
	0	10	0	8	2	0	10	450
	10	9	0	9	0	0	10	400
204 527	30	7	0	7	0	0	10	350
284.537	50	5	0	5	0	0	10	300
	60	4	0	4	0	0	10	250
	90	1	0	1	0	0	10	200

Table 5. Acute toxicity of **10d** in mice.

^aThe 95% confidence limits: 248.892-316.481 mg/kg.

Figure 9. Growth curve of implanted A549/DDP xenografts in nude mice treated with ip of vehicle alone or 10d (20 or 40 mg/kg). Data are presented as the mean \pm SD (n = 8 nude mice per group). **P < 0.01, ***P < 0.001 vs the control.

3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
27
31
38
39
40
41
42
43
44
15
4J 46
40
47
48
49
50
51
52
52
55
54
55
56
57
58
59

1 2

Table 6.	Effects	of 10d	l on	the	body	and	tumor	weights	in	mice ^a

Group	Dose	Body we	eight (g)	T	Inhibitory ratio
	(mg/kg)	day 1 day 15		Tumor weight (g)	(%, w/w)
Control	-	19.3 ± 1.55	21.0 ± 1.28	1.48 ± 0.11	-
10d	20	18.3 ± 1.85	18.6 ± 1.75	0.94 ± 0.21^{b}	36
10d	40	19.9 ± 1.64	19.6 ± 1.33	0.49 ± 0.13^{b}	67

^{*a*}Data are shown as the mean \pm SD of body and tumor weights (n = 8). ^{*b*}P < 0.01 vs the control.

CONCLUSIONS

A new series of ligustrazine-curcumin hybrids (**10a-u**) were designed, synthesized and biologically evaluated. We found that compound **10d** displayed strong and selective antiproliferative activity against both drug-sensitive A549, SPC-A-1, LTEP-G-2 and drug-resistant A549/DDP cells. Furthermore, **10d** suppressed TrxR expression and activity, promoted intracellular ROS accumulation and lung cancer cell apoptosis, and its anticancer activity was significantly attenuated by ROS scavengers. Accordingly, the reduced TrxR expression and activity by **10d** in cancer cells may reflect the consequence of apoptosis due to reduced cell viability and energy depletion during apoptosis. Additionally, **10d** inhibited the NF- κ B, AKT and ERK signaling, P-gp-mediated efflux of

rhodamine 123, P-gp expression and ATPase activity in A549/DDP cells. Moreover, **10d** was relatively safe to mice and significantly inhibited the growth of implanted drug-resistant lung tumor in mice. Together, these results indicate that **10d**, a hybrid of ligustrazine and curcumin moiety, has potent anticancer activity preferably against drug-resistant lung cancer. Our findings may provide a proof of principle that the hybrids like **10d** as novel TrxR inhibitors may be promising candidates for the intervention of drug-sensitive and drug-resistant lung cancer.

EXPERIMENTAL SECTION

General Methods. The reagents commercially available were used without further purification, unless noted specifically. The purity of **10a-u** was determined using HPLC (see the Supporting Information). Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 300 (¹H, 300 MHz; ¹³C, 75 MHz) or 500 (¹H, 500 MHz; ¹³C, 125 MHz) spectrometer at 300 K, using tetramethylsilane (TMS) as an internal reference. Melting points (mp) were measured using a Mel-TEMP II apparatus and uncorrected. ESI-mass and high-resolution mass spectra (HRMS) were recorded on a Water Q-Tof micro mass spectrometer. Infrared (IR) spectra were recorded as KBr pellets on a Nicolet Impact 410 instrument. 2-hydroxymethyl-3,5,6- trimethylpyrazine (**7**) and intermediates **9a-u** were prepared as described previously.^{52,53} **9a-d** and **9f-u** were reported in previous literatures,⁷⁴⁻⁷⁹ while **9e** was an unknown compound and its chemical characterization is shown in the Supporting Information.

Synthesis of 3,5,6-trimethylpyrazine-2-carbaldehyde (8) Compound 7 (1.5 g, 10 mmol) was dissolved in DMSO (15 mL), and cooled to 0 °C. IBX (2.8 g, 11 mmol) was added and the solution was stirred for 0.5 h at room temperature. Then, the reaction mixture was diluted with saturated sodium bicarbonate (NaHCO₃) aqueous solution and extracted with EtOAc. The organic layer was washed with brine, dried with anhydrous sodium sulfate, filtered and evaporated in vacuum. The crude product was purified by column chromatography (PE/EtOAc = 10:1-1:1) to give the title compound **8** as a yellow powder in 100 % yield. mp 90-92 °C; ¹H NMR (300 M Hz, CDCl₃): δ 2.61 (s, 6H, 2 × CH₃), 2.80 (s, 3H, CH₃), 10.15 (s, 1H, CHO) ppm; ¹³C NMR (75 M Hz, CDCl₃): δ 20.9, 21.8, 141.4, 149.5, 151.0, 154.9, 193.8; MS (ESI): 151 [M+H]⁺.

General Procedure for the Preparation of Compounds 10a-u. $BF_3 \cdot Et_2O$ was added (35.6 µL, 0.13 mmol) to the stirred solution of compound 8 (100 mg, 0.26 mmol) and various substituted intermediates **9a-u** (0.28 mmol) in dry 1,4-dioxane at room temperature under a nitrogen atmosphere. The reaction mixture was stirred and refluxed for 4-6 h at 101 °C and cooled to room temperature. And then, the reaction mixture was diluted with saturated NaHCO₃ aqueous solution and extracted with EtOAc. The organic layer was washed with brine, dried with anhydrous sodium sulfate, filtered and evaporated in vacuum. The crude product was purified by column chromatography (PE/EtOAc = 10:1-1:1) to yield the title compounds, respectively.

(1E,4E)-1-(2-Hydroxyphenyl)-5-(3,5,6-trimethylpyrazin-2-yl)penta-1,4-dien-3-one

(10a) Yellow powder; yield 78 %; mp 166-168 °C; IR (KBr, cm⁻¹): 3339, 2914, 1645,

1612, 1578; ¹H NMR (300 M Hz, DMSO-d₆): δ 2.48 (s, 3H, CH₃), 2.50 (s, 3H, CH₃), 2.60 (s, 3H, CH₃), 6.85-6.96 (m, 2H, CH=C<u>H</u>CO, Ar-H), 7.28 (t, 1H, *J* = 7.5, 7.3 Hz, Ar-H), 7.38 (d, 1H, *J* = 16.0 Hz, Ar-H), 7.51 (d, 1H, *J* = 15.3 Hz, Ar-H), 7.77-7.85 (m, 2H, CH=C<u>H</u>CO, C<u>H</u>=CHCO), 7.97 (d, 1H, *J* = 15.0 Hz, C<u>H</u>=CHCO), 10.33 (s, 1H, OH) ppm; ¹³C NMR (75 M Hz, DMSO-d₆): δ 20.4, 21.4, 21.6, 116.2, 119.4, 121.2, 124.6, 128.4, 129.8, 132.0, 136.3, 138.4, 142.2, 149.3, 149.6, 152.7, 157.2, 188.3; MS (ESI): 295 [M+H]⁺, 317 [M+Na]⁺; HRMS: calcd for C₁₈H₁₈N₂O₂Na [M+Na]⁺ 317.1266, found 317.1266.

(1*E*,4*E*)-1-(3-Hydroxyphenyl)-5-(3,5,6-trimethylpyrazin-2-yl)penta-1,4-dien-3-one

(10b) Yellow powder; yield 66 %; mp 220-222 °C; IR (KBr, cm⁻¹): 3339, 3009, 2924, 1670, 1621, 1592, 1574; ¹H NMR (300 M Hz, DMSO-d₆): δ 2.49 (s, 3H, CH₃), 2.51 (s, 3H, CH₃), 2.61 (s, 3H, CH₃), 6.87 (d, 1H, J = 15.0 Hz, CH=CHCO), 7.13-7.41 (m, 4H, 4 × Ar-H), 7.52-7.66 (m, 2H, CH=CHCO, CH=CHCO), 7.85 (d, 1H, J = 15.0 Hz, CH=CHCO), 9.66 (s, 1H, OH) ppm; ¹³C NMR (75 M Hz, DMSO-d₆): δ 20.4, 21.4, 21.6, 115.1, 117.8, 119.7, 125.3, 129.8, 135.8, 136.8, 142.2, 149.4, 149.6, 152.8, 157.7, 188.3; MS (ESI): 295 [M+H]⁺, 317 [M+Na]⁺; HRMS: calcd for C₁₈H₁₈N₂O₂Na [M+Na]⁺ 317.1266, found 317.1266.

(1*E*,4*E*)-1-(4-Hydroxyphenyl)-5-(3,5,6-trimethylpyrazin-2-yl)penta-1,4-dien-3-one (10c) Yellow powder; yield 69 %; mp 249-251 °C; IR (KBr, cm⁻¹): 3220, 3021, 2940,

1660, 1617, 1598, 1552; ¹H NMR (300 M Hz, DMSO-d₆): δ 2.48 (s, 3H, CH₃), 2.50 (s, 3H, CH₃), 2.60 (s, 3H, CH₃), 6.82 (d, 2H, J = 8.5 Hz, 2 × Ar-H), 7.22 (d, 1H, J = 15.8 Hz, CH=C<u>H</u>CO), 7.51 (d, 1H, J = 15.3 Hz, CH=C<u>H</u>CO), 7.63-7.70 (m, 3H, C<u>H</u>=CHCO, 2 × Ar-H), 7.80 (d, 1H, J = 15.3 Hz, C<u>H</u>=CHCO), 10.12 (s, 1H, OH) ppm; ¹³C NMR (75 M Hz, DMSO-d₆): δ 20.4, 21.4, 21.6, 115.8, 122.3, 125.6, 130.0, 130.9, 136.1, 142.3, 143.5, 149.3, 149.6, 152.6, 160.2, 187.9; MS (ESI): 295 [M+H]⁺, 317 [M+Na]⁺; HRMS: calcd for C₁₈H₁₈N₂O₂Na [M+Na]⁺ 317.1266, found 317.1268.

(1*E*,4*E*)-1-(4-Hydroxy-3-methoxyphenyl)-5-(3,5,6-trimethylpyrazin-2-yl)penta-1,4-di en-3-one (10d) Yellow powder; yield 63 %; mp 194-196 °C; IR (KBr, cm⁻¹): 3398, 3062, 2921, 1671, 1646, 1621, 1574; ¹H NMR (300 M Hz, CDCl₃): δ 2.55 (s, 3H, CH₃), 2.56 (s, 3H, CH₃), 2.65 (s, 3H, CH₃), 3.94 (s, 3H, OCH₃), 6.31 (s, 1H, OH), 6.88-6.96 (m, 2H, CH=C<u>H</u>CO, Ar-H), 7.13-7.19 (m, 2H, 2 × Ar-H), 7.71-7.78 (m, 2H, CH=C<u>H</u>CO, C<u>H</u>=CHCO), 7.88 (d, 1H, *J* = 15.0 Hz, C<u>H</u>=CHCO) ppm; ¹³C NMR (75 M Hz, CDCl₃): δ 20.8, 21.8, 22.0, 56.0, 109.7, 115.0, 123.8, 124.5, 127.3, 129.0, 136.5, 143.2, 144.2, 147.0, 148.5, 149.7, 149.8, 152.6, 188.8; MS (ESI): 325 [M+H]⁺, 347 [M+Na]⁺; HRMS: calcd for C₁₉H₂₀N₂O₃Na [M+Na]⁺ 347.1372, found 347.1383.

(1*E*,4*E*)-1-(2-Hydroxy-3-methoxyphenyl)-5-(3,5,6-trimethylpyrazin-2-yl)penta-1,4-di en-3-one (10e) Yellow powder; yield 67 %; mp 177-179 °C; IR (KBr, cm⁻¹): 3367, 3056, 2922, 1658, 1618, 1574; ¹H NMR (300 M Hz, CDCl₃): δ 2.54 (s, 3H, CH₃), 2.56 (s, 3H,

ACS Paragon Plus Environment

CH₃), 2.65 (s, 3H, CH₃), 3.92 (s, 3H, OCH₃), 6.37 (s, 1H, OH), 6.87-6.89 (m, 2H, CH=C<u>H</u>CO, Ar-H), 7.17-7.27 (m, 2H, 2 × Ar-H), 7.75 (d, 1H, J = 15.1 Hz, CH=C<u>H</u>CO), 7.88 (d, 1H, J = 15.1 Hz, C<u>H</u>=CHCO), 8.04 (d, 1H, J = 16.2 Hz, C<u>H</u>=CHCO) ppm; ¹³C NMR (75 M Hz, CDCl₃): δ 20.8, 21.8, 22.0, 56.2, 112.0, 119.8, 121.1, 127.7, 129.3, 136.6, 138.8, 143.3, 145.8, 146.9, 149.6, 152.5, 189.6; MS (ESI): 325 [M+H]⁺; HRMS: calcd for C₁₉H₂₀N₂O₃Na [M+Na]⁺ 347.1372, found 347.1381.

(1*E*,4*E*)-1-(2-Methoxyphenyl)-5-(3,5,6-trimethylpyrazin-2-yl)penta-1,4-dien-3-one

(10f) Yellow powder; yield 57 %; mp 134-136 °C; IR (KBr, cm⁻¹): 3067, 2914, 1645, 1591, 1572; ¹H NMR (300 M Hz, CDCl₃): δ 2.53 (s, 3H, CH₃), 2.56 (s, 3H, CH₃), 2.65 (s, 3H, CH₃), 3.92 (s, 3H, OCH₃), 6.92-7.01 (m, 2H, CH=C<u>H</u>CO, Ar-H), 7.11 (d, 1H, J = 16.2 Hz, Ar-H), 7.38 (t, 1H, J = 7.3 Hz, Ar-H), 7.59 (d, 1H, J = 6.9 Hz, Ar-H), 7.73 (d, 1H, J = 15.1 Hz, CH=C<u>H</u>CO), 7.87 (d, 1H, J = 15.1 Hz, C<u>H</u>=CHCO), 8.09 (d, 1H, J = 16.2 Hz, C<u>H</u>=CHCO) ppm; ¹³C NMR (75 M Hz, CDCl₃): δ 20.3, 21.3, 21.5, 55.0, 110.7, 120.3, 123.2, 126.7, 128.5, 128.8, 131.4, 136.1, 138.8, 142.7, 149.1, 149.3, 152.0, 158.2, 189.0; MS (ESI): 331 [M+Na]⁺; HRMS: calcd for C₁₉H₂₀N₂O₂Na [M+Na]⁺ 331.1422, found 331.1429.

(1*E*,4*E*)-1-(3-Methoxyphenyl)-5-(3,5,6-trimethylpyrazin-2-yl)penta-1,4-dien-3-one (10g) Yellow powder; yield 73 %; mp 128-130 °C; IR (KBr, cm⁻¹): 3050, 2918, 1670, 1620, 1575; ¹H NMR (300 M Hz, CDCl₃): δ 2.54 (s, 3H, CH₃), 2.56 (s, 3H, CH₃), 2.65 (s, 29

3H, CH₃), 3.85 (s, 3H, OCH₃), 6.95-7.06 (m, 2H, CH=C<u>H</u>CO, Ar-H), 7.13 (s, 1H, Ar-H), 7.20-7.36 (m, 2H, 2 × Ar-H), 7.72 (d, 2H, J = 14.9 Hz, CH=C<u>H</u>CO, C<u>H</u>=CHCO), 7.88 (d, 1H, J = 15.0 Hz, C<u>H</u>=CHCO) ppm; ¹³C NMR (75 M Hz, CDCl₃): δ 20.3, 21.3, 21.6, 54.8, 112.7, 116.0, 120.7, 126.3, 128.3, 129.5, 135.6, 136.5, 142.5, 143.2, 149.2, 149.4, 152.2, 159.5, 188.4; MS (ESI): 309 [M+H]⁺, 331 [M+Na]⁺; HRMS: calcd for C₁₉H₂₀N₂O₂Na [M+Na]⁺ 331.1422, found 331.1415.

(1*E*,4*E*)-1-(4-Methoxyphenyl)-5-(3,5,6-trimethylpyrazin-2-yl)penta-1,4-dien-3-one

(10h) Yellow powder; yield 67 %; mp 118-120 °C; IR (KBr, cm⁻¹): 2920, 1664, 1621, 1604, 1584; ¹H NMR (300 M Hz, CDCl₃): δ 2.54 (s, 3H, CH₃), 2.56 (s, 3H, CH₃), 2.65 (s, 3H, CH₃), 3.86 (s, 3H, OCH₃), 6.91-6.96 (m, 3H, CH=C<u>H</u>CO, 2 × Ar-H), 7.57 (d, 2H, *J* = 8.7 Hz, 2 × Ar-H), 7.71-7.79 (m, 2H, CH=C<u>H</u>CO, C<u>H</u>=CHCO), 7.87 (d, 1H, *J* = 15.0 Hz, C<u>H</u>=CHCO) ppm; ¹³C NMR (75 M Hz, CDCl₃): δ 20.4, 21.3, 21.6, 54.9, 114.0, 123.9, 127.0, 128.7, 129.7, 136.0, 142.7, 143.2, 149.1, 149.3, 152.1, 161.3, 188.4; MS (ESI): 309 [M+H]⁺, 331 [M+Na]⁺; HRMS: calcd for C₁₉H₂₀N₂O₂Na [M+Na]⁺ 331.1422, found 331.1413.

(1*E*,4*E*)-1-(3,4-Dimethoxyphenyl)-5-(3,5,6-trimethylpyrazin-2-yl)penta-1,4-dien-3-on e (10i) Yellow powder; yield 49 %; mp 116-118 °C; IR (KBr, cm⁻¹): 3013, 2920, 1661, 1615, 1570; ¹H NMR (300 M Hz, CDCl₃): δ 2.54 (s, 3H, CH₃), 2.56 (s, 3H, CH₃), 2.65 (s, 3H, CH₃), 3.94 (s, 3H, OCH₃), 3.95 (s, 3H, OCH₃), 6.89-6.96 (m, 2H, CH=C<u>H</u>CO, Ar-H), 30

ACS Paragon Plus Environment

7.15-7.30 (m, 2H, 2 × Ar-H), 7.72-7.78 (m, 2H, CH=C<u>H</u>CO, C<u>H</u>=CHCO), 7.88 (d, 1H, J = 15.0 Hz, C<u>H</u>=CHCO) ppm; ¹³C NMR (75 M Hz, CDCl₃): δ 20.3, 21.3, 21.5, 55.4, 55.5, 109.3, 110.6, 122.9, 124.3, 127.2, 128.4, 136.1, 142.6, 143.4, 148.8, 149.2, 149.3, 151.0, 152.1, 188.2; MS (ESI): 339 [M+H]⁺, 361 [M+Na]⁺; HRMS: calcd for C₂₀H₂₂N₂O₃Na [M+Na]⁺ 361.1528, found 361.1536.

(1*E*,4*E*)-1-(2,4-Dimethoxyphenyl)-5-(3,5,6-trimethylpyrazin-2-yl)penta-1,4-dien-3-on e (10j) Yellow powder; yield 54 %; mp 121-123 °C; IR (KBr, cm⁻¹): 3014, 2920, 1661, 1612, 1567; ¹H NMR (300 M Hz, CDCl₃): δ 2.54 (s, 3H, CH₃), 2.56 (s, 3H, CH₃), 2.65 (s, 3H, CH₃), 3.86 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃), 6.46-6.55 (m, 2H, 2 × Ar-H), 7.03 (d, 1H, *J* = 16.1 Hz, CH=C<u>H</u>CO), 7.54 (d, 1H, *J* = 8.6 Hz, Ar-H), 7.71 (d, 1H, *J* = 15.1 Hz, CH=C<u>H</u>CO), 7.86 (d, 1H, *J* = 15.1 Hz, C<u>H</u>=CHCO), 8.03 (d, 1H, *J* = 16.1 Hz, C<u>H</u>=CHCO) ppm; ¹³C NMR (75 M Hz, CDCl₃): δ 20.8, 21.8, 22.0, 55.5, 98.4, 105.5, 116.8, 124.9, 129.6, 130.6, 136.1, 139.4, 143.3, 149.5, 149.7, 152.3, 160.3, 163.2, 189.4; MS (ESI): 339 [M+H]⁺, 361 [M+Na]⁺; HRMS: calcd for C₂₀H₂₂N₂O₃Na [M+Na]⁺ 361.1528, found 361.1541.

(1*E*,4*E*)-1-(3,4,5-Trimethoxyphenyl)-5-(3,5,6-trimethylpyrazin-2-yl)penta-1,4-dien-3one (10k) Yellow powder; yield 68 %; mp 131-133 °C; IR (KBr, cm⁻¹): 3068, 2914, 1650, 1619, 1578; ¹H NMR (300 M Hz, CDCl₃): δ 2.55 (s, 3H, CH₃), 2.57 (s, 3H, CH₃), 2.66 (s, 3H, CH₃), 3.93 (s, 9H, 3 × OCH₃), 6.86 (s, 2H, 2 × Ar-H), 6.93 (d, 1H, *J* = 15.0 Hz,

CH=C<u>H</u>CO), 7.69-7.79 (m, 2H, CH=C<u>H</u>CO, C<u>H</u>=CHCO), 7.90 (d, 1H, J = 15.0 Hz, C<u>H</u>=CHCO) ppm; ¹³C NMR (75 M Hz, CDCl₃): δ 20.3, 21.3, 21.6, 55.7, 60.5, 105.2, 125.6, 128.2, 129.7, 130.4, 136.4, 140.0, 142.5, 143.4, 149.2, 149.3, 152.2, 153.0, 188.2; MS (ESI): 369 [M+H]⁺, 391 [M+Na]⁺; HRMS: calcd for C₂₁H₂₄N₂O₄Na [M+Na]⁺ 391.1634, found 391.1635.

(1*E*,4*E*)-1-(Benzo[*d*][1,3]dioxol-5-yl)-5-(3,5,6-trimethylpyrazin-2-yl)penta-1,4-dien-3 -one (10l) Yellow powder; yield 77 %; mp 148-150 °C; IR (KBr, cm⁻¹): 3015, 2914, 1661, 1619, 1577; ¹H NMR (300 M Hz, CDCl₃): δ 2.54 (s, 3H, CH₃), 2.56 (s, 3H, CH₃), 2.65 (s, 3H, CH₃), 6.03 (s, 2H, OCH₂O), 6.83-6.91 (m, 2H, CH=C<u>H</u>CO, Ar-H), 7.10 (d, 2H, *J* = 8.4 Hz, 2 × Ar-H), 7.68-7.74 (m, 2H, CH=C<u>H</u>CO, C<u>H</u>=CHCO), 7.86 (d, 1H, *J* = 15.0 Hz, C<u>H</u>=CHCO) ppm; ¹³C NMR (75 M Hz, CDCl₃): δ 20.3, 21.3, 21.6, 101.1, 106.1, 108.2, 124.2, 124.7, 128.7, 136.2, 142.6, 143.2, 147.9, 149.2, 149.3, 149.5, 152.1, 188.2; MS (ESI): 323 [M+H]⁺, 345 [M+Na]⁺; HRMS: calcd for C₁₉H₁₈N₂O₃Na [M+Na]⁺ 345.1215, found 345.1207.

(1*E*,4*E*)-1-Phenyl-5-(3,5,6-trimethylpyrazin-2-yl)penta-1,4-dien-3-one (10m) Yellow powder; yield 74 %; mp 115-117 °C; IR (KBr, cm⁻¹): 3064, 2918, 1672, 1622, 1591; ¹H NMR (300 M Hz, CDCl₃): δ 2.53 (s, 3H, CH₃), 2.55 (s, 3H, CH₃), 2.66 (s, 3H, CH₃), 7.01 (d, 1H, *J* = 15.0 Hz, CH=C<u>H</u>CO), 7.40-7.42 (m, 3H, 3 × Ar-H), 7.60-7.61 (m, 2H, 2 × Ar-H), 7.72-7.80 (m, 2H, CH=C<u>H</u>CO, C<u>H</u>=CHCO), 7.88 (d, 1H, *J* = 15.0 Hz,

ACS Paragon Plus Environment

C<u>H</u>=CHCO) ppm; ¹³C NMR (75 M Hz, CDCl₃): δ 20.4, 21.3, 21.6, 126.0, 128.0, 128.4, 128.5, 130.1, 134.2, 136.5, 142.5, 143.3, 149.2, 149.4, 152.4, 188.4; MS (ESI): 279 [M+H]⁺, 301 [M+Na]⁺; HRMS: calcd for C₁₈H₁₈N₂ONa [M+Na]⁺ 301.1317, found 301.1308.

(1*E*,4*E*)-1-(4-Fluorophenyl)-5-(3,5,6-trimethylpyrazin-2-yl)penta-1,4-dien-3-one (10n) Yellow powder; yield 60 %; mp 114-116 °C; IR (KBr, cm⁻¹): 3044, 2914, 1670, 1625, 1586; ¹H NMR (300 M Hz, CDCl₃): δ 2.55 (s, 3H, CH₃), 2.56 (s, 3H, CH₃), 2.66 (s, 3H, CH₃), 6.95 (d, 1H, *J* = 15.0 Hz, CH=C<u>H</u>CO), 7.09-7.14 (m, 2H, 2 × Ar-H), 7.59-7.64 (m, 2H, 2 × Ar-H), 7.71-7.77 (m, 2H, CH=C<u>H</u>CO, C<u>H</u>=CHCO), 7.89 (d, 1H, *J* = 15.0 Hz, C<u>H</u>=CHCO) ppm; ¹³C NMR (75 M Hz, CDCl₃): δ 20.8, 21.8, 22.1, 116.0, 116.3, 126.3, 128.9, 130.3, 130.4, 131.0, 137.1, 142.5, 143.0, 149.8, 152.8, 165.8, 188.7; MS (ESI): 297 [M+H]⁺, 319 [M+Na]⁺; HRMS: calcd for C₁₈H₁₇FN₂ONa [M+Na]⁺ 319.1223, found 319.1232.

(1E,4E)-1-(4-Chlorophenyl)-5-(3,5,6-trimethylpyrazin-2-yl)penta-1,4-dien-3-one

(10o) Yellow powder; yield 70 %; mp 109-111 °C; IR (KBr, cm⁻¹): 3021, 2926, 1670, 1624, 1590; ¹H NMR (300 M Hz, CDCl₃): δ 2.55 (s, 3H, CH₃), 2.56 (s, 3H, CH₃), 2.66 (s, 3H, CH₃), 6.99 (d, 1H, *J* = 15.0 Hz, CH=C<u>H</u>CO), 7.38 (d, 2H, *J* = 8.5 Hz, 2 × Ar-H), 7.54 (d, 2H, *J* = 8.5 Hz, 2 × Ar-H), 7.70 (d, 2H, *J* = 15.0 Hz, CH=C<u>H</u>CO, C<u>H</u>=CHCO), 7.89 (d, 1H, *J* = 15.0 Hz, C<u>H</u>=CHCO) ppm; ¹³C NMR (75 M Hz, CDCl₃): δ 20.3, 21.3, 21.6, ³³

126.4, 128.3, 128.8, 129.1, 132.7, 136.0, 136.7, 141.8, 142.4, 149.3, 149.4, 152.3, 188.2; MS (ESI): 313 [M+H]⁺, 335 [M+Na]⁺; HRMS: calcd for C₁₈H₁₇ClN₂ONa [M+Na]⁺ 335.0927, found 335.0932.

(1*E*,4*E*)-1-(4-(Trifluoromethyl)phenyl)-5-(3,5,6-trimethylpyrazin-2-yl)penta-1,4-dien -3-one (10p) Yellow powder; yield 53 %; mp 117-119 °C; IR (KBr, cm⁻¹): 3062, 2920, 1672, 1620, 1591; ¹H NMR (300 M Hz, CDCl₃): δ 2.55 (s, 3H, CH₃), 2.57 (s, 3H, CH₃), 2.66 (s, 3H, CH₃), 7.08 (d, 1H, *J* = 16.1 Hz, CH=C<u>H</u>CO), 7.66-7.81 (m, 6H, 4 × Ar-H, CH=C<u>H</u>CO, C<u>H</u>=CHCO), 7.91 (d, 1H, *J* = 15.1 Hz, C<u>H</u>=CHCO) ppm; ¹³C NMR (125 M Hz, CDCl₃): δ 20.8, 21.7, 22.0, 123.8 (q, *J* = 270 Hz, CF₃), 125.9, 128.4, 128.5, 128.7, 132.1 (q, *J* = 32 Hz), 137.6, 138.2, 141.6, 142.8, 149.9, 152.9, 188.5; MS (ESI): 347 [M+H]⁺, 369 [M+Na]⁺; HRMS: calcd for C₁₉H₁₇F₃N₂ONa [M+Na]⁺ 369.1191, found 369.1188.

(1*E*,4*E*)-1-(*p*-Tolyl)-5-(3,5,6-trimethylpyrazin-2-yl)penta-1,4-dien-3-one (10q) Yellow powder; yield 65 %; mp 118-120 °C; IR (KBr, cm⁻¹): 3050, 2917, 1667, 1619, 1587; ¹H NMR (300 M Hz, CDCl₃): δ 2.39 (s, 3H, CH₃), 2.54 (s, 3H, CH₃), 2.56 (s, 3H, CH₃), 2.66 (s, 3H, CH₃), 6.99 (d, 1H, *J* = 15.0 Hz, CH=C<u>H</u>CO), 7.24 (d, 2H, *J* = 8.0 Hz, 2 × Ar-H), 7.51 (d, 2H, *J* = 8.1 Hz, 2 × Ar-H), 7.72-7.80 (m, 2H, CH=C<u>H</u>CO, C<u>H</u>=CHCO), 7.88 (d, 1H, *J* = 15.0 Hz, C<u>H</u>=CHCO) ppm; ¹³C NMR (75 M Hz, CDCl₃): δ 20.8, 21.5, 21.8, 22.0, 125.7, 128.5, 129.1, 129.7, 132.0, 136.7, 141.2, 143.1, 143.9, 149.6, 149.9, 152.6, 189.0;

ACS Paragon Plus Environment

MS (ESI): 293 $[M+H]^+$, 315 $[M+Na]^+$; HRMS: calcd for $C_{19}H_{20}N_2ONa$ $[M+Na]^+$ 315.1473, found 315.1481.

(1*E*,4*E*)-1-(2-Nitrophenyl)-5-(3,5,6-trimethylpyrazin-2-yl)penta-1,4-dien-3-one (10r) Yellow powder; yield 58 %; mp 116-118 °C; IR (KBr, cm⁻¹): 3038, 2914, 1671, 1622, 1592, 1522, 1348; ¹H NMR (300 M Hz, CDCl₃): δ 2.55 (s, 3H, CH₃), 2.56 (s, 3H, CH₃), 2.66 (s, 3H, CH₃), 6.88 (d, 1H, *J* = 16.0 Hz, CH=C<u>H</u>CO), 7.58 (t, 1H, *J* = 8.3 Hz, Ar-H), 7.67-7.78 (m, 3H, CH=C<u>H</u>CO, 2 × Ar-H), 7.91 (d, 1H, *J* = 15.1 Hz, CH=C<u>H</u>CO), 8.07 (d, 1H, *J* = 8.0 Hz, Ar-H), 8.15 (d, 1H, *J* = 16.0 Hz, C<u>H</u>=CHCO) ppm; ¹³C NMR (75 M Hz, CDCl₃): δ 20.8, 21.7, 22.1, 125.0, 128.1, 129.2, 130.4, 131.1, 131.2, 133.5, 138.1, 138.8, 142.8, 149.8, 150.0, 153.0, 188.8; MS (ESI): 324 [M+H]⁺; HRMS: calcd for C₁₈H₁₇N₃O₃Na [M+Na]⁺ 346.1168, found 346.1161.

(1*E*,4*E*)-1-(3-Nitrophenyl)-5-(3,5,6-trimethylpyrazin-2-yl)penta-1,4-dien-3-one (10s) Yellow powder; yield 77 %; mp 185-187 °C; IR (KBr, cm⁻¹): 3063, 2919, 1671, 1625, 1591, 1532, 1350; ¹H NMR (300 M Hz, CDCl₃): δ 2.56 (s, 3H, CH₃), 2.57 (s, 3H, CH₃), 2.67 (s, 3H, CH₃), 7.14 (d, 1H, *J* = 16.1 Hz, CH=C<u>H</u>CO), 7.63 (t, 1H, *J* = 8.0 Hz, Ar-H), 7.73-7.83 (m, 2H, CH=C<u>H</u>CO, C<u>H</u>=CHCO), 7.91-7.97 (m, 2H, C<u>H</u>=CHCO, Ar-OH), 8.25 (d, 1H, *J* = 7.7 Hz, Ar-H), 8.49 (s, 1H, Ar-OH) ppm; ¹³C NMR (75 M Hz, CDCl₃): δ 20.8, 21.8, 22.1, 122.6, 124.7, 128.6, 128.8, 130.0, 134.0, 136.5, 137.9, 140.6, 142.7, 148.7, 149.9, 150.0, 153.1, 188.2; MS (ESI): 324 [M+H]⁺, 346 [M+Na]⁺; HRMS: calcd

for C₁₈H₁₇N₃O₃Na [M+Na]⁺ 346.1168, found 346.1176.

(1*E*,4*E*)-1-(4-Nitrophenyl)-5-(3,5,6-trimethylpyrazin-2-yl)penta-1,4-dien-3-one (10t) Yellow powder; yield 64 %; mp 191-193 °C; IR (KBr, cm⁻¹): 3013, 2919, 1670, 1621, 1603, 1512, 1343; ¹H NMR (300 M Hz, CDCl₃): δ 2.56 (s, 3H, CH₃), 2.57 (s, 3H, CH₃), 2.67 (s, 3H, CH₃), 7.13 (d, 1H, *J* = 16.1 Hz, CH=C<u>H</u>CO), 7.72-7.82 (m, 4H, CH=C<u>H</u>CO, C<u>H</u>=CHCO, 2 × ArOH), 7.92 (d, 1H, *J* = 15.0 Hz, C<u>H</u>=CHCO), 8.27 (d, 2H, *J* = 7.7 Hz, 2 × Ar-H) ppm; ¹³C NMR (75 M Hz, CDCl₃): δ 20.8, 21.8, 22.1, 124.2, 128.5, 128.9, 129.9, 130.3, 131.5, 138.0, 140.4, 140.9, 142.7, 148.6, 149.9, 150.0, 153.2, 188.2; MS (ESI): 324 [M+H]⁺; HRMS: calcd for C₁₈H₁₈N₃O₃ [M+H]⁺ 324.1348, found 324.1359.

(1E,4E)-1-(Naphthalen-2-yl)-5-(3,5,6-trimethylpyrazin-2-yl)penta-1,4-dien-3-one

(10u) Yellow powder; yield 55 %; mp 151-153 °C; IR (KBr, cm⁻¹): 3056, 2914, 1664, 1622, 1585; ¹H NMR (300 M Hz, CDCl₃): δ 2.55 (s, 3H, CH₃), 2.58 (s, 3H, CH₃), 2.67 (s, 3H, CH₃), 7.14 (d, 1H, J = 16.0 Hz, CH=CHCO), 7.50-7.57 (m, 2H, 2 × ArOH), 7.75-8.04 (m, 7H, CH=CHCO, 2 × CH=CHCO, 4 × Ar-OH) ppm; ¹³C NMR (75 M Hz, CDCl₃): δ 20.9, 21.8, 22.1, 123.6, 126.7, 126.8, 127.4, 127.8, 128.7, 128.8, 129.0, 130.7, 132.3, 133.4, 134.4, 137.0, 143.1, 143.9, 149.7, 149.9, 152.7, 188.9; MS (ESI): 329 [M+H]⁺, 351 [M+Na]⁺; HRMS: calcd for C₂₂H₂₀N₂ONa [M+Na]⁺ 351.1473, found 351.1462.

MTT Assay. A549, A549/DDP, SPC-A-1, LTEP-G-2 and HBE cells were seeded in 96-well plates, then treated with vehicle alone or tested compounds for 72 h. 20 μ L of MTT (5 mg/mL, in PBS) was added to each well and further incubated for another 4 h. The MTT formazan formed by viable cells was dissolved in DMSO (150 μ L), and absorbance was measured using a microplate reader (570 nm).

Apoptosis Analysis. Cells were incubated in six-well plates $(1 \times 10^5/\text{well})$ and treated with DMSO (1%), **10d**, ligustrazine or curcumin for 24h. The cells were collected, washed with PBS, and stained with FITC-Annexin-V and PI. Apoptosis was determined by flow cytometry.

Western Blotting. Cells were incubated in six-well plates $(1 \times 10^{6}/\text{well})$ overnight and treated with vehicle DMSO (0.1%, v/v) alone or **10d** for 24 h. The cells were harvested and lysed at 4 °C for 30 min in a lysis buffer [50 mM Tris, pH 7.4, 1 mM MgCl₂, 100 mM NaCl₂, 2.5 mM EDTA, 0.5% Triton X-100, 1 mM phenylmethanesulfonyl fluoride (PMSF), 2.5 mM Na₃VO₄, 0.5% NP-40, pepstatin A, leupeptin, and 5 g/mL of aprotinin]. The cell lysates were centrifuged at 15,000 rpm for 15 min at 4 °C and the supernatants were collected. The protein concentration in the cell lysates was determined using the bicinchonininc acid protein assay kit. Protein samples were separated by SDS-polyacrylamide gel electrophoresis (7.5% gel, 20 µg per lane) and then transferred to polyvinylidene difluoride (PVDF) membranes. The membranes were blocked with skim milk (5%) in Tris-buffered saline containing 0.05% Tween 20 and sequentially incubated with primary antibodies [anti-Akt, anti-Bcl-2, anti-Bax, anti-Caspase3, anti-cleaved Caspase3, anti-ERK, anti-PARP, anti-cleaved PARP, anti-phospho-Akt (Ser473), anti-P-gp, anti-GAPDH, anti- β -actin, anti-TrxR, anti-Trx, and anti-phospho-ERK (Thr202/Tyr204) antibodies (Cell Signaling, Boston, MA)] and followed by enhanced chemiluminescence detection.

Measurement of ROS generation. Cells were incubated with vehicle DMSO (0.1%, v/v) alone, **10d**, ligustrazine **1** or curcumin **2** for 60 min and the cells were stained with dihydroethidium (DHE, Beyotime).^{56,80} The levels of intracellular ROS were examined for measuring the fluorescent signals using a fluorescence microplate reader (300 and 610 nm).

Determination of TrxR activity in Cell-free assay. The NADPH-reduced TrxR (0.16 μ M) was incubated in triplicate with vehicle DMSO (0.1%, v/v) alone or different concentrations of **10d**, **10e**, **10i-k**, ligustrazine **1**, and curcumin **2** in 50 μ L of reaction buffer in 96-well plates for 2 h. The mixtures were reacted with 2 mM DTNB and 200 μ M NADPH for 3 min and the absorbance was determined by a microplate spectrophotometer (412 nm). IC₅₀ values of individual compounds were calculated.

Determination of TrxR activity in Cells. The impact of 10d on the TrxR activity in 38

ACS Paragon Plus Environment

A549 and A549/DDP cells was determined using a Thioredoxin Reductase Assay Kit (Cayman).³⁷ Briefly, cells were incubated with tested compounds (**10d**, **10e**, **10i-k**, **1** and **2**) for 24 h. The cells were harvested and homogenized, followed by centrifugation. After quantification of protein concentrations, the cell protein samples (50 µg per sample) were reacted in triplicate with NADPH (40 mg/ml) and DTNB (10 mM) in TE buffer in 96-well plates at 37 °C for 1 h. The contents of free TNB derived from free thiols were determined by a microplate spectrophotometer (412 nm). The TrxR activity was calculated based on the standard curve established using the purified TrxR provided.

P-gp ATPase assay. P-gp ATPase assay was carried out according to the manufacturers' instruction (P-gp-GloTM Assay System without P-glycoprotein, Promega, USA) with minor modification. Briefly, crude membrane samples in 10 mM Tris-HCl (pH 7.5) were prepared from A549/DDP cells and individual membrane samples (0.6 mg/mL) were treated in triplicate with **10d** (40 μ M), 200 μ M sodium vanadate (Na₃VO₄, inhibitor) and VRP (substrate control) or vehicle in the presence of MgATP (5 mM, 37 °C, 40 min). The relative light units (RLU) in individual samples were determined using a luminescent detector (Beckman Coulter, USA). The changes in the values of RLU represent the ATP consumed by the membrane ATPase and the values of RLU were negatively correlated with the activities of ATPase in the samples.

Real Time Reverse Transcription PCR (RT-PCR). A549/DDP cells (1×10^6) were treated with vehicle control or **10d** (0.6 or 1.2 μ M) for 24 h. Total RNA was extracted

from individual groups of cells using RNASimple Total RNA Kit (TIANGEN BIOTECH, DP419) and reversely transcribed into cDNA using oligo dT primers and RevertAid Frist Strand cDNA synthesis kit (Fermentas, Lot: 00104039) following the manufacturer's instruction. The relative levels of ABCB1 mRNA transcripts to the control GAPDH in individual groups of cells were analyzed by RT-PCR using specific primers, as previously described.⁸¹⁻⁸²

In Vivo Experiments. The in vivo experiments were performed at the Cancer Research Institute, Central South University (Changsha, China). All animal experimental protocols were evaluated and approved by the Ethics Committee of Central South University. Both genders of ICR mice (7 weeks, SLACCAS) were randomized and treated intraperitoneally (ip) with a single dose of **10d** at 200, 250, 300, 350, 400, and 450 mg/kg, respectively. Each group contained 10 animals and the animals were observed for abnormal behavior and mortality up to two weeks post treatment.

Both genders of athymic BALB/c nude mice (4-5 weeks, SLACCAS) were inoculated subcutaneously with A549/DDP cells (1×10^7 /mouse). After the solid tumors were established and allowed to reach 180-200 mm³, the mice were randomized and treated intraperitoneally with **10d** (20 mg/kg or 40 mg/kg) or the same volume of vehicle consisting of PBS/DMSO/cremophor-EL (8:1:1) daily for 15 consecutive days. The tumor growth was recorded every three days from the measurement of length and width

 using a vernier caliper and calculated as Tumor volumes (TV) with the following formula: TV (mm^3) = Width² (Length/2). The tumor growth inhibition rate (weight per unit weight, w/w, %) was calculated as described previously.⁵⁷

ASSOCIATED CONTENT

Supporting Information. The purities of compounds **10a-u**, IR spectra, ¹H and ¹³C NMR spectra, MS and HRMS spectra of compounds **10a-u**, chemical characterization of compound **9e**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors: *Tel: +86-731-84805451, Fax: +86-731-84805451, E-mail: rencaiping@csu.edu.cn (C. Ren); *Tel: +86-25-83271072, E-mail, cpudahuang@163.com (Z. Huang); *Tel: +86-25-83271015, Fax: +86-25-83271015, E-mail: zyhtgd@163.com (Y. Zhang).

Author Contributions: ‡Y.A. and B.Z. contributed equally to this work.

ACKNOWLEGEMENTS

This study was supported by grants from the National Natural Science Foundation of

China (No. 81273378, No. 81202408, and No. 81272972), the National Basic Research Program of China (2010CB833605), and Open-End Fund for the Valuable and Precision Instruments of Central South University.

ABBREVIATIONS USED

AKT, a serine/threonine-protein kinase; DMSO, dimethyl sulfoxide; ERK, extracellular regulated kinase; ESI, electrospray ionization; MTT, 3-[4,5-dimethyl-thiazol-2-yl]-2,5-diphenyltetrazolium bromide; NADPH, nicotinamide adenine dinucleotide phosphate; DTNB, 5,5'-dithiobis(2-nitrobenzoic) acid.

REFERENCES

- (1) Waris, G.; Ahsan, H. Reactive oxygen species: role in the development of cancer and various chronic conditions. *J. Carcinog.* **2006**, *5*, 14.
- (2) Wu, W. S. The signaling mechanism of ROS in tumor progression. *Cancer Metastasis Rev.* **2006**, *25*, 695-705.
- (3) Gorrini, C.; Harris, I. S.; Mak, T. W. Modulation of oxidative stress as an anticancer strategy. *Nat. Rev. Drug Discovery* **2013**, *12*, 931-947.

- (4) Pelicano, H.; Carney, D.; Huang, P. ROS stress in cancer cells and therapeutic implications. *Drug Resist. Updates* **2004**, *7*, 97-110.
- (5) Deavall, D. G.; Martin, E. A.; Horner, J. M.; Roberts, R. Druginduced oxidative stress and toxicity. *J. Toxicol.* **2012**, *2012*, 645460.
- (6) Fang, J.; Seki, T.; Maeda, H. Therapeutic strategies by modulating oxygen stress in cancer and inflammation. *Adv. Drug Deliv. Rev.* **2009**, *61*, 290-302.
- (7) Raj, L.; Ide, T.; Gurkar, A. U.; Foley, M.; Schenone, M.; Li, X.; Tolliday, N. J.; Golub, T. R.; Carr, S. A.; Shamji, A. F.; Stern, A. M.; Mandinova, A.; Schreiber, S. L.; Lee, S. W. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. *Nature*. 2011, 475, 231-234.
- (8) Huang, G.; Chen, H.; Dong, Y.; Luo, X.; Yu, H.; Moore, Z.; Bey, E. A.; Boothman, D. A.; Gao, J. Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. *Theranostics*. 2013, *3*, 116-126.
- (9) Yi, B.; Liu, D.; He, M.; Li, Q.; Liu, T.; Shao, J. Role of the ROS/AMPK signaling pathway in tetramethylpyrazine-induced apoptosis in gastric cancer cells. *Oncol. Lett.* 2013, 6, 583-589.
- (10) Pelicano, H.; Feng, L.; Zhou, Y.; Carew, J. S.; Hileman, E. O.; Plunkett, W.; Keating, M. J.; Huang, P. Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. *J. Biol. Chem.* 2003, 278, 37832-37839.
- (11) Miller, W. H. Jr.; Schipper, H. M.; Lee, J. S.; Singer, J.; Waxman, S. Mechanisms of ⁴³

action of arsenic trioxide. Cancer Res. 2002, 62, 3893-3903.

- (12) Liu, Q.; Shuhendler, A.; Cheng, J.; Rauth, A. M.; O'Brien, P.; Wu, X. Y. Cytotoxicity and mechanism of action of a new ROS-generating microsphere formulation for circumventing multidrug resistance in breast cancer cells. *Breast Cancer Res. Treat.* 2010, *121*, 323-333.
- (13) Cheng, J.; Liu, Q.; Shuhendler, A. J.; Rauth, A. M.; Wu, X. Y. Optimizing the design and in vitro evaluation of bioreactive glucose oxidase-microspheres for enhanced cytotoxicity against multidrug resistant breast cancer cells. *Colloids Surf. B Biointerfaces.* 2015, 130, 164-172.
- (14) Guo, S. K.; Chen, K. J.; Qian, Z. H.; Weng, W. L.; Qian, M. Y. Tetramethylpyrazine in the treatment of cardiovascular and cerebrovascular diseases. *Planta Med.* 1983, 47, 89.
- (15) Yu, K.; Chen, Z.; Pan, X.; Yang, Y.; Tian, S.; Zhang, J.; Ge, J.; Ambati, B.; Zhuang, J. Tetramethylpyrazine-mediated suppression of C6 gliomas involves inhibition of chemokine receptor CXCR4 expression. *Oncol. Rep.* **2012**, *28*, 955-960.
- (16) Zheng, C. Y.; Xiao, W.; Zhu, M. X.; Pan, X. J.; Yang, Z. H.; Zhou, S. Y. Inhibition of cyclooxygenase-2 by tetramethylpyrazine and its effects on A549 cell invasion and metastasis. *Int. J. Oncol.* **2012**, *40*, 2029-2037.
- (17) Zhang, Y.; Liu, X.; Zuo, T.; Liu, Y.; Zhang, J. H. Tetramethylpyrazine reverses multidrug resistance in breast cancer cells through regulating the expression and function of P-glycoprotein. *Med. Oncol.* **2012**, *29*, 534-538.

- (18) Wang, X. B.; Wang, S. S.; Zhang, Q. F.; Liu, M.; Li, H. L.; Liu, Y.; Wang, J. N.;
 Zheng, F.; Guo, L. Y.; Xiang, J. Z. Inhibition of tetramethylpyrazine on P-gp, MRP2,
 MRP3 and MRP5 in multidrug resistant human hepatocellular carcinoma cells. *Oncol. Rep.* 2010, 23, 211-215.
- (19) Cheng, X. C.; Liu, X. Y.; Xu, W. F.; Guo, X. L.; Zhang, N.; Song, Y. N. Ligustrazine derivatives. Part 3: Design, synthesis and evaluation of novel acylpiperazinyl derivatives as potential cerebrocardiac vascular agents. *Bioorg. Med. Chem.* 2009, *17*, 3018-3024.
- (20) Fang, J.; Sawa, T.; Akaike, T.; Akuta, T.; Sahoo, S. K.; Khaled, G.; Hamada, A.; Maeda, H. In vivo antitumor activity of pegylated zinc protoporphyrin: targeted inhibition of heme oxygenase in solid tumor. *Cancer Res.* **2003**, *63*, 3567-3574.
- (21) Maeda, H.; Hori, S.; Ohizumi, H.; Segawa, T.; Kakehi, Y.; Ogawa, O.; Kakizuka, A. Effective treatment of advanced solid tumors by the combination of arsenic trioxide and L-buthionine-sulfoximine. *Cell Death Differ*. **2004**, *11*, 737-746.
- (22) Trachootham, D.; Zhou, Y.; Zhang, H.; Demizu, Y.; Chen, Z.; Pelicano, H.; Chiao, P.J.; Achanta, G.; Arlinghaus, R. B.; Liu, J.; Huang, P. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. *Cancer Cell.* 2006, *10*, 241-252.
- (23) Lu, J.; Holmgren, A. The thioredoxin antioxidant system. *Free Radical Biol. Med.***2014**, 66, 75-87.
- (24) Mahmood, D. F.; Abderrazak, A.; Khadija, E. H.; Simmet, T.; Rouis, M. The

thioredoxin system as a therapeutic target in human health and disease. *Antioxid*. *Redox Signaling* **2013**, *19*, 1266-1303.

- (25) Bindoli, A.; Rigobello, M. P. Principles in redox signaling: from chemistry to functional significance. *Antioxid. Redox Signaling* **2013**, *18*, 1557-1593.
- (26) Kahlos, K.; Soini, Y.; Saily, M.; Koistinen, P.; Kakko, S.; Paakko, P.; Holmgren, A.; Kinnula, V. L. Up-regulation of thioredoxin and thioredoxin reductase in human malignant pleural mesothelioma. *Int. J. Cancer* **2001**, *95*, 198-204.
- (27) Berggren, M.; Gallegos, A.; Gasdaska, J. R.; Gasdaska, P. Y.; Warneke, J.; Powis, G. Thioredoxin and thioredoxin reductase gene expression in human tumors and cell lines, and the effects of serum stimulation and hypoxia. *Anticancer Res.* 1996, 16, 3459-3466.
- (28) Kim, S. J.; Miyoshi, Y.; Taguchi, T.; Tamaki, Y.; Nakamura, H.; Yodoi, J.; Kato, K.; Noguchi, S. High thioredoxin expression is associated with resistance to docetaxel in primary breast cancer. *Clin. Cancer Res.* **2005**, *11*, 8425-8430.
- (29) Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? *Nat. Rev. Drug Discovery* 2009, 8, 579-591.
- (30) Cai, W.; Zhang, L.; Song, Y.; Wang, B.; Zhang, B.; Cui, X.; Hu, G.; Liu, Y.; Wu, J.;
 Fang, J. Small molecule inhibitors of mammalian thioredoxin reductase. *Free Radical Biol. Med.* 2012, 52, 257-265.
- (31) Liu, Y.; Li, Y.; Yu, S.; Zhao, G. Recent advances in the development of thioredoxin

ACS Paragon Plus Environment

reductase inhibitors as anticancer agents. Curr. Drug Targets. 2012, 13, 1432-1444.

- (32) Zou, T.; Lum, C. T.; Lok, C. N.; To, W. P.; Low, K. H.; Che, C. M. A binuclear gold(I) complex with mixed bridging diphosphine and bis(N-heterocyclic carbene) ligands shows favorable thiol reactivity and inhibits tumor growth and angiogenesis in vivo. *Angew. Chem., Int. Ed.* **2014**, *53*, 5810-5814.
- (33) Zhang, D.; Xu, Z.; Yuan, J.; Zhao, Y. X.; Qiao, Z. Y.; Gao, Y. J.; Yu, G. A.; Li, J.;
 Wang, H. Synthesis and molecular recognition studies on small-molecule inhibitors for thioredoxin reductase. *J. Med. Chem.* 2014, *57*, 8132-8139.
- (34) Liu, Y.; Duan, D.; Yao, J.; Zhang, B.; Peng, S.; Ma, H.; Song, Y.; Fang, J. Dithiaarsanes induce oxidative stress-mediated apoptosis in HL-60 cells by selectively targeting thioredoxin reductase. *J. Med. Chem.* **2014**, **57**, 5203-5211.
- (35) Huang, L.; Chen, Y.; Liang, B.; Xing, B.; Wen, G.; Wang, S.; Yue, X.; Zhu, C.; Du, J.;
 Bu, X. A furanyl acryl conjugated coumarin as an efficient inhibitor and a highly selective off-on fluorescent probe for covalent labelling of thioredoxin reductase. *Chem. Commun.* 2014, *50*, 6987-6990.
- (36) Citta, A.; Folda, A.; Bindoli, A.; Pigeon, P.; Top, S.; Vessieres, A.; Salmain, M.; Jaouen, G.; Rigobello, M. P. Evidence for targeting thioredoxin reductases with ferrocenyl quinone methides. A possible molecular basis for the antiproliferative effect of hydroxyferrocifens on cancer cells. *J. Med. Chem.* **2014**, *57*, 8849-8859.
- (37) Zhang, B.; Duan, D.; Ge, C.; Yao, J.; Liu, Y.; Li, X.; Fang, J. Synthesis of xanthohumol analogues and discovery of potent thioredoxin reductase inhibitor as

potential anticancer agent. J. Med. Chem. 2015, 58, 1795-1805.

- (38) Maheshwari, R. K.; Singh, A. K.; Gaddipati, J.; Srimal, R. C.; Multiple biological activities of curcumin: a short review. *Life Sci.* **2006**, *78*, 2081-2087.
- (39) Gafner, S.; Lee, S. K.; Cuendet, M.; Barthélémy, S.; Vergnes, L.; Labidalle, S.; Mehta, R. G.; Boone, C. W.; Pezzuto, J. M. Biologic evaluation of curcumin and structural derivatives in cancer chemoprevention model systems. *Phytochemistry*. 2004, 65, 2849-2859.
- (40) Qiu, X.; Liu, Z.; Shao, W. Y.; Liu, X.; Jing, D. P.; Yu, Y. J.; An, L. K.; Huang, S. L.;
 Bu, X. Z.; Huang, Z. S.; Gu, L. Q. Synthesis and evaluation of curcumin analogues as potential thioredoxin reductase inhibitors. *Bioorg. Med. Chem.* 2008, 16, 8035-8041.
- (41) Zhou, B.; Huang, J.; Zuo, Y.; Li, B.; Guo, Q.; Cui, B.; Shao, W.; Du, J.; Bu, X. 2a, a novel curcumin analog, sensitizes cisplatin-resistant A549 cells to cisplatin by inhibiting thioredoxin reductase concomitant oxidative stress damage. *Eur. J. Pharmacol.* 2013, 707, 130-139.
- (42) Adams, B. K.; Ferstl, E. M.; Davis, M. C.; Herold, M.; Kurtkaya, S.; Camalier, R. F.; Hollingshead, M. G.; Kaur, G.; Sausville, E. A.; Rickles, F. R.; Snyder, J. P.; Liotta, D. C.; Shoji, M. Synthesis and biological evaluation of novel curcumin analogs as anticancer and antiangiogenesis agents. *Bioorg. Med. Chem.* 2004, *12*, 3871-3883.
- (43) Wang, Y.; Xiao, J.; Zhou, H.; Yang, S.; Wu, X.; Jiang, C.; Zhao, Y.; Liang, D.; Li, X.;

Liang, G. A novel monocarbonyl analogue of curcumin,

Journal of Medicinal Chemistry

(1E,4E)-1,5-bis(2,3-dimethoxyphenyl)penta-1,4-dien-3-one, induced cancer cell H460 apoptosis via activation of endoplasmic reticulum stress signaling pathway. *J. Med. Chem.* **2011**, *54*, 3768-3778.

- (44) Wang, R.; Chen, C.; Zhang, X.; Zhang, C.; Zhong, Q.; Chen, G.; Zhang, Q.; Zheng, S.; Wang, G.; Chen, Q. H. Structure-activity relationship and pharmacokinetic studies of 1,5-diheteroarylpenta-1,4-dien-3-ones: A class of promising curcumin-based anti-cancer agents. *J. Med. Chem.* 2015, 58, 4713-4726.
- (45) Subramaniam, D.; May, R.; Sureban, S. M.; Lee, K. B.; George, R.; Kuppusamy, P.; Ramanujam, R. P.; Hideg, K.; Dieckgraefe, B. K.; Houchen, C. W.; Anant, S. Diphenyl difluoroketone: a curcumin derivative with potent in vivo anticancer activity. *Cancer Res.* 2008, 68, 1962-1969.
- (46) Liang, Y.; Yin, D.; Hou, L.; Zheng, T.; Wang, J.; Meng, X.; Lu, Z.; Song, X.; Pan, S.; Jiang, H.; Liu, L. Diphenyl difluoroketone: a potent chemotherapy candidate for human hepatocellular carcinoma. *PLoS One*. **2011**, *6*, e23908.
- (47) Liu, H.; Liang, Y.; Wang, L.; Tian, L.; Song, R.; Han, T.; Pan, S.; Liu, L. In vivo and in vitro suppression of hepatocellular carcinoma by EF24, a curcumin analog. *PLoS One.* 2012, *7*, e48075.
- (48) Nagaraju, G. P.; Zhu, S.; Wen, J.; Farris, A. B.; Adsay, V. N.; Diaz, R.; Snyder, J. P.;
 Mamoru, S.; El-Rayes, B. F. Novel synthetic curcumin analogues EF31 and UBS109 are potent DNA hypomethylating agents in pancreatic cancer. *Cancer Lett.* 2013, 341, 195-203.

- (49) Nagaraju, G. P.; Zhu, S.; Ko, J. E.; Ashritha, N.; Kandimalla, R.; Snyder, J. P.; Shoji, M.; El-Rayes, B. F. Antiangiogenic effects of a novel synthetic curcumin analogue in pancreatic cancer. *Cancer Lett.* 2015, *357*, 557-565.
- (50) Brown, A.; Shi, Q.; Moore, T. W.; Yoon, Y.; Prussia, A.; Maddox, C.; Liotta, D. C.; Shim, H.; Snyder, J. P. Monocarbonyl curcumin analogues: heterocyclic pleiotropic kinase inhibitors that mediate anticancer properties. *J. Med. Chem.* 2013, *56*, 3456-3466.
- (51) Kimani, S. G.; Phillips, J. B.; Bruce, J. I.; MacRobert, A. J.; Golding, J. P. Antioxidant inhibitors potentiate the cytotoxicity of photodynamic therapy. *Photochem. Photobiol.* **2012**, 88, 175-187.
- (52) Cheng, X. C.; Liu, X. Y.; Xu, W. F.; Guo, X. L.; Ou, Y. Design, synthesis, and biological activities of novel Ligustrazine derivatives. *Bioorg. Med. Chem.* 2007, 15, 3315-3320.
- (53) Zumbansen, K.; Döhring, A.; List, B. Morpholinium trifluoroacetate-catalyzed aldol condensation of acetone with both aromatic and aliphatic aldehydes. *Adv. Synth. Catal.* 2010, 352, 1135-1138.
- (54) Steinbrenner, H.; Sies, H. Protection against reactive oxygen species by selenoproteins. *Biochim. Biophys. Acta.* 2009, 1790, 1478-1485.
- (55) Esatbeyoglu, T.; Huebbe, P.; Ernst, I. M.; Chin, D.; Wagner, A. E.; Rimbach, G. Curcumin--from molecule to biological function. *Angew. Chem., Int. Ed.* 2012, *51*, 5308-5332.

- (56) Mi, Y.; Xiao, C.; Du, Q.; Wu, W.; Qi, G.; Liu, X. Momordin Ic couples apoptosis with autophagy in human hepatoblastoma cancer cells by reactive oxygen species (ROS)-mediated PI3K/Akt and MAPK signaling pathways. *Free Radic. Biol. Med.* 2016, *90*, 230-242.
- (57) Ai, Y.; Kang, F.; Huang, Z.; Xue, X.; Lai, Y.; Peng, S.; Tian, J.; Zhang, Y. Synthesis of CDDO-amino acid-nitric oxide donor trihybrids as potential antitumor agents against both drug-sensitive and drug-resistant colon cancer. *J. Med. Chem.* 2015, 58, 2452-2464.
- (58) Lin, X.; Zhang, X.; Wang, Q.; Li, J.; Zhang, P.; Zhao, M.; Li, X. Perifosine downregulates MDR1 gene expression and reverses multidrug-resistant phenotype by inhibiting PI3K/Akt/NF-κB signaling pathway in a human breast cancer cell line. *Neoplasma*. 2012, , 248-256.
- (59) Kuo, M. T.; Liu, Z.; Wei, Y.; Lin-Lee, Y. C.; Tatebe, S.; Mills, G. B.; Unate, H. Induction of human MDR1 gene expression by 2-acetylaminofluorene is mediated by effectors of the phosphoinositide 3-kinase pathway that activate NF-kappaB signaling. *Oncogene*. **2002**, *21*, 1945-1954.
- (60) Qiu, X.; Du, Y.; Lou, B.; Zuo, Y.; Shao, W.; Huo, Y.; Huang, J.; Yu, Y.; Zhou, B.; Du, J.; Fu, H.; Bu, X. Synthesis and identification of new 4-arylidene curcumin analogues as potential anticancer agents targeting nuclear factor-κB signaling pathway. J. Med. Chem. 2010, 53, 8260-8273.
- (61) Tsubaki, M.; Takeda, T.; Ogawa, N.; Sakamoto, K.; Shimaoka, H.; Fujita, A.; Itoh, T.; Imano, M.; Ishizaka, T.; Satou, T.; Nishida, S. Overexpression of survivin via

activation of ERK1/2, Akt, and NF- κ B plays a central role in vincristine resistance in multiple myeloma cells. *Leuk. Res.* **2015**, *39*, 445-452.

- (62) Xi, G.; Hayes, E.; Lewis, R.; Ichi, S.; Mania-Farnell, B.; Shim, K.; Takao, T.; Allender, E.; Mayanil, C. S.; Tomita, T. CD133 and DNA-PK regulate MDR1 via the PI3K- or Akt-NF-κB pathway in multidrug-resistant glioblastoma cells in vitro. *Oncogene*. 2016, *35*, 241-250.
- (63) Dolado, I.; Nebreda, A. R. AKT and oxidative stress team up to kill cancer cells. *Cancer Cell.* **2008**, *14*, 427-429.
- (64) Colabufo, N. A.; Berardi, F.; Cantore, M.; Contino, M.; Inglese, C.; Niso, M.; Perrone, R. Perspectives of P-glycoprotein modulating agents in oncology and neurodegenerative diseases: pharmaceutical, biological, and diagnostic potentials. *J. Med. Chem.* 2010, *53*, 1883-1897.
- (65) Hitchcock, S. A. Structural modifications that alter the P-glycoprotein efflux properties of compounds. *J. Med. Chem.* **2012**, *55*, 4877-4895.
- (66) Li, S.; Zhang, W.; Yin, X.; Xing, S.; Xie, H.Q.; Cao, Z.; Zhao, B. Mouse ATP-binding cassette (ABC) transporters conferring multi-drug resistance. *Anticancer Agents Med. Chem.* 2015, 15, 423-432.
- (67) Gillet, J. P.; Gottesman, M. M. Mechanisms of multidrug resistance in cancer. *Methods Mol. Biol.* 2010, 596, 47-76.
- (68) Choi, Y. H.; Yu, A. M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. *Curr. Pharm. Des.* 2014, 20, 793-807.

- (69) Shukla, S.; Ohnuma, S.; Ambudkar, S. V. Improving cancer chemotherapy with modulators of ABC drug transporters. *Curr. Drug Targets*. **2011**, *12*, 621-630.
- (70) Holohan, C.; Van Schaeybroeck, S.; Longley, D. B.; Johnston, P. G. Cancer drug resistance: an evolving paradigm. *Nat. Rev. Cancer.* **2013**, *13*, 714-726.
- (71) Eckford, P. D.; Sharom, F. J. ABC efflux pump-based resistance to chemotherapy drugs. *Chem. Rev.* **2009**, *109*, 2989-3011.
- (72) Wang, Y. M.; Hu, L. X.; Liu, Z. M.; You, X. F.; Zhang, S. H.; Qu, J. R.; Li, Z. R.; Li, Y.; Kong, W. J.; He, H. W.; Shao, R. G.; Zhang, L. R.; Peng, Z. G.; Boykin, D. W.; Jiang, J. D. N-(2,6-dimethoxypyridine-3-yl)-9-methylcarbazole- 3-sulfonamide as a novel tubulin ligand against human cancer. *Clin. Cancer Res.* 2008, *14*, 6218-6227.
- (73) Kim, M. K.; Choo, H.; Chong, Y. Water-soluble and cleavable quercetin-amino acid conjugates as safe modulators for P-glycoprotein-based multidrug resistance. *J. Med. Chem.* 2014, 57, 7216-7233.
- (74) Chen, W.; Chen, H.; Xiao, F.; Deng, G. J. Palladium-catalyzed conjugate addition of arylsulfonyl hydrazides to α,β-unsaturated ketones. *Org. Biomol. Chem.* 2013, *11*, 4295-4298.
- (75) Chuprajob, T.; Changtam, C.; Chokchaisiri, R.; Chunglok, W.; Nilubon Sornkaew, N.; Suksamrarn, A. Synthesis, cytotoxicity against human oral cancer KB cells and structure–activity relationship studies of trienone analogues of curcuminoids. *Bioorg. Med. Chem. Lett.* 2014, 24, 2839-2844.
- (76) Leung, P. S. W.; Teng, Y.; Toy, P. H. Chromatography-free Wittig reactions using a bifunctional polymeric reagent. *Org. Lett.* **2010**, *12*, 4996-4999.
- (77) Ning, X.; Guo, Y.; Ma, X.; Zhu, R.; Tian, C.; Wang, X.; Ma, Z.; Zhang, Z.; Liu, J.

Synthesis and neuroprotective effect of E-3,4-dihydroxy styryl aralkyl ketones derivatives against oxidative stress and inflammation. *Bioorg. Med. Chem. Lett.* **2013**, *23*, 3700-3703.

- (78) Zhang, W.; Benmohamed, R.; Arvanites, A. C.; Morimoto, R. I.; Robert J. Ferrante, R. J.; Kirsch, D. R.; Silverman, R. B. Cyclohexane 1,3-diones and their inhibition of mutant SOD1-dependent protein aggregation and toxicity in PC12 cells. *Bioorgan. Med. Chem.* 2012, 20, 1029-1045.
- (79) Lin, Y. M.; Li, Z.; Casarotto, V.; Ehrmantraut, J.; Nguyen, A. N. A catalytic, highly stereoselective aldehyde olefination reaction. *Tetrahedron Lett.* 2007, 48, 5531-5534.
- (80) Xie, Q.; Lan, G.; Zhou, Y.; Huang, J.; Liang, Y.; Zheng, W.; Fu, X.; Fan, C.; Chen, T. Strategy to enhance the anticancer efficacy of X-ray radiotherapy in melanoma cells by platinum complexes, the role of ROS-mediated signaling pathways. *Cancer Lett.* 2014, *354*, 58-67.
- (81) Dai, C.; Tiwari, A. K.; Wu, C. P.; Su, X.; Wang, S. R.; Liu, D.; Ashby, C. R.; Huang,
 Y.; Robey, R. W.; Liang, Y. Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. *Cancer Res.* 2008, *68*, 7905-7914.
- (82) Zhang, D. M.; Shu, C.; Chen, J. J.; Sodani, K.; Wang, J.; Bhatnagar, J.; Lan, P.; Ruan, Z. X.; Xiao, Z. J.; Ambudkar, S. V.; Chen, W. M.; Chen, Z. S.; Ye, W. C. BBA, a derivative of 23-hydroxybetulinic acid, potently reverses ABCB1-mediated drug resistance in vitro and in vivo. *Mol. Pharm.* 2012, *9*, 3147-3159.

Table of Contents Graphic

