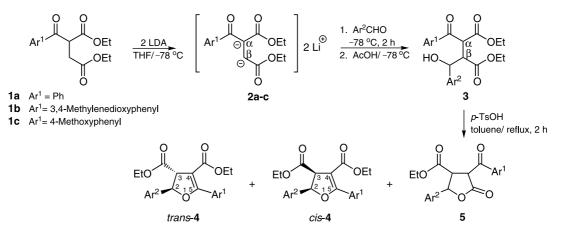


Tetrahedron Letters 44 (2003) 7937-7940

TETRAHEDRON LETTERS

Vicinal dianions of diethyl α-aroylsuccinates: preparation of functionalized-2,3-dihydrofurans and -furans, and diaxial 2,4-diaryl-3,7-dioxabicyclo[3.3.0]octanes

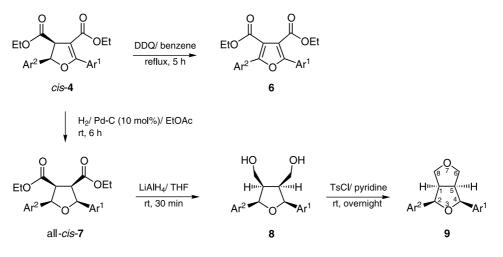
Manat Pohmakotr,* Arisara Issaree, Laddawan Sampaongoen, Patoomratana Tuchinda and Vichai Reutrakul


Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand

Received 17 July 2003; revised 19 August 2003; accepted 1 September 2003

Abstract—Vicinal dianions of diethyl α -aroylsuccinates react with aromatic aldehydes to provide functionalized 2,3-dihydrofurans as the major products together with γ -butyrolactones after treatment of the adducts obtained with a catalytic amount of *p*-toluenesulfonic acid in refluxing toluene. *cis*-2,3-Dihydrofurans are used as precursors for the preparation of tetrasubstituted furans and diaxial 2,4-diaryl-3,7-dioxabicyclo[3.3.0]octanes. © 2003 Published by Elsevier Ltd.

Substituted 2,3-dihydrofurans and furans are important classes of compounds due to their presence in a wide range of biologically active synthetic and natural products.¹ Moreover, some of them have been shown to be useful synthetic intermediates.² Therefore, efficient and general synthetic routes to these heterocycles^{3,4} are of interest. As part of our program devoted to the development of synthetic routes to these classes of compounds, a general method for the synthesis of substituted 2,3-dihydrofurans and furans based on the chemistry of vicinal dianions derived from α -aroylsuccinic esters was investigated. We


have recently described that these vicinal dianions react with carbonyl compounds in the presence of ZnCl₂ exclusively at the β -carbon to provide α -aroyl- γ -butyrolactones, which were demonstrated as useful intermediates for the preparation of naturally occurring α -arylidene- γ -butyrolactones.⁵ In connection with these results, we wish to report the preparation of functionalized-2,3-dihydrofurans and -furans as well as diaxial 2,4-diaryl-3,7-dioxabicyclo[3.3.0]octanes utilizing the vicinal dianions of diethyl α -aroylsuccinates as shown in Schemes 1 and 2.

Scheme 1.

^{*} Corresponding author. Tel.: +66-022015158; fax: +66-026445126; e-mail: scmpk@mahidol.ac.th

^{0040-4039/\$ -} see front matter $\ensuremath{\mathbb{C}}$ 2003 Published by Elsevier Ltd. doi:10.1016/j.tetlet.2003.09.005

Scheme 2.

The reaction of the vicinal dianion 2a derived from 1a by employing LDA (2 equiv.) in THF at -78°C for 1 h with benzaldehyde (1 equiv.) at -78°C for 2 h followed by quenching the reaction mixture with glacial acetic acid at the same temperature provided the crude adduct 3a. Without purification, this was treated with a catalytic amount of *p*-toluenesulfonic acid in refluxing toluene for 2 h to afford the expected dihydrofuran $4a^6$ in 71% yield as a mixture of *cis*- and *trans*-isomers together with γ -butyrolactone **5a** (13%) yield). cis-4a was obtained in 59% yield as the major isomer after chromatography on silica gel. Under the standard conditions, the vicinal dianions 2a-c reacted with aromatic aldehydes to give moderate yields of the desired dihydrofurans 4a-k as mixtures of cis- and trans-isomers together with 5-15% yields of the corresponding γ -butyrolactones 5. In all cases, the *cis*-isomers were obtained as the major isomers, and in most cases could be isolated pure by chromatography as summarized in Table 1. The relative cis and trans stereochemistries of compounds 4 were established by the coupling constants between H-2 and H-3 (J_{cis} =

 Table 1. Preparation of 2,3-dihydrofurans 4

10.9–11.0 Hz and $J_{trans} = 6.8-7.1$ Hz) and the results of NOE experiments.⁷

Having succeeded in preparing in one-step the dihydrofurans 4 possessing aryl substituents, we further illustrated the synthetic utility of our method by the preparation of 2,5-diaryl-3,4-dicarboethoxyfurans, which are important precursors for syntheses of lignans^{2g,h,8} and 2,4-diaryl substituted 3,7-dioxabicyclo[3.3.0]octanes 9. Thus, conversion of cis-4 into furan 6 could be achieved smoothly by dehydrogenation employing 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in refluxing benzene for 5 h.9 Furans 6a-f were obtained in good yields (Table 2). Dehydrogenation of *trans*-4 was found to proceed slower than cis-4 under the standard conditions. Thus, when a mixture of cis- and trans-4b was treated with DDQ in benzene under reflux for 5 h, the cis-isomer 4b was completely converted into furan 6b, while the transisomer 4b was still present in the mixture as shown by thin-layer chromatography. The reaction was complete after refluxing for 20 h and 6b was obtained in 92%

Entry	1	Electrophile	Ar ¹	Ar ²	% Yields ^a				
					4	cis-4	trans-4	cis-4+trans-4 (cis:trans)	5 ^b
1	1a	Benzaldehyde	Ph	Ph	4 a	59	12	_	13
2	1a	Piperonal	Ph	Piperonyl	4b	41	10	_	5
3	1a	4-Methoxybenzaldehyde	Ph	4-MeOPh	4c	50	13	_	11
4	1a	Isobutyraldehyde	Ph	<i>i</i> -Pr	4d	_	_	63 (66:34)	
5	1b	Benzaldehyde	Piperonyl	Ph	4e	41	7	_	7
6	1b	Piperonal	Piperonyl	Piperonyl	4 f	26	_	13 (80:20)	8
7	1b	4-Methoxybenzaldehyde	Piperonyl	4-MeOPh	4g	30	_	11 (74:26)	10
8	1b	Isobutyraldehyde	Piperonyl	<i>i</i> -Pr	4h	_	_	55 (67:33)	_c
9	1c	Benzaldehyde	4-MeOPh	Ph	4 i	53	_c	_	15
10	1c	Piperonal	4-MeOPh	Piperonyl	4j	39	11	-	11
11	1c	4-Methoxybenzaldehyde	4-MeOPh	4-MeOPh	4k	37	_c	-	13

^a Isolated yields. All compounds were fully characterized by IR, MS, 300 MHz ¹H and 75 MHz ¹³C NMR spectra as well as by elemental analyses or HRMS.

^b Contained mainly the 3,4-trans-4,5-cis-isomer.

^c Could not be isolated

cis- 4	Ar^{1}	Ar^2	% Yields ^a				
			6	7	8	9	
cis- 4 a	Ph	Ph	6a , 85	7a , 85	8a , 83	9a , 70	
ris- 4b	Ph	Piperonyl	6b , 95	7b , 86	8b , 89	9b , 82	
eis- 4c	Ph	4-MeOPh	6c , 90	7c, 88	8c, 82	9c , 75	
eis- 4e	Piperonyl	Ph	6b , 93	_b	_b	_ ^b	
is- 4f	Piperonyl	Piperonyl	6d , 94	7d, 86	8d , 80	9d , 74	
is- 4 i	4-MeOPh	Ph	6c , 96	_b	_b	_b	
is-4j	4-MeOPh	Piperonyl	6e, 95	7e, 89	8 e, 84	9e , 75	
cis- 4k	4-MeOPh	4-MeOPh	6f , 93	7f , 83	8 f, 82	9f , 76	

Table 2. Preparation of compounds 6-9

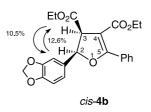
^a Isolated yields. All compounds were fully characterized by IR, MS, 300 MHz ¹H and 75 MHz ¹³C NMR spectra as well as by elemental analyses or HRMS.

^b The reactions were not performed.

yield. On the other hand, tetrahydrofurotetrahydrofurans 9 were prepared in good overall yields by a simple three-step synthesis starting from cis-dihydrofurans 4. Catalytic hydrogenation (10% Pd on C) of *cis*-4a in ethyl acetate at rt afforded a good yield (85%) of the all-cis-7a as the sole isomer. Reduction of 7a with LiAlH₄ in THF at rt for 30 min gave **8a** in 83%yield after chromatography on silica gel. Treatment of **8a** with *p*-toluenesulfonyl chloride in pyridine¹⁰ at rt overnight furnished the expected tetrahydrofurotetrahydrofuran 9a in 70% yield. The ¹H and ¹³C NMR data of 9a were consistent with reported values.¹¹ Thus, the formation of 9a as the sole product and in good yield confirmed the all-cis-stereochemistry in 7a. Under the same reaction sequence and conditions, tetrahydrofurotetrahydrofurans 7b-f were prepared in good yields from *cis*-2,3-dihydrofurans 4b, 4c, 4f, 4j and 4k, respectively.

In summary, our results demonstrate that the vicinal dianions derived from diethyl α -aroylsuccinates react with aldehydes regioselectively at the β -carbon to provide a mixture of *cis*- and *trans*-2,3-dihydrofurans as the major products along with γ -butyrolactones. This method provides an easy entry to 2,5-diaryl substituted dihydrofurans, of which both aryl groups can be varied by using appropriate α -aroylsuccinic esters and aromatic aldehydes. Furthermore, *cis*-2,3-dihydrofurans have been proved to be very useful for the preparation of 2,5-diaryl-3,4-dicarboethoxyfurans and diaxial 2,4-diaryl-3,7-dioxabicyclo[3.3.0]octanes.

Acknowledgements


We thank the Thailand Research Fund for financial support (BRG/22/2544) to M.P. and the award of a Senior Research Scholar to V.R. A.I. thanks the Ministry of University Affairs for a scholarship. Thanks are also made to the Higher Education Development Project: Postgraduate Education and Research Program in Chemistry (PERCH) for support. We are grateful to Professor Paul Knochel, LMU, Munich, Germany, for the HRMS and CHN determination of some compounds.

References

- 1. (a) Dean, F. M. In Advances in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Academic: New York, 1982; Vol. 30, pp. 167-238; (b) Dean, F. M.; Sargent, M. V. Comprehensive Heterocyclic Chemistry; Bird, C. W., Cheeseman, G. W. H., Eds.; Pergamon: New York, 1984; Vol. 4, Part 3, pp. 531–598; (c) Fraga, B. M. Nat. Prod. Rep. 1992, 9, 217–242; Merritt, A. T.; Ley, S. V. Nat. Prod. Rep. 1992, 9, 243–287; (d) Mortensen, D. S.; Rodriguez, A. L.; Carlson, K. E.; Sun, J.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. J. Med. Chem. 2001, 44, 3838-3848; (e) Mortensen, D. S.; Rodriguez, A. L.; Sun, J.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. Bioorg. Med. Chem. Lett. 2001, 11, 2521-2524; (f) Dikshit, D. K.; Singh, S.; Singh, M. M.; Kamboj, V. P. Indian J. Chem. B 1990, 29B, 954–960; (g) Peterson, J. R.; Horsley, D. B.; Brozik, J. A.; Rogers, R. D. Acta Cryst., Sect. C C45 1164-1167.
- (a) Garzino, F.; Méou, A.; Brun, P. Eur. J. Org. Chem.
 2003, 1410–1414; (b) Garzino, F.; Méou, A.; Brun, P. Synthesis 2003, 598–602; (c) Garzino, F.; Méou, A.; Brun, P. Tetrahedron Lett. 2002, 43, 5049–5051; (d) Aldous, D. J.; Dalencon, A. J.; Steel, P. G. Org. Lett.
 2002, 4, 1159–1162; (e) Garzino, F.; Méou, A.; Brun, P. Tetrahedron Lett. 2002, 41, 9803–9807; (f) Yang, F. Z.; Trost, M. K.; Fristad, W. E. Tetrahedron Lett. 1987, 28, 1493–1496; (g) Wu, A.; Wang, M.; Pan, X. Synth. Commun. 1997, 27, 2087–2091; (h) Schneiders, G. E.; Stevenson, R. J. Org. Chem. 1981, 46, 2969–2971.
- For some recent syntheses of dihydrofurans, see: (a) Trost, B. M.; Rhee, Y.-H. J. Am. Chem. Soc. 2003, 125, 7482–7483; (b) Calo, V.; Scordari, F.; Nacci, A.; Schingaro, E.; D'Accolti, L.; Monopoli, A. J. Org. Chem. 2003, 68, 4406–4409 and references cited therein; (c) Zhang, Y.; Raines, A. J.; Flowers, II, R. A. Org. Lett. 2003, 5, 2363–2365; (d) Antonioletti, R.; Malancona, S.; Cattruzza, F.; Bovicelli, P. Tetrahedron 2003, 59, 1673– 1678; (e) Antonioletti, R.; Malancona, S.; Bovicelli, P. Tetrahedron 2002, 58, 8825–8831; (f) Feldman, K. S.; Wrobleski, M. L. J. Org. Chem. 2000, 65, 8659–8668; (g) Davies, H. M. L.; Ahmed, G.; Calvo, R. L.; Churchill, M. R.; Churchill, D. G. J. Org. Chem. 1998, 63, 2641– 2645; (h) Garrido, J. L.; Alonso, I.; Carretero, J. C. J. Org. Chem. 1998, 63, 9406–9413; (i) Doyle, M. P.;

Forbes, D. C.; Protopopova, M. N.; Stanley, S. A.;
Vasbinder, M. M.; Xavier, K. R. J. Org. Chem. 1997, 62, 7210–7215; (j) Alonso, I.; Carretero, J. C.; Garrido, J. L.;
Magro, V.; Pedregal, C. J. Org. Chem. 1997, 62, 5682–5683; (k) Hagiwara, H.; Sato, K.; Suzuki, T.; Ando, M. Tetrahedron Lett. 1997, 38, 2103–2106; (l) Roy, S. C.;
Mandel, P. K. Tetrahedron 1996, 52, 2193–2198.

- 4. (a) For a review on recent syntheses of furans, see: Hou, X. L.; Cheung, H. Y.; Hon, T. Y.; Kwan, P. L.; Lo, T. H.; Tong, S. Y.; Wong, H. N. C. Tetrahedron 1998, 54, 1955-2020; (b) Rao, H. S. P.; Jothilingam, S. J. Org. Chem. 2003, 68, 5392-5394; (c) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Milton, M. D.; Hidai, M.; Uemura, S. Angew. Chem., Int. Ed. 2003, 42, 2681-2684; (d) Kim, J. T.; Kelin, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2003, 42, 98-101; (e) Ma, S.; Zhang, J. Angew. Chem., Int. Ed. 2003, 42, 184-186; (f) Aurrecoechea, J. M.; Pe'rez, E. Tetrahedron Lett. 2003, 44, 3263-3266; (g) Yavari, I.; Anary-Abbasinejad, M.; Alizadeh, A. Tetrahedron Lett. 2003, 43, 4503-4505; (h) Aurrecoechea, J. M.; Pe'rez, E. Tetrahedron Lett. 2001, 42, 3839-3841; (i) Nair, V.; Vinod, A. U. Chem. Commun. 2000, 1019–1020; (j) Ma, S.; Zhang, J. Chem. Commun. 2000, 117-118; (k) Pei, W.; Pei, J.; Li, S.; Ye, X. Synthesis 2000, 2069–2077.
- Pohmakotr, M.; Sampaongoen, L.; Issaree, A.; Tuchinda, P.; Reutrakul, V. *Tetrahedron Lett.* 2003, 44, 6717–6720.
- Acid- or Lewis acid-catalyzed formation of dihydrofurans from γ-hydroxy carbonyl compounds, see: (a) Box, V. G. S.; Brown, D. P. *Heterocycles* 1991, *32*, 1273–1277; (b) Reissig, H. U.; Holzinger, H.; Glomsda, G. *Tetrahedron* 1989, *45*, 3139–3150; (c) Mukaiyama, T.; Hayashi, M.; Ichikawa, J. *Chem. Lett.* 1986, 1157–1160; (d) Reissig, H. U.; Reichelt, I.; Lorey, H. *Liebigs Ann. Chem.* 1986, 1924–1939.
- NOE experiments for *cis*-4b and *trans*-4b were carried out. The results are as shown below. Upon irradiation of H-2 and H-3, *cis*-4b showed the NOE effects of H-3 (12.6%) and H-2 (10.5%), but displayed no enhancements in case of *trans*-4b.

The coupling constants J_{cis} of compounds 4 are larger than J_{trans} .^{4f}

- For a recent review, see: Ward, R. S. Nat. Prod. Rep. 1999, 16, 75–96.
- Dehydrogenation of dihydrofurans to furans using DDQ, see: (a) Garzino, F.; Méou, A.; Brun, P. Helv. Chim. Acta 2002, 85, 1989–1998; (b) Chambers, J. J.; Kurrasch-Orbaugh, D. M.; Parker, M. A.; Nichols, D. E. J. Med. Chem. 2001, 44, 1003–1010; (c) Axelle, A.; Frédérique, T.; Gérald, G.; Jean-Yves, M. Synthesis 1999, 1241–1245; (d) Hirota, T.; Matsushita, T.; Sasaki, K.; Kashino, S. Heterocycles 1995, 41, 2565–2574; (e) Clawson, P.; Lunn, P. M.; Whiting, D. A. J. Chem. Soc., Perkin Trans. 1 1990, 153–161.
- Preparation of tetrahydrofurans from 1,4-diols employing p-toluenesulfonyl chloride or methanesulfonyl chloride in pyridine, see: (a) Brown, R. C. D.; Bataille, C. J. R.; Hinks, J. D. Tetrahedron Lett. 2001, 41, 473–475; (b) Brown, R. C. D.; Bataille, C. J. R.; Bruton, G.; Hinks, J. D.; Swain, N. A. J. Org. Chem. 2001, 66, 6719–6728; (c) Dantzig, A.; LaLonde, R. T.; Ramdayal, F.; Shepard, R. L.; Yanai, K.; Zhang, M. J. Med. Chem. 2001, 44, 180–185; (d) Yamaguchi, S.; Tanaka, T.; Kinoshita, Y. J. Chem. Soc., Perkin Trans. 1 2001, 2158–2160; (e) Ohmizu, H.; Ogiku, T.; Iwasaki, T. Heterocycles 2000, 52, 1399–1409; (f) Ogiku, T.; Yoshida, S.; Ohmizu, H.; Iwasaki, T. J. Org. Chem. 1995, 60, 1148–1153; (g) Tomioka, K.; Koga, K. Heterocycles 1979, 12, 1523– 1528.
- 11. Pelter, A.; Ward, R. S.; Collins, P.; Venkateswarlu, R.; Kamashi, C. *Tetrahedron Lett.* **1992**, *33*, 4361–4364.