

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry 13 (2005) 519-532

Bioorganic & Medicinal Chemistry

Synthesis and pharmacological evaluation of side chain modified glutamic acid analogues of the neuroprotective agent glycyl-L-prolyl-L-glutamic acid (GPE)

Margaret A. Brimble,* Nicholas S. Trotter, Paul W. R. Harris and Frank Sieg

Neuren Pharmaceuticals, Medicinal Chemistry Group, Department of Chemistry, University of Auckland, 23 Symonds Street, Auckland 1000, New Zealand

Received 11 August 2004; revised 1 October 2004; accepted 4 October 2004

Abstract—The synthesis of eight GPE* analogues, wherein the γ -carboxylic moiety of the glutamic residue has been modified, is described by coupling readily accessible N-benzyloxycarbonyl-glycyl-L-proline with various analogues of glutamic acid. Pharmacological evaluation of the novel compounds was undertaken to further understand the role of the glutamate residue on the observed neuroprotective properties of the endogenous tripeptide GPE.

© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

As described in our previous paper¹, insulin-like growth factor-1 (IGF-1) is a potent neurotrophic factor^{2,3} distributed within the mammalian central nervous system⁴ (CNS), which is thought to be proteolytically cleaved into des-N(1-3)-IGF-1, a truncated IGF-1 comprised of 67 amino acids, and the N-terminal tripeptide Gly-Pro-Glu-OH (GPE 1) (Scheme 1)^{5–11} in damaged regions of the brain.^{12–17} IGF-1 is thought to function as a prohormone for GPE 1, which acts on a yet un-known receptor.^{18–20} Although there is no direct evidence that GPE 1 is naturally present or produced in the brain,²¹ it was observed to act as a neuronal rescue factor following transient HI brain injury for cerebral, cortical, striatal and hippocampal neurons,²² with peripheral activity, producing wider neuroprotective effects than local administration.²⁰

In addition to in vitro studies by Sara and colleagues,^{5,18} GPE 1 was suggested to possess a neuromodulatory role in the CNS, possibly through interaction with glutamate receptors, ^{5,6,11,18,19,22–25} which provide a potential target for the rational design of neuroprotective agents.²⁶⁻²⁸ It

has therefore been proposed that GPE 1, or analogues thereof, may provide a novel class of pharmaceutical agents for the treatment of CNS injuries, neurodegenerative diseases including Alzheimer's, Parkinson's and Huntington's disease, multiple sclerosis and general aging-induced cognitive dysfunction.²⁹⁻³² Analogues of GPE are of sufficiently low molecular weight and are lipophilic enough to cross the blood-brain barrier. Their metabolic stability and oral bioavailability can be improved by synthetic modification of the parent tripeptide structure.

We therefore herein report the preparation and pharmacological evaluation of several analogues of general structure Gly-Pro-Glu-OH (GPE*), in which the γ -position of Glu (E*) has been modified. We also utilised our in vitro brain cell culture in the screening of these analogues.¹ This work is part of a structure-activity relationship study to determine the significance of the Glu residue of this tripeptide on neuroprotective activity, aiding our selection of suitable candidates for continued drug development.

2. Results and discussion

So as to ascertain the importance of the γ -carboxylic acid functionality on the glutamate residue of GPE, eight analogues with modifications at this site were synthesised and evaluated for their neuroprotective effects.

Keywords: Neuroprotective agents; Peptides; Proline; GPE; Glutamate.

^{*} Corresponding author. Tel.: +64 09 3737599; fax: +64 09 3737422; e-mail: m.brimble@auckland.ac.nz

^{0968-0896/\$ -} see front matter © 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2004.10.006

Scheme 1. General retrosynthesis for GPE* γ -glutamate modified analogues.

The synthetic strategy employed involved preparation of known *N*-benzyloxycarbonyl-glycyl-L-proline^{33,34} **2**, and effecting peptide bond construction with several modified benzyl-protected glutamic acid residues (Scheme 1). After assembly of the new pseudo-peptide bond, a simple deprotection procedure furnished the desired GPE* analogues.

The synthesis of *N*-CBz peptide^{33,34} **2** was achieved in 82% yield over two steps from readily available L-proline methyl ester **4** (Scheme 2). Thus, treatment of **3** with thionyl chloride in methanol gave quantitatively hydrochloride salt^{35,36} **4**, which was subsequently coupled with commercial *N*-benzyloxycarbonylglycine **5**, using 1,3-dicyclohexylcarbodiimide (DCC) to realise protected dipeptide³⁷ **6**. Finally, saponification of the methyl ester afforded acid **2**.

Based on the structure of GPE 1, the first analogue 7 involved replacement of the γ -carboxylic acid group by a hydrogen, starting from the modified glutamic acid **8** (Scheme 3). Elimination of the carboxylic acid group in analogue 7 removes the amino acid character from the glutamate residue of GPE 1, potentially suppressing

Scheme 2. Reagents and conditions: (i) SOCl₂, MeOH, -5 °C to rt, N₂, 19h (98%); (ii) Et₃N, 1,3-dicyclohexylcarbodiimide (DCC), CH₂Cl₂, 0 °C to rt, N₂, 18h; (iii) 1 M NaOH (aq), 1,4-dioxane, rt, 21h (82% in two steps from 4).

Scheme 3. Reagents and conditions: For 7: (i) *p*TsOH, BnOH, benzene, reflux, 17h (95%); (ii) DIPEA, EtOCOCl, CH_2Cl_2 , 0°C to rt, 17h (78%); (iii) H₂, 10% Pd/C, 2:1 MeOH–H₂O, 18h (84%). For 8: (i) *p*TsOH, BnOH, benzene, reflux, 17h (93%); (ii) Et₃N, EtOCOCl, CH_2Cl_2 , 0°C to rt, 17h (94%); (iii) H₂, 10% Pd/C, 2:1 MeOH–H₂O, 18h (73%).

Scheme 4. Reagents and conditions: (i) DME, *N*-hydroxysuccinimide, DCC, N₂, 0 °C, 23 h (85%); (ii) Et₃N, H₂O, THF, rt, 16 h (95%); For **11**: (iii) Boc₂O, NH₄HCO₃, pyridine, 1,4-dioxane, N₂, rt, 21 h (89%); (iv) H₂, 10% Pd/C, 2:1 MeOH–H₂O, rt, 18 h (82%). For **12**: (iii) Et₃N, MeNH·HCI, CH₃CN, TBTU, N₂, rt, 16.5 h (79%); (iv) H₂, 10% Pd/C, 2:1 MeOH–H₂O, rt, 18 h (67%). For **13**: (iii) Et₃N, Me₂N·HCl, CH₂Cl₂, EtOCOCl, N₂, 0 °C to rt, 17 h (89%); (iv) H₂, 10% Pd/C, 2:1 MeOH–H₂O, rt, 18 h (67%). For **13**: (iii) Et₃N, Me₂N·HCl, CH₂Cl₂, EtOCOCl, N₂, 0 °C to rt, 17 h (89%); (iv) H₂, 10% Pd/C, 2:1 MeOH–H₂O, rt, 18 h (67%). For **13**: (iii) COCCl, N₂, -5 °C, 30min; (b) NaBH₄, MeOH, -5 °C to rt, 30min (63%); (iv) H₂, 10% Pd/C, 82:16:2 THF–H₂O–Et₃N, rt, 18 h (100%).

the action of proteases, thereby imparting improved metabolic stability. Additionally, the overall polarity of the molecule is reduced, thus increasing lipophilicity and membrane permeability of the analogue.

The commercial amino acid (2S)-aminobutanoic acid **8**, was initially protected as a benzyl ester **9** by heating with benzyl alcohol and *p*-toluenesulfonic acid in benzene. Coupling of the aforementioned acid **2** with protected amino ester **9** using peptide coupling produced protected tripeptide **10**. Upon deprotection, GPE* analogue **7** was produced as an 83:17 *trans:cis* mixture of rotamers.

Another strategy for reducing the overall charge in the GPE molecule whilst maintaining the steric bulk of the glutamate γ -position involves replacement of the side chain carboxylic acid with an amide (analogues 11–13) or an alcohol (analogue 14) (Scheme 4).

The syntheses of all four analogues 11-14 started from L-glutamic acid α -benzyl ester 15. Reaction of amine 15 with succinimide 16 yielded dipeptide 17 in 95% yield. Subsequent modifications of the γ -carboxylic acid group on dipeptide 17 and deprotection provided analogues 11-14.

In the case of the primary amide 11, the precursor 17 was treated with di-tert-butyl dicarbonate and ammonolysis of the intermediate anhydride with ammonium hydrogen carbonate under basic conditions afforded fully protected tripeptide 18. Subsequent deprotection yielded analogue 11 as an 85:15 trans: cis mixture of rotamers in 82% yield over the two steps. Analogues 12 and 13 were afforded by coupling of acid 17 with either methylamine hydrochloride using the coupling 2-(N-benzotriazole-1-yl)-1,1,3,3-tetramethyreagent, luronium tetrafluoroborate (TBTU) or with dimethylamine hydrochloride using the mixed anhydride method, respectively, followed by hydrogenolysis of the resultant amides 19 and 20. In the case of the alcohol 14, reduction of the mixed anhydride formed from acid 17 with sodium borohydride followed by hydrogenolysis yielded analogue 14. Analogues 11-14 all existed predominantly as the *trans* proline-glycine amide bond conformers.

Two further GPE* analogues 22 and 23 are also reported herein in which the carboxylic acid side chain of the glutamate residue is completely removed and the two carboxylic acid groups of the glutamate are converted to more lipophilic methyl esters (Schemes 5 and 6).

Scheme 5. Reagents and conditions: (i) Et₃N, EtoCOCl, CH₂Cl₂, 0 °C to rt, 17h (94%); (ii) H₂, 10% Pd/C, MeOH, 18h (85%).

Scheme 6. Reagents and conditions: (i) Et₃N, EtoCOCl, CH₂Cl₂, 0°C to rt, 17h (97%); (ii) H₂, 10% Pd/C, 2:1 MeOH-H₂O, 18h (97%).

Analogue 22 was afforded by coupling of acid 2 with protected glycine 24 to give amide 25 followed by deprotection to afford GPG 22 as a 76:24 *trans:cis* mixture of rotamers (Scheme 5). Diester 23, was obtained in 97% yield as an 87:13 *trans:cis* mixture of rotamers via condensation of dimethyl L-glutamate hydrochloride 26 with acid 2 and subsequent hydrogenolysis of the product 27 (Scheme 6).

One further analogue **28** was prepared in which the two carboxylic acid functionalities of the glutamic acid residue were left intact but however an additional propyl group was introduced to the γ -position in order to increase the lipophilic properties of the molecule (Scheme 7). Commercially available L-glutamic acid dibenzyl ester *p*-toluenesulfonate **29** was transformed into Bocprotected amino acid **30** by reaction with di-*tert*-butyl dicarbonate. Subsequent alkylation³⁸ with lithium hexamethyldisilazide and allyl bromide afforded the γ -alkylated product **31** as a single diastereomer in 73% yield, which then underwent Boc-deprotection to **32** and coupling with acid **2** to yield fully protected tripeptide **33** in 87% yield. The sequence was completed by hydrogenolysis of amide **33** under standard conditions affording ana-

logue **28** in 77% yield as an 82:18 *trans:cis* mixture of conformers.

The eight GPE* analogues synthesised were subjected to in vitro evaluation for prevention of neuronal cell death. Of the eight analogues, GPG **22**, lacking any γ side chain, showed neuroprotective activity at 1 mM with a recovery value of 20% (Fig. 1). To compare, GPE **1** recovery values range from 25% to 40%. Lower neuroprotective values were obtained with 1 mM of the unsubstituted amide **11**, the alcohol **14** and the diesterified **23** where the recovery values ranged from 10% to 15%. None of the other analogues exhibited neuroprotective activity.

3. Conclusion

To summarise, we described herein the synthesis of eight analogues of GPE and their biological evaluation against striatal cell survival post-apoptosis-induced injury. Compound 22 exhibited the best recovery value, 20%, while 11, 14 and 23 had lower recovery values but all four exhibited neuroprotective activity. The structure and

Scheme 7. Reagents and conditions: (i) Et_3N , Boc_2O , CH_2Cl_2 , 0 °C to rt, 19h (97%); (ii) (a) lithium hexamethyldisilazide, THF, -78 °C, N₂, 40 min; (b) allyl bromide, -78 °C, 1.5h then -78 °C to rt, 1.5h (73%); (iii) (a) TFA, CH_2Cl_2 , 0 °C, 2h; (b) CH_2Cl_2 , Et_3N , EtOCOCl, 0 °C to rt, N₂, 17h (87%); (iv) H_2 , 10% Pd/C, 2:1 MeOH-H₂O, 18h (77%).

Figure 1. Cellular survival bioassay. MTT values were taken 24h after injury when apoptotic nuclei become apparent within the cell culture. GPG (1 mM) 22 confers a significant increased cellular protection of 10.4%.

spectra of the new analogues were determined by full analysis of the NMR and mass spectral data.

4. Experimental

4.1. General method

All reagents were used as supplied. Solvents were purified by standard methods.³⁹ Analytical thin layer chro-

matography (TLC) was carried out on 0.20mm precoated silica gel plates (ALUGRAM[®] SIL G/UV₂₅₄). Products were visualised by UV fluorescence and heating of plates dipped in anisaldehyde in ethanolic sulfuric acid or alkaline potassium permanganate solution. Flash chromatography was performed using Scharlau $60 (40-60 \,\mu\text{m mesh})$ silica gel. Melting points in degrees Celsius (°C) were determined on an Electrothermal[®] melting point apparatus and are uncorrected. Optical rotations were measured at the sodium D line (589 nm), at 20 °C, with a Perkin–Elmer 341 polarimeter using a 1 dm path length cell and are given in units of $10^{-1} \text{deg cm}^2 \text{g}^{-1}$. IR spectra were recorded on a Perkin-Elmer Spectrum One FT-IR spectrometer and the samples were prepared as thin films between sodium chloride plates. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AVANCE $\hat{D}RX400$ (¹H, 400 MHz; ¹³C, 100 MHz), a Bruker AVANCE 300 (¹H, 300 MHz; ¹³C, 75 MHz) or a Bruker AC200 (¹H, 200 MHz; ¹³C, 50 MHz) spectrometer at 298 K. For ¹H NMR data, chemical shifts are described in parts per million (ppm) relative to tetramethylsilane $(\delta 0.00)$, DOH $(\delta 4.75)$, CHD₂OD $(\delta 3.30)$ or $CHD_2S(O)CD_3$ (δ 2.50) and are reported consecutively as position ($\delta_{\rm H}$), relative integral, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doubletof doublets, m = multiplet, and where br = broad), coupling constant (J/Hz) and assignment. For ¹³C NMR data, chemical shifts (ppm) are referenced internally to CDCl₃ (δ 77.0), CD₃OD (δ 49.1), (CD₃)₂SO (δ 39.4) or externally to 3-(trimethylsilyl)-1-propanesulfonic acid sodium salt (DSS) and are reported consecutively as position ($\delta_{\rm C}$), degree of hybridisation and assignment. Assignments were aided by DEPT135, COSY, NOESY,

HSQC and HMBC experiments. When two sets of peaks arise in the NMR spectra due to *cis/trans* isomerisation about the glycine-proline amide bond, the chemical shift for the minor *cis* conformer is asterisked (*). Assignment of the respective isomers is made according to Kessler⁴⁰ and NOESY experiments. Mass spectra were recorded on a VG-70SE mass spectrometer (EI, CI and FAB). High-resolution mass spectra were recorded at a nominal resolution of 5000. Analytical HPLC studies were performed on a Waters 600 system with a 2487 dual λ absorbance detector using an Altech Econosphere C_{18} Si column (150 × 4.6 mm; 5 µm), with a 5 min H₂O flush (0.05% TFA) then steady gradient over 25 min to CH₃CN as eluent at a flow rate of 1 mL/min. L-Proline methyl ester hydrochloride^{35,36} (4) and N-benzyloxycarbonyl-glycyl-L-proline^{33,34} (2) were prepared according to experimental procedures given in the previous paper.¹ All chemicals utilised in the bioassay were purchased from Invitrogen.

4.2. Striatal cell culture

Two pregnant Wistar rats (gestational day 18) underwent Caesarean section according to approved procedures from the animal ethics committee of the University of Auckland. The Wistar dams were anaesthetised in a CO₂-enriched atmosphere and sacrificed by subsequent spinal cord dislocation. The embryos were removed from their embryonic sacs and decapitated. After incisions into the skull with fine scissors, the embryonic brain was removed with a fine spatula. Striatal tissue was separated from neocortical tissue under the microscope and placed into serum-free DMEM/ F-12 medium supplemented with penicillin/streptomycin (100 u/mL). Tissue underwent 15 trituration steps using a P1000 pipettor to obtain dissociated cells, which were centrifuged for 5 min at 250 G (4°C) and the supernatant was discarded. Cells were re-suspended into 1 mL DMEM/F-12 medium and were kept on ice. Cell suspension (400,000 cells/cm²) was applied to 0.1 mg/mL poly-L-lysine pre-coated 96-well plates (3h at 37°C) and the volume was increased up to 100 µL with DMEM/F-12 + 5% FBS. Cells were cultivated at $37 \degree$ C in 100%humidity and saturated 5% CO₂ atmosphere. After 24h the medium was changed to serum-free Neurobasal/B27. Cells were fed every 3 days and maintained until 8 days in vitro (DIV).

4.3. Cellular injury, drug administration and cellular survival analysis

Striatal cells were injured after 7 DIV. The injury paradigm involved 30 nM okadaic acid treatment with simultaneous drug administration (GPE analogues) for 24 h. Afterward, 1 μ L of 3 μ M okadaic acid stock solution together with 1 μ L of GPE analogue dissolved in PBS (vehicle received 2 μ L of PBS) were incubated for 24 h with the striatal cells. Subsequently, 20 μ L MTT (5 mg/ mL in PBS) was added for 4 h. The reaction was terminated by addition of 100 μ L 4% sodium dodecyl sulphate (SDS) solution. After 16–24 h incubation time, extinction values are read at 595 nm. The difference between the vehicle and the okadaic acid injury condition was calculated. This value is set as the theoretical 100% recovery value. Measured values for the tested compounds are expressed in percentage of the 100% value. The unpaired Student's *t*-test is used for statistical analysis.

Representative procedure A for the benzylation of carboxylic acids is as follows:

4.4. (2*S*)-Benzyl 2-aminobutanoate *p*-toluenesulfonate (10)

A mixture of L-(+)-2-aminobutanoic acid 8 (0.48 g, 4.56 mmol), *p*-toluenesulfonic acid monohydrate (98.5%) (1.29g, 6.68 mmol) and benzyl alcohol (4.99g, 46.1 mmol) in benzene (30 cm³) was heated under reflux, using a Dean Stark distilling receiver, for 22h, after which the reaction mixture was reduced in volume by removal of benzene (15 cm^3) by distillation. The solution was cooled to room temperature, anhydrous diethyl ether (20 cm³) was added and the mixture left for 1 h at 0°C to afford *p*-toluenesulfonate 9 (1.55g, 93%) as a crystalline white solid: mp 125–127 °C; $[\alpha]_D$ – 5.7 (*c* 0.26 in CH₂Cl₂); v_{max} (film)/cm⁻¹ 3579, 2963 br, 1748, 1602, 1523, 1497, 1450, 1400, 1367, 1302, 1259, 1212, 1188, 1125, 1038, 1013, 948, 811, 731 and 677; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 0.83 (3H, t, J 7.5, 4-H₃), 1.83 (2H, quintet, J 7.1, 3-H₂), 2.30 (3H, s, Ar-CH₃), 3.87-4.02 (1H, m, 2-H), 5.00 (1H, d, J 12.3, OCH_AH_BPh), 5.12 (1H, d, J 12.2, OCH_AH_BPh), 7.08 $(2H, d, J 8.0, 2 \times 3'-H), 7.22-7.34$ (5H, m, Ph), 7.74 (2H, d, J 8.1, 2×2'-H) and 8.25 (3H, br s, N⁺H₃); $\delta_{\rm C}$ (75 MHz; CDCl₃) 9.0 (CH₃, 4-C), 21.2 (CH₃, Ar-CH₃), 23.6 (CH₂, 3-C), 54.2 (CH, 2-C), 67.6 (CH₂, OCH₂Ph), 126.1 (CH, Ar), 128.2 (CH, Ar), 128.3 (CH, Ar), 128.4 (CH, Ar), 128.7 (CH, Ar), 134.9 (quat., Ph), 140.2 (quat., Ar), 141.5 (quat., Ar) and 169.2 (quat., CO): m|z(FAB+) 559.2483 $[M_2 pT_sOH H^+:$ (C₁₁H₁₅NO₂)₂. C₇H₈O₃S·H requires 559.2478].

Representative procedure B for the preparation of protected tripeptides and analogues is as follows:

4.5. (2*S*)-Benzyl *N*-benzyloxycarbonyl-glycyl-L-prolyl-2aminobutanoate (10)

To a solution of acid 2 (0.65 g, 2.12 mmol) in methylene chloride (26 cm³), cooled to 0 °C under nitrogen, was added dropwise triethylamine (0.33 cm³, 2.37 mmol) and ethyl chloroformate (0.22 cm³, 2.30 mmol) and the resultant mixture stirred at 0°C for 45min to form the mixed anhydride. Triethylamine (0.42 cm³, 3.01 mmol) was added to a solution of benzyl 2-aminobutanoate p-toluenesulfonate 9 (1.02g, 2.79mmol) in methylene chloride (13 cm³) under nitrogen at 0 °C and the resulting solution was added dropwise to the above mixed anhydride. The resultant mixture was warmed to room temperature and stirred for 16h then the methylene chloride solution was extracted successively with 10%aqueous hydrochloric acid (50 cm³) and saturated aqueous sodium hydrogen carbonate (50 cm^3) , dried (MgSO₄), filtered and evaporated to dryness in vacuo.

Purification of the ensuing residue by flash column chromatography (21 g SiO₂; 30–100% ethyl acetate–hexane; gradient elution) yielded *fully protected tripeptide analogue* **10** (0.96 g, 94%) as a pale yellow oil. Tripeptide **10** was shown to be a 90:10 trans: cis mixture of conformers by ¹H NMR analysis (the ratio was estimated from the integration of the doublets at δ 6.52 and 7.10, assigned to the E α -NH protons of the minor and major conformers, respectively): $R_{\rm f}$ 0.50 (EtOAc); $[\alpha]_{\rm D}$ -74.2 (c 0.15 in CH_2Cl_2 ; v_{max} (film)/cm⁻¹ 3312 br, 3064, 2971, 2878, 1725, 1649, 1533, 1453, 1386, 1344, 1256, 1211, 1193, 1146, 1055, 986, 917, 740 and 697; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 0.86 (3H, t, J 7.5, 4-H₃), 1.73 (1H, apparent octet, J 7.2, $3-H_AH_B$), 1.63–2.40 (5H, m, $3-H_AH_B$, Proy-H₂ and Proß-H2), 3.40 (1H, dd, J 16.4 and 9.0, Proδ- $H_A H_B$), 3.47–3.70 (1H, m, Pro δ - $H_A H_B$), 3.80* (0.10H, dd, J 16.8 and 4.0, Gly α -H_AH_B), 3.95 (0.90H, dd, J 17.1 and 4.2, $Gly\alpha$ - H_AH_B), 4.05 (1H, dd, J 17.3 and 4.6, Gly α -H_AH_B), 4.32* (0.10H, t, J 5.3, Pro α -H), 4.44-4.63 (1.90H, m, 2-H and Prox-H), 5.05-5.25 (4H, m, $2 \times OCH_2Ph$), 5.59* (0.10H, br s, Gly-NH), 5.70 (0.90H, br s, Gly-NH), 6.52* (0.10H, d, J 7.9, 2-NH), 7.10 (0.90H, d, J 7.5, 2-NH) and 7.23-7.50 (10H, m, $2 \times Ph$); δ_C (75 MHz; CDCl₃) 9.4 (CH₃, 4-C), 9.8* (CH₃, 4-C), 22.1* (CH₂, Proγ-C), 24.5 (CH₂, Proγ-C), 24.8* (CH₂, 3-C), 25.0 (CH₂, 3-C), 27.7 (CH₂, Proβ-C), 31.8* (CH₂, Proβ-C), 43.0* (CH₂, Glyα-C), 43.2 (CH₂, Glya-C), 46.1 (CH₂, Proδ-C), 46.9* (CH₂, Proδ-C), 53.4 (CH, 2-C), 59.8 (CH, Proa-C), 66.6 (CH₂, OCH₂Ph), 66.6 (CH₂, OCH₂Ph), 66.9* (CH₂, OCH₂Ph), 127.7* (CH, Ph), 127.7 (CH, Ph), 127.8 (CH, Ph), 127.9 (CH, Ph), 128.0* (CH, Ph), 128.1 (CH, Ph), 128.2 (CH, Ph), 128.3 (CH, Ph), 135.0* (quat., Ph), 135.3 (quat., Ph), 136.2 (quat., Ph), 156.1 (quat., NCO₂), 156.2* (quat., NCO₂), 167.8 (quat., Gly-CO), 167.9* (quat., Gly-CO), 170.7 (quat., Pro-CON), 171.2* (quat., Pro-CON) and 171.8 (quat., 1-CO); *m*/*z* (EI+) 481.2216 $(M^+, C_{26}H_{31}N_3O_6 \text{ requires } 481.2213).$

Representative procedure C for the hydrogenation of protected tripeptides and analogues is as follows:

4.6. (2S)-Glycyl-L-prolyl-2-aminobutanoic acid (7)

A mixture of protected tripeptide 10 (0.46g, 0.96mmol) and 10 wt% palladium on activated carbon (0.22 g, 0.21 mmol) in 2:1 methanol-water (30 cm³) was stirred under an atmosphere of hydrogen at room temperature, protected from light, for 22h. The reaction mixture was filtered through a Celite[™] pad, and the pad washed with 50:50 methanol-water (150 cm^3) . The filtrate was concentrated to dryness under reduced pressure at ambient temperature and the residue triturated with methanol to afford 7 (0.18g, 73%) as a white amorphous solid. Compound 7 was shown to be an 83:17 trans:cis mixture of conformers by ¹³C NMR analysis (the ratio was estimated from the relative intensities of the resonances at δ 23.9 and 26.1, assigned to the Proy-C atoms of the minor and major conformers, respectively): mp 188– 198 °C (decomp.); $[\alpha]_{\rm D}$ –112.2 (c 0.18 in H₂O); $v_{\rm max}$ (Nujol mull)/cm⁻¹ 3528, 3312, 3188, 2630, 1648, 1598, 1570, 1537, 1418, 1234, 1208 and 930; $\delta_{\rm H}$ (300 MHz; D₂O) 0.91 (3H, t, J 7.4, 4-H₃), 1.60–2.14 (4H, m, 3-H_AH_B Proγ-H₂

and $\text{Pro\beta-}H_A\text{H}_B$), 1.70 (1H, apparent octet, J 7.3, 3-H_AH_B), 2.14–2.48 (1H, m, $\text{Pro\beta-}\text{H}_A\text{H}_B$), 3.50–3.73 (2.17H, m, $\text{Pro\delta-}\text{H}_2$ and $\text{Gly}\alpha$ -H_AH_B*), 3.91–4.16 (2.83H, m, $\text{Gly}\alpha$ -H_AH_B* $\text{Gly}\alpha$ -H₂ and 2-H) and 4.49 (1H, dd, J 8.2 and 4.1, $\text{Pro}\alpha$ -H); δ_C (75 MHz; D₂O) 11.4 (CH₃, 4-C), 11.6* (CH₃, 4-C), 23.9* (CH₂, $\text{Pro}\gamma$ -C), 26.1 (CH₂, $\text{Pro}\gamma$ -C), 26.5* (CH₂, 3-C), 26.9 (CH₂, 3-C), 31.3 (CH₂, $\text{Pro}\beta$ -C), 33.6* (CH₂, $\text{Pro}\beta$ -C), 42.1* (CH₂, $\text{Gly}\alpha$ -C), 42.3 (CH₂, $\text{Gly}\alpha$ -C), 48.8 (CH₂, Pro\delta -C), 49.5* (CH₂, $\text{Pro}\delta$ -C), 58.6 (CH, 2-C), 58.9* (CH, 2-C), 62.0* (CH, $\text{Pro}\alpha$ -C), 62.4 (CH, $\text{Pro}\alpha$ -C), 167.5 (quat., Gly-CO), 168.0* (quat., Gly-CO), 174.6* (quat., Pro-CON), 175.0 (quat., Pro-CON), 180.5* (quat., 1-CO) and 180.6 (quat., 1-CO); m/z (FAB+) 258.1446 (MH⁺. C₁₁H₂₀N₃O₄ requires 258.1454).

4.7. *N*-Benzyloxycarbonyl-glycyl-L-proline *N*-hydroxy-succinimide ester¹ (16)

To a mixture of acid 2 (4.40 g, 14.36 mmol) in anhydrous 1,2-dimethoxyethane (130mL) under nitrogen at 0°C, were successively added N-hydroxysuccinimide (1.94g, 16.35 mmol) and a solution of 1,3-dicyclohexylcarbodiimide (3.49g, 16.91 mmol) in 1,2-dimethoxyethane (19mL) cooled to 0°C. The reaction mixture was warmed to room temperature, stirred for 23h then filtered through a Celite[™] pad, to partially remove solid 1,3-dicyclohexylurea, and the filtrate concentrated to dryness under reduced pressure. The resultant residue was dissolved in methylene chloride, washed with 10% aqueous hydrochloric acid (100 mL) and saturated aqueous sodium hydrogen carbonate (100 mL), dried (MgSO₄), filtered and concentrated to dryness. Purification of the residue by flash column chromatography $(SiO_2; 30-90\%$ ethyl acetate-hexane; gradient elution) gave a white foam, which was dissolved in methylene chloride and triturated with diethyl ether to yield succin*imide* 16 (4.94g, 85%) as a white solid. Compound 16 was shown to be an 85:15 trans: cis mixture of conformers: $R_{\rm f}$ 0.40 (EtOAc); mp 102–104 °C; $[\alpha]_{\rm D}$ –80.7 (c 0.29 in CH₂Cl₂); v_{max} (film)/cm⁻¹ 3583 wk, 3406 br, 3333 br, 2952, 2883, 1815, 1784, 1738, 1660, 1522, 1439, 1368, 1245, 1206, 1077, 992, 911, 813, 734, 699 and 645; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.98–2.25 (2H, m, Proγ-H₂), 2.28–2.39 (1.70H, m, Proβ-H₂), 2.39–2.49* (0.30H, m, Proβ-H₂), 2.82 [4H, s, C(O)CH₂CH₂C(O)], 3.38–3.56 (0.85H, m, Proð-H_AH_B), 3.56–3.75 (1.15H, m, Proð- H_AH_B and $Pro\delta - H_AH_B^*$), 3.89* (0.15H, dd, J 16.8 and 3.4, Glya-H_AH_B), 3.98 (0.85H, dd, J 17.2 and 3.8, Glya-H_AH_B), 4.08 (0.85H, dd, J 17.3 and 5.0, Glya- $H_A H_B$, 4.14* (0.15H, dd, J 17.0 and 6.0, Glya- $H_A H_B$), 4.76* (0.15H, br t, J 5.1, Proa-H), 4.83 (0.85H, t, J 6.2, Proα-H), 5.11 (2H, s, OCH₂Ph), 5.64* (0.15H, br s, Gly-NH), 5.75 (0.85H, br s, Gly-NH) and 7.27–7.38 (5H, m, Ph); $\delta_{\rm C}$ (100 MHz; CDCl₃) 22.0* (CH₂, Proγ-C), 24.6 (CH₂, Proγ-C), 25.4 [CH₂, C(O)CH₂CH₂C(O)], 29.1 (CH₂, Proβ-C), 31.8* (CH₂, Proβ-C), 43.1 (CH₂, Glyα-C), 45.7 (CH₂, Proδ-C), 46.7* (CH₂, Proδ-C), 56.6* (CH, Proa-C), 56.7 (CH, Proa-C), 66.6 (CH₂, OCH₂Ph), 66.7* (CH₂, OCH₂Ph), 127.8 (CH, Ph), 127.9 (CH, Ph), 128.3, (CH, Ph), 136.4 (quat., Ph), 156.2 (quat., NCO₂), 167.3 (quat., CO), 167.5 (quat., CO), 167.6* (quat., CO) and 168.8 [quat., $C(O)CH_2CH_2C(O)$]; m/z (FAB+) 404.1451 (MH⁺. $C_{19}H_{22}N_3O_7$ requires 404.1458).

4.8. α-Benzyl N-benzyloxycarbonyl-glycyl-L-prolyl-Lglutamate (17)

Triethylamine (1.65mL, 11.84mmol) and water (75mL) were successively added to a mixture of L-glutamic acid α -benzyl ester 15 (2.21 g, 9.31 mmol) in tetrahydrofuran (150 mL) at room temperature. A mixture of succinimide 16 (3.00g, 7.44 mmol) in tetrahydrofuran (95 mL) was slowly added to the resultant solution and the reaction mixture stirred for 16h. The solvent was then removed in vacuo, the residue partitioned between methylene chloride (100 mL) and 10% aqueous hydrochloric acid (100 mL), and the aqueous layer extracted twice with methylene chloride. The combined organic fractions were washed with 10% aqueous hydrochloric acid (200 mL) and brine (200 mL), dried (MgSO₄), filtered and evaporated to dryness. Purification of the residue by flash column chromatography (SiO₂; 50–20% ethyl acetate-hexane to methanol-methylene chloride; gradient elution) afforded acid 17 (3.72g, 95%) as an hygroscopic white foam. Compound 17 was shown to be a 77:23 trans: cis mixture of conformers: R_f 0.50 (10%) MeOH–CH₂Cl₂); $[\alpha]_D$ –55.6 (*c* 0.48 in CH₂Cl₂); v_{max} (film)/cm⁻¹ 3583 wk, 3312 br, 2952, 1721, 1646, 1534, 1453, 1342, 1257, 1208, 1172, 1125, 1057, 983, 912, 739 and 697; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 1.76–2.45 (8H, m, $Pro\gamma-H_2$, $Pro\beta-H_2$, $Glu\beta-H_2$ and $Glu\gamma-H_2$), 3.38 $(0.77H, br dd, J 16.1 and 8.4, Pro\delta-H_AH_B), 3.46-3.76$ (1.23H, m, $\text{Pro\delta-H}_{A}H_{B}$ and $\text{Pro\delta-H}_{A}H_{B}^{*}$), 3.76* (0.23H, dd, J 17.2 and 3.2, Glya-H_AH_B), 3.96 (1H, dd, J 17.3 and 4.9, Gly α -H_AH_B and Gly α -H_AH_B^{*}), 4.06 (0.77H, dd, J 17.1 and 4.9, Gly α -H_AH_B), 4.24–4.31* (0.23H, m, Proa-H), 4.49-4.64 (1.77H, m, Proa-H and Glua-H), 5.03-5.21 (4H, m, 2×OCH₂Ph), 6.01 (1H, br s, Gly-NH) and 7.27–7.39 (11H, m, $2 \times Ph$ and Glua-NH); $\delta_{\rm C}$ (100 MHz; CDCl₃) 22.2* (CH₂, Proγ-C), 24.6 (CH₂, Proγ-C), 25.5* (CH₂, Gluβ-C), 26.5 (CH₂, Gluβ-C), 28.2 (CH₂, Proβ-C), 30.2 (CH₂, Gluγ-C), 30.6* (CH₂, Gluγ-C), 31.9* (CH₂, Proβ-C), 43.1* (CH₂, Glya-C), 43.2 (CH₂, Glya-C), 46.4 (CH₂, Proδ-C), 47.2* (CH₂, Proδ-C), 52.0 (CH, Gluα-C), 52.5* (CH, Glua-C), 60.1 (CH, Proa-C), 66.9 (CH₂, OCH₂Ph), 67.1 (CH₂, OCH₂Ph), 67.3* (CH₂, OCH₂Ph), 127.9 (CH, Ph), 128.0 (CH, Ph), 128.1* (CH, Ph), 128.1 (CH, Ph), 128.2* (CH, Ph), 128.3 (CH, Ph), 128.4 (CH, Ph), 128.5 (CH, Ph), 135.1* (quat., Ph), 135.2 (quat., Ph), 136.1* (quat., Ph), 136.2 (quat., Ph), 156.8 (quat., NCO₂), 156.9* (quat., NCO₂), 168.7 (quat., Gly-CO), 171.2* (quat., CO), 171.3 (quat., CO), 171.3 (quat., CO), 171.5* (quat., CO), 176.0 (quat., Gluy-CO) and 176.3* (quat., Gluγ-CO); m/z (FAB+) 526.2197 (MH⁺. $C_{27}H_{32}N_3O_8$ requires 526.2189).

4.9. *N*-Benzyloxycarbonyl-glycyl-L-prolyl-L-glutamine α -benzyl ester (18)

To a solution of acid **17** (0.98 g, 1.86 mmol) and di-*tert*butyl dicarbonate (0.56 g, 2.49 mmol) in 1,4-dioxane (28 mL), under nitrogen at room temperature, were added pyridine (0.21 mL, 2.60 mmol) dropwise and ammonium hydrogen carbonate (0.21 g, 2.66 mmol). The mixture was stirred for 21h, the solvent removed in vacuo, and the resultant residue dissolved in methylene chloride, washed with 10% aqueous hydrochloric acid (50 mL) and saturated aqueous sodium hydrogen carbonate (50mL), dried (MgSO₄), filtered and evaporated to dryness. Purification of the residue by flash column chromatography (SiO₂; 80-20% ethyl acetatehexane to methanol-methylene chloride; gradient elution) gave primary amide 18 (0.87g, 89%) as a white foam. Compound 18 was shown to be an 83:17 trans:cis mixture of conformers: $R_f 0.50$ (10% MeOH–CH₂Cl₂); $[\alpha]_{D}$ -53.2 (c 0.24 in CH₂Cl₂); v_{max} (film)/cm⁻¹ 3583 wk, 3309 br, 3065, 2952, 1720, 1655, 1536, 1453, 1342, 1255, 1212, 1172, 1129, 1052, 986, 913, 736 and 697; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.67–2.46 (8H, m, Proγ- H_2 , Pro β - H_2 , Gln β - H_2 and Gln γ - H_2), 3.27–3.75 (2H, m, Proδ-H₂), 3.86* (0.17H, dd, J 12.2 and 4.2, Glyα- H_AH_B), 3.95 (1H, dd, J 17.2 and 4.9, Gly α - H_AH_B and Gly α -H_A H_B^*), 4.04 (0.83H, dd, J 17.1 and 5.1, Gly α - $H_A H_B$, 4.24* (0.17H, dd, J 8.5 and 2.5, Proα-H), 4.47 (0.83H, br d, J 5.4, Proa-H), 4.57 (1H, td, J 8.3, 8.3) and 3.2, Gln α -H), 5.04–5.20 (4H, m, $2 \times OCH_2Ph$), 5.53 (0.83H, br s, $CONH_4H_B$), 5.69–5.90 (1.17H, br m, CONHAHB* and Gly-NH), 6.28 (1H, br s, CON- H_AH_B) and 7.25–7.38 (11H, m, 2×Ph and Gln\alpha-NH); δ_C (100 MHz; CDCl₃) 22.2* (CH₂, Proγ-C), 24.6 (CH₂, Proγ-C), 25.9* (CH₂, Glnβ-C), 27.1 (CH₂, Glnβ-C), 28.5 (CH₂, Proβ-C), 31.0 (CH₂, Glnγ-C), 31.4* (CH₂, Glnγ-C), 31.9* (CH₂, Proβ-C), 43.1* (CH₂, Glyα-C), 43.2 (CH₂, Glyα-C), 46.3 (CH₂, Proδ-C), 47.1* (CH₂, Proδ-C), 51.8 (CH, Glnα-C), 52.4* (CH, Glnα-C), 59.7* (CH, Proa-C), 60.1 (CH, Proa-C), 66.7 (CH₂, OCH₂Ph), 67.0 (CH₂, OCH₂Ph), 67.1* (CH₂, OCH₂Ph), 127.7 (CH, Ph), 127.9 (CH, Ph), 128.0 (CH, Ph), 128.1 (CH, Ph), 128.1* (CH, Ph), 128.3 (CH, Ph), 128.3* (CH, Ph), 128.4 (CH, Ph), 128.4 (CH, Ph), 135.1* (quat., Ph), 135.2 (quat., Ph), 136.3 (quat., Ph), 156.5* (quat., NCO₂), 156.6 (quat., NCO₂), 167.6* (quat., Gly-CO), 168.2 (quat., Gly-CO), 171.4* (quat., CO), 171.5 (quat., CO), 171.6 (quat., CO), 171.7* (quat., CO) and 175.2 (quat., Gln γ -CO); m/z (FAB+) 525.2355 (MH⁺. C₂₇H₃₃N₄O₇ requires 525.2349).

4.10. Glycyl-L-prolyl-L-glutamine (11)

Following procedure C, hydrogenation of amide 18 yielded tripeptide 11 (0.23 g, 82%) as a white solid. Compound 11 was shown to be an 85:15 trans:cis mixture of conformers: mp 167–169°C; [α]_D –80.6 (*c* 0.24 in H₂O); $δ_{\rm H}$ (400 MHz; D₂O) 1.80–2.23 (5H, m, Glnβ-H₂, Proβ- $H_A H_B$ and Proy-H₂), 2.23–2.45 (3H, m, Pro\beta-H_AH_B) and Glny-H2), 3.48-3.82 (2H, m, Prod-H2), 3.75* $(0.15H, d, J 16.2, Gly\alpha-H_AH_B), 3.94^*$ (0.15H, d, J16.0, Glya-H_AH_B), 3.97 (0.85H, d, J 18.1, Glya-H_AH_B), 4.01 (0.85H, d, J 17.4, Glyα-H_AH_B), 4.17 (1H, dd, J 8.4 and 4.9, Glnα-H) and 4.48 (1H, dd, J 7.9 and 3.7, Proα-H); δ_C (100 MHz; D₂O) 23.9* (CH₂, Proγ-C), 26.1 (CH₂, Proγ-C), 28.9* (CH₂, Glnβ-C), 29.6 (CH₂, Glnβ-C), 31.2 (CH₂, Proβ-C), 33.4 (CH₂, Glnγ-C), 33.6* (CH₂, Proβ-C), 33.6* (CH₂, Glnγ-C), 42.1* (CH₂, Glyα-C), 42.3 (CH₂, Glya-C), 48.8 (CH₂, Proδ-C), 49.4* (CH₂, Proδ-C), 56.4 (CH, Glna-C), 56.9* (CH, Glna-C), 62.1*

(CH, Pro α -C), 62.5 (CH, Pro α -C), 167.5 (quat., Gly-CO), 168.0* (quat., Gly-CO), 174.8* (quat., Pro-CON), 175.2 (quat., Pro-CON), 179.4* (quat., Gln α -CO), 179.5 (quat., Gln α -CO), 180.2* (quat., Gln γ -CO) and 180.4 (quat., Gln γ -CO); *m*/*z* (FAB+) 301.1519 (MH⁺. C₁₂H₂₁N₄O₅ requires 301.1512).

4.11. *N*-Benzyloxycarbonyl-glycyl-L-prolyl-L-*N*-methyl-glutamine α -benzyl ester (19)

Triethylamine (1.62mL, 11.62mmol) was added dropwise to a mixture of acid 17 (1.02g, 1.94mmol) and methylamine hydrochloride (0.30 g, 4.44 mmol) in acetonitrile (45mL), under nitrogen at room temperature, and the reaction mixture stirred for 5min. 2-(N-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU) (0.64g, 1.95mmol) was added in one portion, the mixture stirred for 16.5h then the solvent removed under reduced pressure. The resultant residue was partitioned between methylene chloride (50 mL) and 10% aqueous hydrochloric acid (50mL) and the aqueous fraction extracted with methylene chloride $(2 \times 50 \text{ mL})$. The combined organic fractions were washed with 10% aqueous hydrochloric acid (100 mL) and saturated aqueous sodium hydrogen carbonate (100 mL), dried (MgSO₄), filtered and evaporated to dryness. Trituration of the residue with methylene chloride and diethyl ether afforded N-methylamide 19 (0.83 g, 79%) as a white solid. Compound 19 was shown to be an 85:15 *trans:cis* mixture of conformers: $R_{\rm f}$ 0.45 $(10\% \text{ MeOH-CH}_2\text{Cl}_2); \text{ mp } 137-139^\circ\text{C}; [\alpha]_D - 54.4 (c$ 0.25 in CH₂Cl₂); v_{max} (film)/cm⁻¹ 3583 wk, 3312 br, 3065, 2951, 1725, 1649, 1543, 1453, 1411, 1377, 1335, 1258, 1213, 1171, 1054, 986, 914, 734 and 698; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 1.79–2.36 (8H, m, Proγ-H₂, $Gln\beta-H_2$, $Pro\beta-H_2$ and $Gln\gamma-H_2$), 2.66–2.73* (0.45H, m, CONHCH₃), 2.69 (2.55H, d, J 4.7, CONHCH₃), 3.27-3.80 (2H, m, Proδ-H₂), 3.84* (0.30H, d, J 4.1, Gly α -H₂), 3.96 (0.85H, dd, J 17.3 and 4.9, Gly α -H₄H_B), 4.05 (0.85H, dd, J 17.3 and 4.9, Glya-H_AH_B), 4.21* (0.15H, dd, J 8.5 and 2.6, Proa-H), 4.35-4.53 (0.85H, m, Proα-H), 4.54 (1H, td, J 8.3, 8.3 and 3.6, Glnα-H), 5.06–5.20 (4H, m, $2 \times OCH_2Ph$), 5.70 (0.85H, br t, J 4.4, Gly-NH), 5.82* (0.15H, br t, J 3.8, Gly-NH), 6.23-6.48 (1H, br m, CONHCH₃), 7.16-7.52 (10.85H, m, 2×Ph and Gln-NH) and 7.45* (0.15H, d, J 7.6, Gln-NH); $\delta_{\rm C}$ (75 MHz; CDCl₃) 22.4* (CH₂, Proγ-C), 24.8 (CH₂, Proγ-C), 26.2 (CH₃, CONHCH₃), 26.3* (CH₃, CONHCH₃), 27.8 (CH₂, Glnβ-C), 28.4 (CH₂, Proβ-C), 31.8 (CH₂, Glnγ-C), 31.9* (CH₂, Glnγ-C or Proβ-C), 32.0* (CH₂, Proβ-C or Glnγ-C), 43.1* (CH₂, Glya-C), 43.3 (CH₂, Glya-C), 46.3 (CH₂, Proδ-C), 47.2* (CH2, Prod-C), 51.8 (CH, Glna-C), 52.4* (CH, Glna-C), 59.8* (CH, Proa-C), 60.3 (CH, Proa-C), 66.8* (CH₂, OCH₂Ph), 66.9 (CH₂, OCH₂Ph), 67.1 (CH₂, OCH₂Ph), 67.2* (CH₂, OCH₂Ph), 127.8* (CH, Ph), 127.9 (CH, Ph), 128.1 (CH, Ph), 128.2 (CH, Ph), 128.3* (CH, Ph), 128.4 (CH, Ph), 128.4* (CH, Ph), 128.5 (CH, Ph), 128.5 (CH, Ph), 135.2 (quat., Ph), 136.2 (quat., Ph), 156.3* (quat., NCO₂), 156.4 (quat., NCO₂), 167.2* (quat., Gly-CO), 167.9 (quat., Gly-CO), 171.3 (quat., CO), 171.4* (quat., CO), 171.5 (quat., CO), 172.7 (quat., CONHCH₃) and 172.8* (quat.,

CONHCH₃); m/z (FAB+) 539.2508 (MH⁺. C₂₈H₃₅N₄O₇ requires 539.2506).

4.12. Glycyl-L-prolyl-L-*N*-methylglutamine (12)

Following procedure C, hydrogenation of N-methylamide 19 yielded analogue 12 (0.20g, 67%) as a white solid. Compound 12 was shown to be an 86:14 trans: *cis* mixture of conformers: mp 193–196°C (dec.); [α]_D -77.3 (c 0.19 in H₂O); $\delta_{\rm H}$ (300 MHz; D₂O) 1.82–2.46 (8H, m, $Gln\beta$ -H₂, Pro β -H₂, Pro γ -H₂ and $Gln\gamma$ -H₂), 2.72 (3H, s, CONHCH₃), 3.51-3.73 (2H, m, Proδ-H₂), 3.77* (0.14H, d, J 16.3, Glya-H_AH_B), 3.96* (0.14H, d, J 16.4, Glya-H_AH_B), 3.98 (0.86H, d, J 17.3, Glya- H_AH_B), 4.04 (0.86H, d, J 17.2, Glya- H_AH_B), 4.11-4.21* (0.14H, m, Glna-H), 4.15 (0.86H, dd, J 8.5 and 4.9, Glna-H) and 4.49 (1H, dd, J 8.2 and 4.0, Proa-H); $\delta_{\rm C}$ (75 MHz; D₂O) 23.9* (CH₂, Proγ-C), 26.1 (CH₂, Proγ-C), 27.7 (CH₃, CONHCH₃), 29.2* (CH₂, Glnβ-C), 29.9 (CH₂, Glnβ-C), 31.3 (CH₂, Proβ-C), 33.6* (CH₂, Proβ-C), 34.1 (CH₂, Glnγ-C), 34.2* (CH₂, Glny-C), 42.1* (CH₂, Glya-C), 42.3 (CH₂, Glya-C), 48.8 (CH₂, Proδ-C), 49.4* (CH₂, Proδδ-C), 56.5 (CH, Glna-C), 56.9* (CH, Glna-C), 62.1* (CH, Proa-C), 62.5 (CH, Proa-C), 167.5 (quat., Gly-CO), 168.0* (quat., Gly-CO), 174.7* (quat., Pro-CON), 175.2 (quat., Pro-CON), 177.7* (quat., CONHCH₃), 177.8(quat., CONHCH₃), 179.4* (quat., CO₂H) and 179.6 (quat., CO₂H); *m*/*z* (FAB+) 315.1672 (MH⁺. C₁₃H₂₃-N₄O₅ requires 315.1669).

4.13. *N*-Benzyloxycarbonyl-glycyl-L-prolyl-L-N,*N*-dimethylglutamine α -benzyl ester (20)

Following procedure B, coupling of acid 17 with dimethylamine hydrochloride using triethylamine as the base yielded N,N-dimethylamide **20** (0.48 g, 89%) as a colourless oil, which slowly crystallised to a white solid. Compound 20 was shown to be a 79:21 *trans:cis* mixture of conformers: $R_f 0.50$ (10% MeOH–CH₂Cl₂); mp 110-111°C; [α]_D -56.9 (c 0.26 in CH₂Cl₂); v_{max} (film)/cm⁻¹ 3583 wk, 3297 br, 3063, 3033, 2946, 1724, 1645, 1530, 1453, 1340, 1255, 1214, 1185, 1055, 986, 915, 815, 737 and 697; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 1.80–2.28 (6H, m, $Pro\gamma$ -H₂, $Pro\beta$ -H₂ and $Gln\beta$ -H₂), 2.33 (2H, t, J 6.5, Glnγ-H₂), 2.82* [0.63H, s, CON(- $CH_3)_A(CH_3)_B]$, 2.84 [2.37H, s, $CON(CH_3)_A(CH_3)_B]$, 2.86 [2.37H, s, CON(CH₃)_A(CH₃)_B], 2.91* [0.63H, s, CON(CH₃)_A(CH₃)_B], 3.30–3.47 (0.79H, m, Ргоб- H_A H_B), 3.50–3.67 (1H, m, Proδ-H_AH_B and Proδ- $H_A H_B^*$), 3.75–3.86* (0.21H, m, Proð- $H_A H_B$), 3.91* (0.42H, dd, J 9.5 and 4.5, Glya-H₂), 4.03 (1.58H, d, J 4.2, Glya-H₂), 4.26* (0.21H, dd, J 7.3 and 3.5, Proa-H), 4.39–4.56 (1.79H, m, Glnα-H and Proα-H), 5.06– 5.22 (4H, m, $2 \times OCH_2Ph$), 5.61* (0.21H, br t, J 4.5, Gly-NH), 5.75 (0.79H, br t, J 3.8, Gly-NH), 7.27–7.39 $(10H, m, 2 \times Ph)$, 7.72 (0.79H, d, J 7.0, Glna-NH) and 8.52* (0.21H, d, J 5.6, Glna-NH); $\delta_{\rm C}$ (75 MHz; CDCl₃) 22.2* (CH₂, Proγ-C), 24.5 (CH₂, Proγ-C), 24.9* (CH₂, Glnβ-C), 26.3 (CH₂, Glnβ-C), 28.5 (CH₂, Proβ-C), 29.2 (CH₂, Gln_γ-C), 29.5* (CH₂, Gln_γ-C), 31.8* (CH₂, Proβ-C), 35.4 [CH₃, CON(CH₃)_A(CH₃)_B], 35.6* [CH₃, $CON(CH_3)_A(CH_3)_B$], 36.9 [CH₃, $CON(CH_3)_A(CH_3)_B$],

43.0* (CH₂, Glyα-C), 43.3 (CH₂, Glyα-C), 46.1 (CH₂, Proδ-C), 46.9* (CH₂, Proδ-C), 52.3 (CH, Glnα-C), 52.9* (CH, Glnα-C), 60.1 (CH, Proα-C), 66.5* (CH₂, OCH₂Ph), 66.6 (CH₂, OCH₂Ph), 66.8 (CH₂, OCH₂Ph), 66.9* (CH₂, OCH₂Ph), 127.8* (CH, Ph), 127.9* (CH, Ph), 127.9 (CH, Ph), 127.9 (CH, Ph), 128.1 (CH, Ph), 128.2* (CH, Ph), 127.9 (CH, Ph), 128.3 (CH, Ph), 128.4 (CH, Ph), 135.4 (quat., Ph), 136.3 (quat., Ph), 136.4* (quat., Ph), 156.1 (quat., NCO₂), 167.4 (quat., Gly-CO), 167.7* (quat., Gly-CO), 171.1* (quat., CO), 171.2 (quat., CO), 171.4 (quat., CO), 171.5* (quat., CO), 172.1 [quat., CON(CH₃)₂] and 172.4* [quat., CON(CH₃)₂]; *m*/z (EI+) 552.2577 (M⁺. C₂₉H₃₆N₄O₇ requires 552.2584).

4.14. Glycyl-L-prolyl-L-*N*,*N*-dimethylglutamine (13)

Following procedure C, hydrogenation of N,N-dimethylamide 20 yielded analogue 13 (0.26g, 95%) as an extremely hygroscopic white solid, on trituration with anhydrous diethyl ether. Compound 13 was shown to be an 87:13 trans: cis mixture of conformers: mp 175°C (dec.); $[\alpha]_{\rm D}$ -65.6 (c 0.19 in H₂O); $\delta_{\rm H}$ (300 MHz; D₂O) 1.72–2.55 (8H, m, $Gln\beta$ -H₂, $Pro\gamma$ -H₂, $Pro\beta$ -H₂ and Gln γ -H₂), 2.86 [3H, s, CON(CH₃)_A(CH₃)_B], 2.99* [0.39H, s, CON(CH₃)_A(CH₃)_B], 3.00 [2.61H, s, CON(-CH₃)_A(CH₃)_B], 3.43–3.67 (2H, m, Proδ-H₂), 3.71* (0.13H, d, J 16.5, Glya-H_AH_B), 3.82-3.99 (1.87H, m, Gly α -H_A H_B^* and Gly α -H₂), 4.10 (1H, dd, J 8.2 and 5.1, Glna-H) and 4.42 (1H, dd, J 8.2 and 4.0, Proa-H); δ_C (75 MHz; D₂O) 23.9* (CH₂, Proγ-C), 26.1 (CH₂, Proγ-C), 28.5* (CH₂, Glnβ-C), 29.3 (CH₂, Glnβ-C), 31.3 (CH₂, Proβ-C), 31.3 (CH₂, Glnγ-C), 31.5* (CH₂, Glnγ-C), 33.6* (CH₂, Proβ-C), 37.3 [CH₃, CON(CH₃)_A(CH₃)_B], 39.3* [CH₃, CON(CH₃)_A(CH₃)_B], 39.4 [CH₃, CON(CH₃)_A(CH₃)_B], 42.2* (CH₂, Glya-C), 42.3 (CH₂, Glya-C), 48.8 (CH₂, Proδ-C), 49.4* (CH₂, Prod-C), 56.7 (CH, Glna-C), 57.2* (CH, Glna-C), 62.1* (CH, Proa-C), 62.5 (CH, Proa-C), 167.6 (quat., Gly-CO), 168.2* (quat., Gly-CO), 174.8* (quat., Pro-CON), 175.2 (quat., Pro-CON), 176.7* [quat., CON(CH₃)₂], 176.8 [quat., CON(CH₃)₂], 179.6* (quat., CO₂H) and 179.8 (quat., CO₂H); m/z (FAB+) $329.1836 (MH^+, C_{14}H_{25}N_4O_5 requires 329.1825).$

4.15. (2S)-Benzyl N-benzyloxycarbonyl-glycyl-L-prolyl-2amino-5-hydroxypentanoate (21)

To a solution of acid 17 (0.72 g, 1.37 mmol) in anhydrous tetrahydrofuran (50 mL), cooled to ca. -5° C under nitrogen, were successively added dropwise triethylamine (0.32 mL, 2.30 mmol) and ethyl chloroformate (0.21 mL, 2.20 mmol) and the reaction mixture stirred at ca. -5° C for 30 min to form the mixed anhydride. Powdered sodium borohydride (0.24 g, 6.35 mmol) was added in one portion, followed by methanol (15 mL) dropwise, keeping the temperature at ca. -5° C. The effervescent reaction mixture was stirred for 15 min, warmed to room temperature and stirred for a further 15 min, then quenched with saturated aqueous ammonium chloride (5 mL). The organic solvents were removed in vacuo at ambient temperature, the aqueous residue extracted with ethyl acetate (50 mL) and the or-

ganic fraction washed with 10% aqueous hydrochloric acid (50 mL), saturated aqueous sodium hydrogen carbonate (50mL) and brine (50mL), dried (MgSO₄), filtered and evaporated to dryness. The resultant residue was triturated with methylene chloride and diethyl ether to yield acid-sensitive alcohol 21 (0.44 g, 63%) as a white solid. Compound 21 was shown to be an 85:15 trans:cis mixture of conformers: $R_f 0.70$ (10% MeOH–CH₂Cl₂); mp 116–117 °C; $[\alpha]_D$ –65.5 (*c* 0.20 in CH₂Cl₂); ν_{max} (film)/cm⁻¹ 3583 wk, 3314 br, 3064, 3033, 2952, 2877, 1725, 1649, 1535, 1453, 1339, 1256, 1213, 1172, 1057, 987, 913, 736 and 698; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 1.39-1.65 (2H, m, 4-H₂), 1.69-2.32 (6H, m, 3-H₂, Proγ-H₂ and Proβ-H₂), 2.69 (0.85H, br s, OH), 3.17* (0.15H, br s, OH), 3.39 (0.85H, br dd, J 16.0 and 8.4, Proδ-H_AH_B), 3.46-3.71 (3.15H, m, Proδ-H_AH_B, Proδ- $H_4 H_8^*$ and 5-H₂), 3.90* (0.30H, d, J 4.7, Glya-H₂), $3.97 (1.70H, d, J 4.9, Gly\alpha-H_2), 4.28* (0.15H, t, J 5.6,$ Proa-H), 4.46–4.63 (1.85H, m, Proa-H and 2-H), 5.04– 5.23 (4H, m, $2 \times OCH_2Ph$), 5.71* (0.15H, br t, J 5.0, Gly-NH), 5.75 (0.85H, br t, J 4.7, Gly-NH), 7.22-7.45 (10.85H, m, 2-NH and $2 \times Ph$) and 7.76* (0.15H, d, J 7.6, 2-NH); $\delta_{\rm C}$ (75 MHz; CDCl₃) 22.3* (CH₂, Proγ-C), 24.8 (CH₂, Proγ-C), 28.0 (CH₂, Proβ-C), 28.2 (CH₂, 4-C), 28.5 (CH₂, 3-C), 32.0* (CH₂, Proβ-C), 43.3 (CH₂, Glyα-C), 46.3 (CH₂, Proδ-C), 47.1* (CH₂, Proδ-C), 52.2 (CH, 2-C), 60.1 (CH, Proa-C), 61.8 (CH₂, 5-C), 66.9 (CH₂, OCH₂Ph), 67.0 (CH₂, OCH₂Ph), 67.1* (CH₂, OCH₂Ph), 128.0 (CH, Ph), 128.1 (CH, Ph), 128.2 (CH, Ph), 128.2* (CH, Ph), 128.3 (CH, Ph), 128.4* (CH, Ph), 128.5 (CH, Ph), 128.5 (CH, Ph), 135.4 (quat., Ph), 136.3 (quat., Ph), 156.6 (quat., NCO₂), 156.7* (quat., NCO₂), 168.0* (quat., Gly-CO), 168.2 (quat., Gly-CO), 171.0 (quat., CO), 171.4* (quat., CO) and 171.9 (quat., CO); *m*/*z* (FAB+) 512.2389 $(MH^+, C_{27}H_{34}N_3O_7 \text{ requires 512.2397}).$

4.16. (2S)-Glycyl-L-prolyl-2-amino-5-hydroxypentanoic acid (14)

Following procedure C, hydrogenation of alcohol 21 in 82:16:2 tetrahydrofuran-water-triethylamine (24.5 mL; v/v) yielded analogue 14 (0.27 g, 100%) as an hygroscopic pale yellow solid[†] on trituration with anhydrous diethyl ether. Compound 14 was shown to be a 76:24 trans:cis mixture of conformers: $[\alpha]_D$ -80.2 (c 0.29 in H₂O); δ_H (300 MHz; D₂O) 1.48-2.48 (8H, m, 4-H₂, 3-H₂, Proγ- H_2 and Pro β -H₂), 3.48–3.73 (4.24H, m, Pro δ -H₂, 5-H₂ and Gly α - H_A H_B*), 3.79–4.00 (1.76H, m, Gly α -H_AH_B* and Glya-H₂), 4.11-4.26* (0.24H, m, 2-H), 4.17 (0.76H, dd, J 7.7 and 5.2, 2-H) and 4.40-4.57 (1H, m, Proα-H); δ_C (75 MHz; D₂O) 24.5* (CH₂, Proγ-C), 26.7 (CH₂, Proγ-C), 30.3 (CH₂, 4-C), 30.6* (CH₂), 30.7 (CH₂, 3-C), 31.9 (CH₂, Proβ-C), 34.2* (CH₂, Proβ-C), 43.3 (CH₂, Glyα-C), 49.3 (CH₂, Proδ-C), 50.0* (CH₂, Prod-C), 57.5 (CH, 2-C), 57.7* (CH, 2-C), 62.6* (CH, Proa-C), 63.0 (CH, Proa-C), 63.6* (CH₂, 5-C), 63.7 (CH₂, 5-C), 169.5 (quat., Gly-CO), 170.3* (quat., Gly-CO), 175.4* (quat., Pro-CON), 175.7 (quat., Pro-

[†]Due to the extremely hygroscopic nature of **14**, its melting point could not be determined under standard atmospheric conditions.

CON), 180.9* (quat., 1-CO) and 181.1 (quat., 1-CO); m/z (FAB+) 288.1551 (MH⁺. $C_{12}H_{22}N_3O_5$ requires 288.1560).

4.17. Glycine benzyl ester *p*-toluenesulfonate⁴¹ (24)

Following procedure A, benzylation of glycine yielded *p*-toluenesulfonate⁴¹ **24** (11.22 g, 99%) as a crystalline white solid: mp 130–132 °C (lit.,41 132–134 °C); $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 2.23 (3H, s, Ar–CH₃), 3.69 (2H, br d, *J* 5.6, Glyα-H₂), 4.98 (2H, s, OCH₂Ph), 6.98 (2H, d, *J* 8.0, 2×3-H), 7.15–7.28 (5H, m, Ph), 7.67 (2H, d, *J* 8.1, 2×2-H) and 8.08 (3H, br s, N⁺H₃); $\delta_{\rm C}$ (100 MHz; CDCl₃) 21.2 (CH₃, Ar–CH₃), 40.5 (CH₂, Glyα-C), 67.6 (CH₂, OCH₂Ph), 125.9 (CH, Ar), 128.2 (CH, Ar), 128.3 (CH, Ar), 128.4 (CH, Ar), 128.9 (CH, Ar), 134.7 (quat., Ph), 140.3 (quat., Ar), 141.2 (quat., Ar) and 167.4 (quat., Gly-CO); *m*/*z* (FAB+) 166 (BnO₂CCH₂NH₃⁺, 100%) and 91 (C₇H₇⁺, 53).

4.18. *N*-Benzyloxycarbonyl-glycyl-L-prolyl-glycine benzyl ester (25)

Following procedure B, coupling of acid 2 with p-toluenesulfonate 24 using triethylamine as the base yielded amide 25 (1.03 g, 94%) as a slightly opaque oil. Compound 25 was shown to be an 86:14 trans:cis mixture of conformers: R_f 0.30 (EtOAc); $[\alpha]_D$ -68.7 (c 0.58 in CH₂Cl₂); v_{max} (film)/cm⁻¹ 3317 br, 2952, 1743, 1722, 1650, 1534, 1453, 1256, 1188, 1051, 983, 908, 739 and 698; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 1.77–2.29 (3H, m, Proβ- H_A H_B and Proγ-H₂), 2.32–2.45 (1H, m, Proβ-H_AH_B), 3.30–3.70 (2H, m, Proδ-H₂), 3.78–4.13 (4H, m, $2 \times Gly\alpha$ -H₂), 4.28- 4.38^* (0.14H, m, Pro\alpha-H), 4.61(0.86H, dd, J 8.1 and 1.7, Proa-H), 5.05-5.20 (4H, m, $2 \times OCH_2Ph$), 5.53* (0.14H, br s, NH), 5.67 (0.86H, br s, NH), 6.78* (0.14H, br s, NH) and 7.13-7.40 (10.86H, m, 2 × Ph and NH); $\delta_{\rm C}$ (75MHz; CDCl₃) 21.9* (CH₂, Proγ-C), 24.4 (CH₂, Proγ-C), 27.9 (CH₂, Proβ-C), 31.8* (CH₂, Proβ-C), 41.1 (CH₂, Glyα-CCO₂-), 43.0* (CH₂, Glya-C), 43.1 (CH₂, Glya-C), 46.0 (CH₂, Proδ-C), 46.9* (CH₂, Proδ-C), 59.8 (CH, Proa-C), 66.6 (CH₂, OCH₂Ph), 66.7 (CH₂, OCH₂Ph), 66.8* (CH₂, OCH₂Ph), 127.6* (CH, Ph), 127.7 (CH, Ph), 127.8 (CH, Ph), 127.9* (CH, Ph), 128.0 (CH, Ph), 128.1* (CH, Ph), 128.2 (CH, Ph), 128.3 (CH, Ph), 128.6* (CH, Ph), 128.8* (CH, Ph), 135.0* (quat., Ph), 135.1 (quat., Ph), 136.2 (quat., Ph), 156.3 (quat., NCO₂), 156.5* (quat., NCO₂), 168.2 (quat., Gly-CON), 169.4 (quat., Gly-CO₂), 171.3 (quat., Pro-CON) and 171.8* (quat., Pro-CON); m/z (EI+) 453.1893 (M⁺. C₂₄H₂₇N₃O₆ requires 453.1900).

4.19. Glycyl-L-prolyl-glycine⁴² (22)

Following procedure C, hydrogenation of amide **25** in methanol yielded *tripeptide*⁴² **22** (0.15 g, 85%) as a white solid on trituration with diethyl ether. Compound **22** was shown to be a 76:24 *trans:cis* mixture of conformers: mp 175–185 °C (decomp.); $[\alpha]_D$ –89.8 (*c* 0.17 in H₂O); ν_{max} (Nujol mull)/cm⁻¹ 3543, 3311 br, 2659, 1649, 1595, 1570, 1533, 1317, 1230, 1201 and 930; δ_H (300 MHz; D₂O) 1.90–2.54 (4H, m, Pro β -H₂ and Pro γ -

H₂), 3.57–3.77 (2H, m, Proδ-H₂), 3.78–4.16 (4H, m, $2 \times \text{Gly}\alpha$ -H₂) and 4.53–4.63 (1H, m, Proα-H); δ_{C} (75MHz; D₂O) 23.8* (CH₂, Proγ-C), 26.0 (CH₂, Proγ-C), 31.4 (CH₂, Proβ-C), 33.6* (CH₂, Proβ-C), 42.3* (CH₂, Glyα-C), 42.4 (CH₂, Glyα-C), 45.1 (CH₂, Glyα-CCO₂H), 45.2* (CH₂, Glyα-CCO₂H), 48.7 (CH₂, Proδ-C), 42.3* (CH, Proα-C), 168.2 (quat., Gly-CON), 168.6* (quat., Gly-CON), 175.2* (quat., Pro-CON), 175.4 (quat., Pro-CON) and 178.1 (quat., Gly-CO₂H); *m*/z (FAB+) 230.1125 (MH⁺. C₉H₁₆N₃O₄ requires 230.1141).

4.20. Dimethyl *N*-benzyloxycarbonyl-glycyl-L-prolyl-Lglutamate (27)

Following procedure B, coupling of acid 2 with dimethyl L-glutamate hydrochloride 26 using triethylamine as the base yielded *amide* 27 (1.91g, 97%) as a colourless oil. Compound 27 was shown to be an 89:11 trans: cis mixture of conformers: $R_f 0.30$ (EtOAc); $[\alpha]_D - 62.3$ (c 0.23 in CH₂Cl₂); v_{max} (film)/cm⁻¹ 3305 br, 2953 br, 1732, 1650, 1532, 1440, 1256, 1213, 1173, 1054, 984 and 698; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 1.84–2.48 (8H, m, $Pro\beta-H_2$, $Pro\gamma-H_2$, $Glu\beta-H_2$ and $Glu\gamma-H_2$), 3.42 (1H, br dd, J 16.2 and 8.6, Prod-H_AH_B), 3.51-3.82 (1H, m, Proδ-H_AH_B), 3.64 (2.67H, s, OCH₃), 3.68* (0.33H, s, OCH₃), 3.70* (0.33H, s, OCH₃), 3.74 (2.67H, s, OCH₃), 3.98 (1H, dd, J 17.2 and 4.1, Glya- $H_A H_B$), 4.06 (1H, dd, J 17.3 and 4.7, Glya- $H_A H_B$), 4.29-4.37* (0.11H, m, Proa-H), 4.47-4.62 (1.89H, m, Glua-H and Proa-H), 5.10* (0.22H, s, OCH₂Ph), 5.12 (1.78H, s, OCH₂Ph), 5.58* (0.11H, br s, Gly-NH), 5.72 (0.89H, br s, Gly-NH), 7.09-7.17* (0.11H, m, Glu-NH), 7.22 (0.89H, d, J 7.5, Glu-NH) and 7.28-7.41 (5H, m, Ph); $\delta_{\rm C}$ (75 MHz; CDCl₃) 22.2* (CH₂, Proγ-C), 24.6 (CH₂, Proγ-C), 26.0* (CH₂, Gluβ-C), 26.8 (CH₂, Glu_β-C), 27.8 (CH₂, Pro_β-C), 29.7 (CH₂, Gluγ-C), 30.1* (CH₂, Gluγ-C), 31.8* (CH₂, Proβ-C), 43.1* (CH₂, Glya-C), 43.3 (CH₂, Glya-C), 46.1 (CH₂, Prod-C), 47.0* (CH₂, Prod-C), 51.6 (CH₃, OCH₃), 51.8* (CH₃, OCH₃), 52.2 (CH, Glua-C), 52.3* (CH, Glua-C), 59.9 (CH, Proa-C), 60.1* (CH, Proa-C), 66.7 (CH₂, OCH₂Ph), 127.8 (CH, Ph), 127.9 (CH, Ph), 128.3 (CH, Ph), 136.3 (quat., Ph), 156.2 (quat., NCO₂), 167.9 (quat., Gly-CO), 168.2* (quat., Gly-CO), 170.9 (quat., Pro-CON), 171.5* (quat., Pro-CON), 171.7* (quat., Glu-CO), 171.9 (quat., Glu-CO), 173.1 (quat., Glu-CO) and 173.3* (quat., Glu-CO); m/z (EI+) 463.1958 (M^+ . $C_{22}H_{29}N_3O_8$ requires 463.1955).

4.21. Dimethyl glycyl-L-prolyl-L-glutamate (23)

Following procedure C, hydrogenation of amide **27** yielded *analogue* **23** (1.31g, 97%) as an hygroscopic white foam following purification by flash column chromatography (SiO₂; 5–40% methanol–methylene chloride; gradient elution). Compound **23** was shown to be an 87:13 *trans:cis* mixture of conformers: R_f 0.30 (20% MeOH–CH₂Cl₂); [α]_D –90.7 (*c* 0.20 in H₂O); ν_{max} (film)/cm⁻¹ 3583, 3199 br, 2954 br, 1738, 1660, 1535, 1454, 1436, 1353, 1259, 1207, 1173, 1125, 987 and 917; δ_H (400 MHz; D₂O) 1.77–2.12 (4H, m, Pro β - H_A H_B Pro γ -H₂ and Glu β - H_A H_B), 2.14–2.45 (2H, m,

Glu β -H_AH_B and Pro β -H_AH_B), 2.45–2.61 (2H, m, Glu γ -H₂), 3.50–3.64 (2.13H, m, Pro δ -H₂ and Gly α -H₄H_B^{*}), 3.70 (3H, s, OCH₃), 3.74 (3H, s, OCH₃), 3.87–4.03 (1.87H, m, Glya-H₂ and Glya-H_A H_B^*), 4.42–4.52 (1.87H, m, Glua-H and Proa-H) and 4.54* (0.13H, dd, J 8.6 and 2.6, Proα-H); (100 MHz; D₂O) 24.7* (CH₂, Proγ-C), 27.0 (CH₂, Proγ-C), 27.9* (CH₂, Gluβ-C), 28.3 (CH₂, Gluβ-C), 32.2 (CH₂, Proβ-C), 32.6 (CH₂, Gluγ-C), 32.8* (CH₂, Gluγ-C), 34.6* (CH₂, Proβ-C), 43.1* (CH₂, Glya-C), 43.3 (CH₂, Glya-C), 49.6 (CH₂, Proδ-C), 50.3* (CH₂, Proδ-C), 54.8 (CH, Gluα-C), 54.9* (CH, Gluα-C), 55.1 (CH₃, OCH₃), 55.7 (CH₃, OCH₃), 55.8* (CH₃, OCH₃), 62.6* (CH, Proα-C), 63.0 (CH, Proa-C), 168.7 (quat., Gly-CO), 169.3* (quat., Gly-CO), 176.0* (quat., CO), 176.2 (quat., CO), 176.5* (quat., CO), 177.0 (quat., CO), 178.2* (quat., CO) and 178.3 (quat., CO); *m*/*z* (EI+) 329.1584 (M⁺. C₁₄H₂₃N₃O₆ requires 329.1587).

4.22. Dibenzyl *N-tert*-butyloxycarbonyl-L-glutamate⁴³ (30)

Triethylamine (2.25 mL, 2.20 mmol) and di-tert-butyl dicarbonate (2.10g, 9.61 mmol) were successively added to a solution of L-glutamic acid dibenzyl ester p-toluenesulfonate 29 (4.00g, 8.01 mmol) in methylene chloride (80mL) at 0°C. The reaction mixture was warmed to room temperature, stirred for 19h then washed with 2M aqueous hydrochloric acid, saturated aqueous sodium hydrogen carbonate, dried (MgSO₄), filtered and the solvent removed in vacuo. The resultant residue was purified by crystallisation from ether-hexane to give carbamate⁴³ **30** (3.32 g, 97%) as a white solid: mp 73– 76°C; $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.46 [9H, s, C(CH₃)₃], 1.96–2.07 (1H, m), 2.22–2.27 (1H, m), 2.38– 2.52 (2H, m), 4.40 (1H, br d, J 3.6, Glua-H), 5.12-5.19 (5H, m, $2 \times OCH_2Ph$ and Glua-NH) and 7.29–7.39 (10H, m, 2×Ph); $\delta_{\rm C}$ (100 MHz; CDCl₃) 27.6 (CH₂, Gluβ-C), 28.1 [CH₃, C(CH₃)₃], 30.1 (CH₂, Gluγ-C), 52.8 (CH, Glua-C), 66.4 (CH₂, OCH₂Ph), 67.1 (CH₂, OCH₂Ph), 79.7 [quat., C(CH₃)₃], 128.1 (CH, Ph), 128.2 (CH, Ph), 128.3 (CH, Ph), 128.5 (CH, Ph), 128.5 (CH, Ph), 135.2 (quat., Ph), 135.7 (quat., Ph), 155.3 (quat., NCO₂), 172.0 (quat., CO) and 172.4 (quat., CO).

4.23. (γ S)-Dibenzyl *N*-tert-butyloxycarbonyl-L- γ -allylglutamate (31)

A solution of lithium hexamethyldisilazide $(1 \text{ mol } \text{L}^{-1}, 10.30 \text{ mL}, 10.30 \text{ mmol})$ in tetrahydrofuran was added dropwise to a solution of carbamate **30** (2.00 g, 4.68 mmol) in anhydrous tetrahydrofuran (20 mL) at $-78 \text{ }^{\circ}\text{C}$ under an atmosphere of nitrogen. The resultant yellow solution was stirred for 40 min, allyl bromide (1.31 mL, 14.0 mmol) was added dropwise and stirring continued for a further 1.5 h at $-78 \text{ }^{\circ}\text{C}$. Saturated aqueous ammonium chloride (20 mL) was then added and the reaction mixture warmed to room temperature over 1.5 h. The white precipitate was filtered, washed with ethyl acetate and the filtrate concentrated to dryness in vacuo. The ensuing residue was purified by flash column chromatography (SiO₂; 6:1 to 5:1 hexane–ethyl acetate) to afford *alkene* **31** (1.59 g, 73%) as a colourless oil: $[\alpha]_D$

+19.4 (c 0.23 in CH₂Cl₂); $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 1.43 [9H, s, C(CH₃)₃], 2.06 (2H, m, allyl-CH₂), 2.30–2.44 $(2H, m, Glu\beta-H_2), 2.64$ (1H, quintet, J 6.7, Gluy-H), 4.41 (1H, br d, J 7.6, Glua-H), 5.01–5.71 (7H, m, $2 \times OCH_2Ph$, =CH₂, Glua-NH), 5.60–5.74 (1H, m, CH=CH₂) and 7.31–7.35 (10H, m, 2×Ph); $\delta_{\rm C}$ (75 MHz; CDCl₃) 28.2 [CH₃, C(CH₃)₃], 33.4 (CH₂, allyl-CH₂), 36.2 (CH₂, Gluβ-C), 41.7, (CH, Gluγ-C), 52.2 (CH, Glua-C), 66.4 (CH₂, OCH₂Ph), 67.0 (CH₂, OCH₂Ph), 80.0 [quat., C(CH₃)₃], 117.6 (CH₂, =CH₂), 128.2 (CH, Ph), 128.2 (CH, Ph), 128.3 (CH, Ph), 128.4 (CH, Ph), 128.5 (CH, Ph), 134.1 (CH, CH=CH₂), 135.2 (quat., Ph), 135.7 (quat., Ph), 155.3 (quat., NCO₂), 172.1 (quat., Gluα-CO) and 174.6 (quat., Gluγ-CO); *m/z* (FAB+) 468.2382 (MH⁺. C₂₇H₃₄NO₆ requires 468.2386).

4.24. (γ S)-Dibenzyl N-benzyloxycarbonylglycyl-L-prolyl-L- γ -allylglutamate (33)

Trifluoroacetic acid (3mL) was added to a solution of alkene 31 (0.48g, 1.07mmol) in methylene chloride (15mL) at 0°C and the reaction mixture stirred for 2h then the volatiles were removed in vacuo to yield tentatively trifluoroacetate 32 as a cream solid. To a solution of acid 2 (0.30g, 0.94mmol) in methylene chloride (20 mL), cooled to 0 °C under nitrogen, were successively added dropwise triethylamine (0.15mL, 1.07mmol) and ethyl chloroformate (0.10 mL, 1.07 mmol) and the solution stirred at 0°C for 45min to form the mixed anhydride. Triethylamine (0.15mL, 1.07mmol) was added to the crude trifluoroacetate 32 in methylene chloride (15 mL), under nitrogen at 0°C, and the resultant solution added dropwise to the above mixed anhydride. The reaction mixture was warmed to room temperature, stirred for 17h then washed with 10% aqueous hydrochloric acid and saturated aqueous sodium hydrogen carbonate, dried (MgSO₄), filtered and evaporated to dryness in vacuo. Purification of the resultant residue by flash column chromatography (SiO₂; 50–80% ethyl acetate-hexane; gradient elution) yielded amide 33 (0.54g, 87%) as a colourless oil, which crystallised at 0°C to a white solid. Compound 33 was shown to be an 88:12 *trans:cis* mixture of conformers: mp 42–45°C; $[\alpha]_{\rm D}$ -29.7 (c 0.28 in CH₂Cl₂); $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 1.70–1.91 (2H, m, Pro β - H_A H_B and Pro γ - H_A H_B), 1.96–2.14 (4H, m, $Pro\beta-H_AH_B$, $Pro\gamma-H_AH_B$ and Glu-H₂), 2.30 (2H, t, J 6.6, allyl-CH₂), 2.64 (1H, quintet, J 6.7, Gluγ-H), 3.24-3.60 (2H, m, Proδ-H₂), 3.76-3.98 (2H, m, Glya-H₂), 4.33* (0.12H, br s, Proa-H), 4.49 (0.88H, d, J 5.7, Proa-H), 4.60 (1H, q, J 7.0, Glua-H), 4.94–5.68 (8H, m, $3 \times OCH_2Ph$ and =CH₂), 5.55–5.68 (1H, m, CH=CH₂), 5.94 (1H, br s, Gly-NH), 7.29 (15H, s, 3 × Ph) and 7.38 (1H, d, J 7.8, Glu-NH); $\delta_{\rm C}$ (75 MHz; CDCl₃) 22.3* (CH₂, Proγ-C), 24.8 (CH₂, Proγ-C), 28.0 (CH₂, Proβ-C), 31.9* (CH₂, Proβ-C), 32.8 (CH₂, Gluβ-C), 35.9 (CH₂, allyl-CH₂), 41.4 (CH, Gluγ-C), 41.9* (CH, Gluγ-C), 43.4 (CH₂, Glyα-C), 46.2 (CH₂, Proδ-C), 47.1* (CH₂, Proδ-C), 50.8 (CH, Glua-C), 51.2* (CH, Glua-C), 60.0 (CH, Proa-C), 60.2* (CH, Proa-C), 66.4 (CH₂, OCH₂Ph), 66.5* (CH₂, OCH₂Ph), 66.8 (CH₂, OCH₂Ph), 67.1 (CH₂, OCH₂Ph), 67.3* (CH₂, OCH₂Ph), 67.4 (CH₂, OCH₂Ph), 67.4 (CH₂, OCH₂Ph), 117.6 (CH₂, =CH₂), 117.9* (CH₂, =CH₂), 128.0 (CH, Ph), 128.1 (CH, Ph), 128.2 (CH, Ph), 128.2 (CH, Ph), 128.2 (CH, Ph), 128.4 (CH, Ph), 128.5 (CH, Ph), 128.6 (CH, Ph), 134.2* (CH, CH=CH₂), 134.4 (CH, CH=CH₂), 135.2* (quat., Ph), 135.4 (quat., Ph), 135.7* (quat., Ph), 135.9 (quat., Ph), 136.6 (quat., Ph), 156.4 (quat., NCO₂), 156.6* (quat., NCO₂), 168.1 (quat., Gly-CO), 168.5* (quat., Gly-CO), 171.6 (quat., Gluα-CO), 171.7* (quat., Gluα-CO), 174.4* (quat., Gluα-CO) and 174.5 (quat., Gluα-CO); m/z (FAB+) 656.2964 (MH⁺. C₃₇H₄₂N₃O₈ requires 656.2972).

4.25. (γS)-Glycyl-L-prolyl-L- γ -propylglutamic acid (28)

Following procedure C, hydrogenation of amide 33 vielded analogue 28 (0.084 g, 77%) as an off white solid when freeze-dried from toluene-methanol. Compound 28 was shown to be an 82:18 trans: cis mixture of conformers: mp 160–165 °C; $[\alpha]_D$ –76.6 (*c* 0.06 in H₂O); $\delta_{\rm H}$ (400 MHz; D₂O) 0.91 (3H, t, J 7.0, Gluy-CH₂CH₂CH₃), 1.29–1.38 (2H, m, Glu₂-CH₂CH₂CH₃), 1.58 (2H, d, J 6.4, Gluy-CH₂CH₂CH₃), 1.91–2.51 (7H, m, Glu β -H₂, Glu γ -H, Pro β -H₂ and Pro γ -H₂), 3.55– 3.68 (2H, m, Prod-H₂), 3.78* (0.18H, d, J 16.0, Glya- H_AH_B), 3.97–4.08 (1.82H, m, Glya-H₂ and Glya- $H_A H_B^*$, 4.31 (1H, br s, Glua-H) and 4.53 (1H, d, J 5.5, Proa-H); $\delta_{\rm C}$ (100 MHz; D₂O) 13.1 (CH₃, Gluy-CH₂CH₂CH₃), 19.6 (CH₂, Glu₇-CH₂CH₂CH₃), 21.9* (CH₂, Proγ-C), 24.0 (CH₂, Proγ-C), 29.2 (CH₂, Proβ-C), 31.6* (CH₂, Pro β -C), 33.5 (2×CH₂, Glu β -C and Gluy-CH2CH2CH3), 33.9* (CH2), 40.1* (CH2, Glya-C), 40.3 (CH₂, Glya-C), 42.5 (CH, Gluy-C), 43.6* (CH, Gluy-C), 46.8 (CH₂, Proδ-C), 47.4* (CH₂, Proδ-C), 52.8 (CH, Glua-C), 53.5* (CH, Glua-C), 60.0* (CH, Proa-C), 60.4 (CH, Proa-C), 165.5 (quat., Gly-CO), 166.0* (quat., Gly-CO), 173.0* (quat., Pro-CON), 173.4 (quat., Pro-CON), 176.9 (quat., Glu α -CO) and 181.0 (quat., Glu γ -CO); m/z (FAB+) 344.1833 (MH⁺. C₁₅H₂₆N₃O₆ requires 344.1822).

Acknowledgements

The authors thank Neuren Pharmaceuticals Ltd for financial support.

References and notes

- Trotter, N. S.; Brimble, M. A.; Harris, P. W. R.; Callis, D. J.; Sieg, F. *Bioorg. Med. Chem.*, preceding paper, see doi:10.1016/j.bmc.2004.10.005.
- 2. Sara, V. R.; Carlsson-Skwirut, C. Prog. Brain Res. 1988, 73, 87.
- 3. De Pablo, F.; De La Rosa, E. J. *Trends Neurosci.* **1995**, *18*, 143.
- Baskin, D. G.; Wilcox, B. J.; Figlewicz, D. P.; Dorsa, D. M. Trends Neurosci. 1988, 11, 107.
- Sara, V. R.; Carlsson-Sdwirut, C.; Bergman, T.; Jornvall, H.; Roberts, P. J.; Crawford, M.; Hakansson, L. N.; Civalero, I.; Nordberg, A. *Biochem. Biophys. Res. Commun.* 1989, 165, 766.

- Sara, V. R.; Carlsson-Skwirut, C.; Drakenberg, K.; Giacobini, M. B.; Hakansson, L.; Mirmiran, M.; Nordberg, A.; Olson, L.; Reinecke, M.; Stahlbom, P. A.; Sandberg Nordqvist, A. C. Ann. N.Y. Acad. Sci. 1993, 692, 183.
- 7. Yamamoto, H.; Murphy, L. J. Endocrinology 1994, 135, 2432.
- 8. Yamamoto, H.; Murphy, L. J. J. Endocrinol. 1995, 146, 141.
- Sara, V. R.; Carlsson-Skwirut, C.; Andersson, C.; Hall, E.; Sjogren, B.; Holmgren, A.; Jornvall, H. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 4904.
- Carlsson-Skwirut, C.; Jornvall, H.; Holmgren, A.; Andersson, C.; Bergman, T.; Lindquist, G.; Sjogren, B.; Sara, V. R. *FEBS Lett.* **1986**, 201, 46.
- 11. Bourguignon, J. P.; Gerard, A. Brain Res. 1999, 847, 247.
- Gluckman, P. D.; Klempt, N. D.; Guan, J.; Mallard, C. E.; Sirimanne, E. S.; Dragunow, M.; Klempt, M.; Singh, K.; Williams, C. E.; Nijolics, K. *Biochem. Biophys. Res. Commun.* 1992, 182, 593.
- 13. Lee, W.-H.; Bondy, C. Ann. N.Y. Acad. Sci. 28 1993, 679, 418.
- Galli, C.; Meucci, O.; Scorziello, A.; Werge, T. M.; Calissano, P.; Schettini, G. J. Neurosci. 1995, 15, 1172.
- 15. Mason, J. L.; Ye, P.; Suzuki, K.; D'Ercole, A. J.; Matsushima, G. K. *J. Neurosci.* **2000**, *20*, 5703.
- Pons, S.; Rejas, M. T.; Torres-Aleman, I. Dev. Brain Res. 1991, 62, 169.
- Walter, H. J.; Berry, M.; Hill, D. J.; Logan, A. Endocrinology 1997, 138, 3024.
- Nilsson-Hakansson, L.; Civalero, I.; Zhang, X.; Carlsson-Skwirut, C.; Sara, V. R.; Nordberg, A. *Neuroreport* 1993, 4, 1111.
- Ikeda, T.; Waldbillig, R. J.; Puro, D. J. Brain Res. 1995, 686, 87.
- Sizonenko, S. V.; Sirimanne, E. S.; Williams, C. E.; Gluckman, P. D. *Brain Res.* 2001, 922, 42.
- Saura, J.; Curatolo, L.; Williams, C. E.; Gatti, S.; Benatti, L.; Peters, C.; Guan, J.; Dragunow, M.; Post, C.; Faull, R. L. M.; Gluckman, P. D.; Skinner, S. J. M. *Neuroreport* 1999, 10, 161.
- Guan, J.; Waldvogel, H. J.; Faull, R. L. M.; Gluckman, P. D.; Williams, C. E. *Neuroscience* **1999**, *89*, 649.
- Guan, J.; Krishnamurthi, R.; Waldvogel, H. J.; Faull, R. L. M.; Clark, R.; Gluckman, P. *Brain Res.* 2000, 859, 286.
- Bourguignon, J. P.; Alvarez Gonzalez, M. L.; Gerard, A.; Franchimont, P. *Endocrinology* 1994, 134, 1589.
- 25. Bourguignon, J. P. U.S. Patent 5,804,550, 1998.
- 26. Knopfel, T.; Kuhn, R.; Allgeier, H. J. Med. Chem. 1995, 38, 1417.
- 27. Riedel, G. Trends Neurosci. 1996, 19, 219.
- Nicoletti, F.; Bruno, V.; Copani, A.; Casabona, G.; Knopfel, T. Trends Neurosci. 1996, 19, 267.
- Abood, N. A.; Brimble, M. A. PCT Int. Appl. 0294856, 2002.
- 30. Gluckman, P.; Alexi, T. PCT Int. Appl. 0216408, 2002.
- Gluckman, P. D.; Williams, C. E.; Guan, J.; Krishnamurthi, R. V. M. U.S. Pat. Appl. Publ. 20020035066, 2002.
- Gluckman, P. D.; Sirimanne, E. S.; Krissansen, G. W.; Kanwar, J. R. U.S. Pat. Appl. Publ. 2003027760, 2003.
- 33. Anderson, G. W.; Zimmerman, J. E.; Callahan, F. M. J. *Am. Chem. Soc.* **1964**, *86*, 1839.
- 34. Savrda, J. J. Org. Chem. 1977, 42, 3199.
- 35. El-Abadelah, M. M.; Hussein, A. Q.; Thaher, B. A. *Heterocycles* **1991**, *32*, 1879.
- Williamson, D. A.; Bowler, B. E. J. Am. Chem. Soc. 1998, 120, 10902.

- 37. Lenman, M. M.; Lewis, A.; Gani, D. J. Chem. Soc., Perkin Trans. 1 1997, 2297.
- 38. Hanessian, S.; Margarita, R. Tetrahedron Lett. 1998, 39, 5887–5890.
- Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. Purification of Laboratory Chemicals; Pergamon: Oxford, 1980.
- 40. Kessler, H. Angew. Chem., Int. Ed. Engl. 1982, 21, 512.
- 41. Servas, L.; Winitz, M.; Greenstein, J. P. J. Org. Chem. 1957, 22, 1515.
- 42. Commercially available from Indofine Chemical Company, and Bachem: Registry Number 2441-63-6.
- 43. Chen, S. T.; Chen, S. Y.; Wang, K. T. J. Org. Chem. 1992, 57, 6960.