

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 6373-6376

Tetrahedron Letters

Synthesis of xestobergsterol A from dehydroepiandrosterone

Atsuko Nakamura, Yuko Kaji, Kana Saida, Michiko Ito, Yumi Nagatoshi, Noriyuki Hara and Yoshinori Fujimoto*

Department of Chemistry and Materials Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan

Received 19 May 2005; revised 27 June 2005; accepted 1 July 2005 Available online 28 July 2005

Abstract—Xestobergsterol A, a potent inhibitor of histamine release, has been synthesized from dehydroepiandrosterone in a route that used introduction of a novel 15-oxygen functionality, side-chain construction via the orthoester Claisen rearrangement and TBAF-promoted epimerization–aldol condensation.

© 2005 Elsevier Ltd. All rights reserved.

Xestobergsterols A (1) and B (2) were isolated in 1992 from the Okinawan marine sponge Xestospongia bergquistia, as unique polyhydroxy-steroids having a cis C/ D-ring junction and an additional carbocyclic E-ring.¹ Subsequently, xestobergsterol C (3) was isolated from the Okinawan sponge, Ircinia sp., and the full structures, including the C-23 configuration, of these sterols were established.² Xestobergsterols A and B are strong inhibitors of histamine release from rat mast cells induced by anti-immunoglobulin E.1 It was further shown that xestobergsterol A exerts its action by inhibiting phosphatidylinositol phospholipase C.³ In addition, xestobergsterols A and C were shown to exhibit cytotoxicity against L-1210 murine leukemia cells.² The unique structures and potent biological activities of xestobergsterols prompted our and other groups to study the synthesis of xestobergsterols.^{4–6} In the previous paper, we reported a model synthesis of 3-epi-6,7-dideoxyxestobergsterol A from dehydroepiandrosterone (4) in a route that used a novel C-15 functionalization followed by a side-chain construction via an orthoester Claisen rearrangement.⁷ Herein, we report the synthesis of naturally occurring xestobergsterol A by applying this methodology. The first synthesis of 1 has been described by Jung and Johnson⁸ who employed Breslow et al.'s remote oxidation for the C-15 functionalization.⁹

Before beginning the total synthesis of 1 itself, we first examined the feasibility of the order of introduction of the C-6/C-7 glycol and the C-15 oxygen functions. The study suggested that the C-15 oxygen functionality (and the side-chain construction) should be introduced before the C-6/C-7 glycol formation, since epoxidation of an androst-15-en-17-one derivative having a protected C-6/C-7 glycol moiety failed to proceed. Thus, we chose a compound that bears a protected 3β -ol function and the Δ^5 -double bond as well as C-15 and C-23 oxygen functions as a key intermediate. Retrosynthesis of 1 along this line is shown in Scheme 1. The Ering of 1 could be formed from the diketone A according to the base-catalyzed epimerization-aldol condensation originally developed by Jung and Johnson.⁶ The suitably protected pentanol B, in which the R_1 protecting group needs to be removed in the presence of the R_3 and R_4 protecting groups, could be a precursor of the diketone A. We anticipated a possible use of compound B for the synthesis of 2 and 3, since the introduction of the A-ring functionalities in 2 and 3 might be possible from it. The Δ^{5} -double bond of compound C is a good clue for the introduction of the C-6/C-7 glycol moiety. In the

Keywords: Xestobergsterol A; Steroid; Dehydroepiandrosterone; Orthoester Claisen rearrangement.

^{*} Corresponding author. Tel./fax: +81 3 5734 2241; e-mail: fujimoto@cms.titech.ac.jp

^{0040-4039/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.07.042

Scheme 1. Retrosynthesis of 1.

intermediate C, the C-15 and C-23 alcohol groups were intentionally protected with the same group (R_3) . This required a selective removal of the C-15 hydroxy protecting group (R_2) in the presence of the C-3 alcoholprotecting group (R_1) . Use of a single C-23 epimer would be convenient from the viewpoint of synthetic simplicity, although the C-23 chiral center in compound C disappears at a later stage. The full side-chain structure in compound C can be readily prepared from the C-23 aldehyde D, which can be obtained in reactions involving the orthoester Claisen rearrangement of the allylic alcohol E with a suitably protected (R_2) C-15 alcohol group. At the outset of this study, we developed a method to attain such an allylic alcohol by titanium tetraisopropoxide-mediated ring-opening of a 15,16epoxy-17(20)-ene,⁷ which is available from the epoxyketone F. The synthesis of the epoxide F from dehydroepiandrosterone appeared to be straightforward according to the known procedure.^{10,11}

The TBDPS ether was selected as the R_1 protecting group of 4 in the hope of a selective removal of the C-15 protecting group. The ether 5 was converted to the enol TMS ether, which was then gently heated in CHCl₃–DMSO in the presence of 0.1 equiv of Pd(OAc)₂ under oxygen atmosphere to yield the enone 6.12 Epoxidation of **6** with TBHP/triton B afforded the β -epoxide 7 stereoselectively.¹⁰ Wittig reaction of 7 gave exclusively the (E)-olefin 8 [(E):(Z) = 10:1].⁵ The epoxidering-opening of 8 with acetic acid (3 equiv) and Ti(OiPr)₄ (1.5 equiv) gave 15 β -hydroxy-16 α -acetate 9 in 84% yield, as we reported previously.⁷ Protection of the C-15 hydroxyl group as TES ether followed by deacetylation afforded the protected allylic alcohol 10, a substrate for the side-chain introduction. Compound 10 was subjected to the standard conditions of the orthoester Claisen rearrangement using triethyl orthopropionate to give the rearranged ester 11 as a single isomer in 88% yield. The Δ^{16} -olefinic bond in 11 was selectively hydrogenated with Pt-C as a catalyst to give the ester 12 with the correct C-17 configuration.¹¹ Compound 12 was converted to the aldehyde 13 via the corresponding C-23 alcohol. Reaction of 13 with isobutylmagnesium bromide gave the C-23 epimeric

alcohols, the less polar (23S)-ol 14b (30%) and the more polar (23R)-ol 14a (36%) together with the reduced C-23 primary alcohol (17%). Reaction of 13 with isobutyllithium at -78 °C gave an improved result, yielding **14b** (25%) and 14a (58%) together with the C-23-alcohol (6%). The (23S)-ol 14b was found to be readily converted to (23R)-ol 14a in 83% yield via a protocol reported by Corey et al., that is, mesylation followed by KO₂ treatment (80% combined yield from 13 to 14a).¹³ The configuration at the C-23 stereocenter for 14a and b was determined by application of the modified Mosher's ester method.¹⁴ Chemoseletive desilylation of the C-15 TES group in 14a was achieved by a brief treatment of 14a with BF₃·Et₂O (2 equiv) in CH₂Cl₂ at 0 °C, although TBAF or acidic treatment deprotected the two silyl groups without selectivity. The 15,23-diol thus obtained was now protected as the dibenzoate 15.

The stage was now set for the B-ring modification. It was found that N-hydroxyphthalimide-catalyzed air oxidation¹⁵ of **15** in the presence of dibenzoyl peroxide followed by decomposition of the resulting peroxy product with CuCl₂ in pyridine afforded the corresponding 5ene-7-one in a better yield than other oxidation methods such as RuCl₃/TBHP and PCC. Luche reduction of the C-7 ketone with NaBH₄ gave the 7β -ol 16 stereoselectively.¹⁶ Hydroboration-oxidation of 16 gave the 6α , 7\beta-diol which was protected as the methylenedioxy compound 17 (corresponding to compound B). The modest yield (51%) of this step was mainly due to partial removal of the C-15 benzoate group. The C-3 silyl group was removed with TBAF, and the orientation of the C-3 alcohol was inverted via an oxidation-reduction sequence using L-Selectride as a reducing agent⁵ to yield the 3α -alcohol 18. Protection of the hydroxyl group of 18 as *tert*-butyldimethylsilyl ether and reductive removal of the benzoyl group gave the C-15,C-23-diol. This diol was smoothly oxidized to the corresponding diketone 19 with Dess-Martin periodinane. We found that TBAF treatment of the diketone 19 effected deprotection of the TBS group as well as epimerization-aldol condensation to furnish the 6,7-methylal derivative 20 of xestobergsterol A in good yield. The new epimerizationaldol condensation method could be used as an alterna-

Scheme 2. Synthetic route to 1. Reagents and conditions: (a) TBDPSCl, Im, 99%; (b) LDA, TMSCl; O_2 , Pd(OAc)₂, 84%; (c) TBHP, Triton B, 83%; (d) EtPPh₃I, KHMDS, 83%; (e) AcOH, Ti(O*i*Pr)₄, 84%; (f) TESOTf, lutidine; (g) LiAlH₄, 70% (two steps); (h) EtC(OEt)₃, EtCO₂H, 88%; (i) H₂, Pt-C, 96%; (j) LiAIH₄; (k) TPAP, NMO, 83% (two steps); (l) isobutyllithium; (m) BF₃·Et₂O, 90%; (n) BzCl, Py, 91%; (o) *N*-hydroxyphthalimide, O_2 , Bz₂O₂; CuCl₂, Py, 75%; (p) NaBH₄, CeCl₃, 89%; (q) BH₃·THF; H₂O₂, NaOH, 51%; (r) CH₂(OMe)₂, P₂O₅, 85%; (s) TBAF, 95%; (t) Dess-Martin, 91%; (u) L-Selectride, 90%; (v) TBSOTf, lutidine, 63%; (w) LiAlH₄, 90%; (x) Dess-Martin, 60%; (y) TBAF; (z) 6 N HCl/THF, 60% (two steps).

tive to the known base-catalyzed one in the synthesis of the other xestobergsterols. Final deprotection of the methylal group under acidic conditions furnished **1** (Scheme 2). The spectroscopic data of synthetic **1** were in complete accord with those of natural xestobergsterol A.

In summary, we have achieved the synthesis of xestobergsterol A from dehydroepiandrosterone in a route that used introduction of a novel 15-oxygen functionality, side-chain construction via the orthoester Claisen rearrangement, and TBAF-promoted epimerization– aldol condensation. This paper constitutes the second synthesis of xestobergsterol A. As an extension of this work, the synthesis of xestobergsterols B and C is in progress utilizing the intermediate **17**.

Acknowledgments

We thank Professor Akemi Umeyama (Tokushima Bunri University) and Jun'ichi Kobayashi (Hokkaido University) for providing ¹H and ¹³C NMR spectra of natural xestobergsterol A.

References and notes

- Shoji, N.; Umeyama, A.; Shin, K.; Takeda, K.; Arihara, S.; Kobayashi, J.; Takei, M. J. Org. Chem. 1992, 57, 2996– 2997.
- Kobayashi, J.; Shinonaga, H.; Shigemori, H.; Umeyama, A.; Shoji, N.; Arihara, S. J. Nat. Prod. 1995, 58, 312–318.
- Takei, M.; Umeyama, A.; Shoji, N.; Arihara, S.; Endo, K. Experintia 1993, 49, 145.
- Krafft, M. E.; Chirico, X. Tetrahedron Lett. 1994, 4511– 4514; Krafft, M. E.; Shao, B.; Dasse, O. A. Tetrahedron 1998, 54, 7033–7044.
- Krafft, M. E.; Dasse, O. A.; Fu, Z. J. Org. Chem. 1999, 64, 2475–2485.
- Jung, M. E.; Johnson, T. W. J. Am. Chem. Soc. 1997, 119, 12412–12413.
- Kaji, Y.; Koami, T.; Nakamura, A.; Fujimoto, Y. Chem. Pharm. Bull. 2000, 48, 1480–1483.
- Jung, M. E.; Johnson, T. W. Org. Lett. 1999, 1, 1671– 1674; Jung, M. E.; Johnson, T. W. Tetrahedron 2001, 57, 1449–1481.

- Breslow, R.; Baldwin, S.; Flechtner, T.; Kalicky, P.; Liu, S.; Washburn, W. J. Am. Chem. Soc. 1973, 95, 3251– 3262.
- Takahashi, T.; Ootake, A.; Tsuji, J.; Tachibana, K. *Tetrahedron* 1985, 41, 5747–5754.
- 11. Liu, D.; Stuhmiller, L. M.; McMorris, T. C. J. Chem. Soc., Perkin Trans. 1 1988, 2161–2167.
- Larock, R. C.; Hightower, T. R.; Kraus, G. A.; Hahn, P.; Zheng, D. *Tetrahedron Lett.* **1995**, *36*, 2423–2426.
- Corey, E. J.; Nicolaou, K. C.; Shibasaki, M.; Machida, Y.; Shiner, C. S. *Tetrahedron Lett.* 1975, 3183–3186.
- 14. Ohtani, I.; Kusumi, T.; Kashman, K.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092–4096.
- Jones, S. R.; Selinsky, B. S.; Rao, M. N.; Zhang, X. H.; Kinney, W. A.; Tham, F. S. J. Org. Chem. 1998, 63, 8599– 8603.
- Kumar, V.; Amann, A.; Qurisson, G.; Luu, B. Synth. Commun. 1987, 17, 1279–1286.