ELSEVIER

Contents lists available at SciVerse ScienceDirect

Carbohydrate Research

journal homepage: www.elsevier.com/locate/carres

Note

Efficient double glycoconjugation to naturalize high molecular weight disperse dyes $^{\mbox{\tiny $^{\dot{}}$}}$

Roberto Bianchini ^{a,*}, Massimo Rolla ^a, Jalal Isaad ^a, Giorgio Catelani ^{b,*}, Lorenzo Guazzelli ^b, Massimo Corsi ^a, Marco Bonanni ^a

- ^a Dipartimento di Chimica 'Ugo Schiff', Università di Firenze, via della Lastruccia 13, Sesto Fiorentino 50019 (FI), Italy
- ^b Dipartimento Scienze Farmaceutiche, Università di Pisa, via Bonanno 33, Pisa 56126, Italy

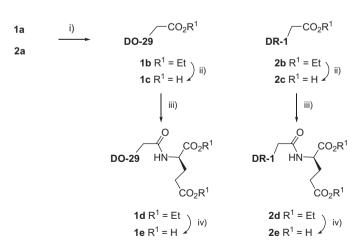
ARTICLE INFO

Article history:
Received 23 August 2011
Received in revised form 21 October 2011
Accepted 23 October 2011
Available online 29 October 2011

Keywords: Disperse azodyes Glycoconjugation Glutamic acid Lactose

ABSTRACT

Commercially available Disperse Orange 29 (1a) and Disperse Red 1 (2a) were elaborated to glycoconjugated species, following a new version of a previously-described 'naturalisation' procedure. Glutamic acid was chosen to achieve a double glycoconjugation, which is essential to give to the original disperse dye a water solubility suitable for reaching optimal dyeing conditions. UV-vis plot of the 'naturalised' species showed negligible differences when compared to those of the commercial dyes.


© 2011 Elsevier Ltd. All rights reserved.

The naturalisation of dyes¹ (i.e., the conjugation of dyes to saccharide species) has proven to be a valid method to prepare novel dyeing agents. The main characteristics of these dyes are not only their solubility in water, but also their ability to dye the majority of synthetic and natural (wool, cotton) textiles.² Moreover this property is accompanied by the environmentally sound characteristic: the overall process of dyeing does not require surfactants, mordants, dispersing agents or other additives, generally required to yield a good permeation of the dye into the fabrics.³

A limitation of the solubilising power of the saccharidic unit when conjugated with the dye, is that the molecular weight of the two portions must remain similar.⁴ We have observed that large molecular sized dyes do not reach an acceptable hydrosolubility when glycoconjugated with a single lactose unit, despite the presence of a variety of linkers such as esters, ethers, amides, alkylamino derivatives and mixed ethereal-esters, or amido-esters.⁴ To extend the field of application of this new type of dyeing agent, we studied a double glycoconjugation with lactose, bonded through a difunctional linker to the chromophore. This should enhance the solubilising power of the saccharide according to the molecular weight of the dye.

E-mail addresses: roberto.bianchini@unifi.it (R. Bianchini), giocate@farm.unipi.it, giorgio.catelani@farm.unipi.it (G. Catelani).

As a first example of this approach we recently prepared malonic acid derivatives. 1c,d Herein, we highlight that glutamic acid is a particularly convenient functionality to link chromophoric moieties to saccharides in the form of water soluble dyes. The procedure allows the preparation of new materials able to dye and to reduce the environmental impact of the waste produced by dyeing. 5

Scheme 1. Preparation of glutamic acid derivatives (1e) and (2e). Reagents and conditions: (i) (1b): KOH, 18-crown-6, BrCH₂CO₂Et, THF, 0 °C, rt, 8 h, 91%; (2b): NaH, BrCH₂CO₂Et, THF, 0 °C-rt, 8 h, 72%; (ii) KOH, THF, H₂O, rt, 98% (1c) 84% (2c); (iii) (1d) (1) CICOEt, TEA, THF; (2) diethyl glutamate-HCl, TEA, 90%; (2d): (1) SOCl₂, TEA; DCM; (2) diethyl glutamate-HCl, TEA, 90%; (iv) KOH, THF, H₂O, rt, 98% (1e) 96% (2e).

^{*} Part of this work has been presented in preliminary form at XVI European Carbohydrate Symposium, Sorrento (I), 3–7 July 2011, abstract PO054.

^{*} Corresponding authors. Tel.: +39 0554573486; fax: +39 0554573531 (R.B.); tel.: +39 0502219700; fax: +39 0502219660 (G.C.).

The synthetic path to obtain multiple glycoconjugated dyes (Scheme 1) was developed for two commercially available products: Disperse Orange 29 and Disperse Red 1 (Fig. 1).

Ethyl 2-bromoacetate was used in the presence of a base of suitable strength to set up a useful tag for glutamic acid coupling. Subsequent hydrolysis of the ester groups of **1b** and **2b** led to carboxylic acid derivatives **1c** and **2c** in good yields. The acid groups were activated and coupled with glutamic acid, as the corresponding diethyl ester. In the case of **1c**, ethyl chloroformate⁶ was used to assemble a mixed ethyl-acetyl carbonate, and compound **1d** was obtained in good yields. For **2c**, better results were obtained with thionyl chloride,⁷ and compound **2d** was achieved in excellent yield. Both glutamic diester derivatives **1d** and **2d** were hydrolysed to dicarboxylic acids **1e** and **2e** completing the elaboration of dyes **1a** and **2a** (Scheme 1).

The naturalising lactose derivative **4** was prepared through a straightforward elaboration⁸ of lactose-triacetonide **3**, synthesised from lactose according to a well established protocol. Toluensulfonyl chloride was employed to regioselectively introduce a good leaving group on the primary hydroxyl group of **3**. The subsequent S_N2 displacement with sodium azide and the final hydrogenolysis afforded 6'-amino-lactose-triacetonide **4** in 80% yield over three steps (Scheme 2).

The coupling of the elaborated dye and saccharide moieties was carried out using as the acid activating reagent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM), prepared in situ by reaction of 2-chloro-4,6-dimethoxy-1,3,5-triazine with *N*-methyl morpholine.¹⁰ Compounds **1e** and **2e** were then converted to the corresponding bis-6'-amino-lactose-triacetonide glutamic derivatives **1f** and **2f** in acceptable to excellent yields thus confirming the validity of the reaction strategy (Scheme 3).

Final removal of the acetal groups using TFA¹ afforded the target compounds **1g** and **2g** (Scheme 4).

These new naturalised dyes have similar chromophoric properties compared with the non-glycoconjugated species ${\bf 1a}$ and ${\bf 2a}$ (Fig. 1). The intensities are comparable and for the $\lambda_{\rm max}$ absorption the shifts are 2 or 3 nm. The maximum difference observed is between the $\varepsilon_{\rm max}$ of dye ${\bf 2a}$ and its double glycoconjugated version ${\bf 2g}$ which was found to be around 1% (Fig. 2).

In conclusion, the strategy here reported, which employs glutamic acid as linker between the chromophore and the sugar furnishes chemically stable final naturalized dyes, thanks to the ethereal and amidic bonds. Currently, progress to extend this methodology to other saccharide derivatives is under investigation.

1. Experimental

1.1. General methods

Thin layer chromatography (TLC) was performed using commercially prepared 60-mesh silica gel aluminium foils (Merck; 60 Å F254) and spots were visualized with: (a) UV light (254 and 366 nm), (b) an acidic solution of *p*-anisaldehyde in ethanol. Flash column chromatography (FCC) was carried out on Merck Silica Gel

Scheme 2. Synthesis of 6'-aminotriacetonlactose dimethyl acetal (**4**). Reagents and conditions: (i) (1) pyridine, MeCN, *p*TsCl, 0 °C-rt, ovn, 92%; (2) NaN₃, DMSO, 90 °C, 20 h, 91%; (3) H₂, Pd/C, MeOH, rt, ovn, 96%.

Scheme 3. Synthesis of bis-lactose glutamic amide derivatives (**1f**) and (**2f**). Reagents and conditions: (i) DMTMM, THF, 0 °C to room temperature, overnight, 91% (**1f**):60% (**2f**).

60 (230–400 mesh) according to Still et al.¹¹ ¹H and ¹³C NMR spectra were recorded at 200 MHz, on Varian spectrometers in deuterated solvents and are reported in parts per million (ppm) with solvent resonance used as internal reference. When not specified spectra are referred to mixtures of enantiomers, or diastereoisomers. Mass spectra were taken from ThermoFisher LCQ-Fleet ion trap instrument and spectra were registered with ESI +c technique. Elemental analysis was carried out on a Perkin Elmer 240 C Elemental Analyzer. UV–vis spectra were recorded on a Cary-4000 Varian spectrophotometer. The industrial dye 4-[2-methoxy-4-(4'-nitrophenylazo)phenylazo]-phenol 1a (Colour Index name: Orange 29) and *N*-ethyl-*N*-(2-hydroxyethyl)-4-(4-nitrophenylazo)aniline 2a (Colour Index name: Disperse Red 1) are commercially available (Sigma–Aldrich) and used as such.

1.2. 6'-Deoxy-6'amino-2,3:5,6:3',4'-tri-0-(isopropylidene)lactose dimethyl acetal (4)

A solution of protected lactose 3^9 (2.00 g, 3.92 mmol) in pyridine/acetonitrile 2:1 (15 mL) was added dropwise to a solution of *para*-4-methylbenzene-1-sulfonyl chloride (TsCl) (0.90 g, 4.70 mmol) in pyridine/acetonitrile 2:1 (3 mL).⁸ The reaction mixture was stirred at room temperature overnight, then water

Figure 1. Disperse dyes employed for naturalisation.

Scheme 4. Synthesis of naturalized dyes (1g) and (2g). Reagents and conditions: (i) TFA, H_2O , rt, ovn, 99% (1g):78% (2g).

(20 mL) and ether (20 mL) were added to the crude solution and the aqueous phase was separated and extracted with Et₂O (2 \times 20 mL). The organic phases were combined and dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue (obtained as a colourless oil) was purified by FCC (3:2 EtOAc–petroleum ether, R_f 0.66) to afford the 6′-tosyl derivative (2.4 g, 92%) as a colourless oil.

Sodium azide (0.29 g, 4.65 mmol) was added to a solution of **3** (2.1 g, 3.1 mmol) in dimethyl sulfoxide (20 mL) and the resulting mixture was heated at 90 °C for 20 h. The mixture was cooled, filtered, and the filtrate was diluted with water (50 mL) and extracted with CH₃Cl (4 × 30 mL). The organic phases were combined, dried over Na₂SO₄, and concentrated in vacuo. The residue (obtained as a colourless oil) was purified by FCC eluting with 2:1 EtOAc–petroleum ether to afford the 6′-azido derivative (1.5 g, 91%) as a colourless oil, $R_{\rm f}$ 0.54, 2:1 EtOAc–petroleum ether).

A solution of the prepared azido derivative (1.5 g, 2.8 mmol) in CH₃OH (25 mL) was hydrogenated in presence of 10% palladium on carbon (200 mg) for 20 h at room temperature. The solution was filtered through a pad of Celite $^{\tiny (8)}$ and the filtrate was concentrated

under reduced pressure. The residue was purified by precipitation from ether at 0 $^{\circ}$ C to afford **4** (1.36 g, 96%) as a light yellow powder having NMR data and physico-chemical properties identical with those of an authentic sample.⁴

1.3. Ethyl 2-{4-[2-methoxy-4-(4'-nitrophenylazo)phenylazo] phenoxy}acetate (1b)

Disperse dye 1a (1.5 g, 3.97 mmol) was added to a solution of KOH (1.12 g, 19.89 mmol) in THF (15 mL) and the resulting mixture was stirred at room temperature for 1.5 h. Ethyl 2-bromoacetate (1.32 mL, 11.91 mmol) and catalytic quantity of 18-crown-6 were added and the resulting solution was stirred at room temperature for 20 h. The reaction mixture was filtered, the filtrate was diluted with water (40 mL) and extracted with CH₃Cl (4 \times 30 mL). The organic phase was dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure. Purification by FCC eluting with 4:9 EtOAc-petroleum ether afforded **1b** (1.67 g, 91%) as an orange solid, $R_f 0.75$ (4:9 EtOAc–petroleum ether), mp 158–160 °C (chrom). ¹H NMR (200 MHz, CDCl₃): δ 8.44 (m, 2H, ArH); 8.16–7.91 (m, 4H, ArH), 7.88-7.76 (m, 3H, ArH), 7.01 (m, 2H. ArH), 4.95 (s, 2H, OCH₂-CO), 4.11 (q, 2H, I = 7.1 Hz, CH_2CH_3), 3.77 (s, 3H, PhOCH₃), 1.33 (t, 3H, J = 7.1 Hz, CH₂CH₃). ¹³C NMR (50 MHz, CDCl₃): δ 169.74 (CO), 159.75, 157.02, 155.67, 153.97, 148.80, 147.57, 144.71, 125.37, 124.76, 123.55, 118.83, 117.68, 115.81, 114.78 (ArC), 66.12 (OCH₂-CO), 61.22 (CH₂CH₃), 53.88 (PhOCH₃), 14.16 (CH₂CH₃). MS (ESI) m/ $z = 464.28 \text{ [M+1]}^+$. Anal. Calcd for $C_{23}H_{21}N_5O_6$ (463.15): C, 59.61; H, 4.57; N, 15.11. Found: C, 59.55; H, 4.48; N, 15.21.

1.4. 2-{4-[2'-Methoxy-4-(p-nitrophenylazo)phenylazo] phenoxy}acetic acid (1c)

KOH (0.54 g, 9.69 mmol) was added to a solution of **1b** (1.5 g, 3.23 mmol) in 1:1 THF–H₂O (16 mL) and the resulting mixture was stirred at room temperature for 2 h. The TLC indicated the disappearance of the starting product **1b** (R_f 0.86, EtOAc) and the formation of one major spot (R_f 0.1). The solution was diluted with water (25 mL) and extracted with CH₃Cl (3 × 20 mL). The aqueous solution was acidified with 1 N HCl to pH 2 and extracted with EtOAc (30 mL). The organic solution was dried over Na₂SO₄ and filtered, the

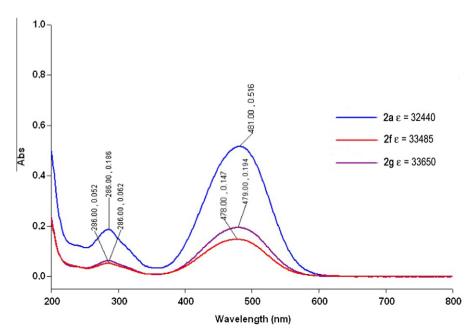


Figure 2. UV-vis spectra of (2a) (cyano line), compared with (2f) (red line) and (2g) (brown line). Molar absorptivities (ε) are expressed in the M⁻¹ cm⁻¹ dimension, as usual.

solvent was removed under reduced pressure to afford **1c** (1.37 g, 98%) as a red solid, mp 238–240 °C. ¹H NMR (200 MHz, CDCl₃): δ 8.41 (m, 2H, ArH); 8.15–7.91 (m, 4H, ArH), 7.87–7.76 (m, 3H, ArH), 7.02 (m, 2H. ArH), 4.84 (s, 2H, OCH₂CO), 3.76 (s, 3H, PhOCH₃). ¹³C NMR (50 MHz, CDCl₃): δ 162.74 (CO), 159.77, 157.08, 155.67, 153.97, 148.80, 147.57, 144.71, 125.37, 124.74, 123.56, 118.83, 117.67, 115.82, 114.78 (ArCH), 66.98 (OCH₂CO), 53.88 (PhOCH₃). MS (ESI) m/z = 436.11 [M+1]⁺. Anal. Calcd for C₂₁H₁₇N₅O₆ (435.12): C, 57.93; H, 3.94; N, 16.09. Found: C, 57.88; H, 3.87; N, 16.32.

1.5. 2-{4-[2'-Methoxy-4-(p-nitrophenylazo)phenylazo] phenoxy}-acetyl-(diethyl ester)-1'-glutamic amide (1d)

Triethylamine (1.64 mL, 11.73 mmol) was added to a solution of 1c (1.70 g. 3.90 mmol) in THF (15 mL) and the mixture stirred at room temperature for 5 min. To the resulting solution, cooled to 0 °C, ethyl chloroformate (1.13 mL, 11.73 mmol) was added, and the mixture was stirred at 0 °C for 30 min until TLC indicated the formation of the activated intermediate (R_f 0.72, EtOAc-petroleum ether) and the disappearance of the starting acid (R_f 0.1). Diethyl Lglutamate hydrochloride (0.94 g, 3.91 mmol) was then added, followed immediately by triethylamine (0.54 mL, 3.91 mmol). The reaction mixture was stirred at room temperature overnight, then was again cooled to 0 °C and subjected to another cycle of activation and coupling using half the quantities listed above. The reaction mixture was slowly allowed to warm to room temperature and stirred for additional 24 h. TLC showed the formation of one major spot ($R_f = 0.44$, EtOAc-petroleum ether 3:1). The solvent was evaporated under reduced pressure and the residue was purified by FCC on silica gel, eluting with EtOAc-petroleum ether 3:1 $(R_{\rm f} = 0.44)$ to afford **1d** (2.18 g, 90%) as a red amorphous foam, mp 185–187 °C (chrom). 1 H NMR (200 MHz, CDCl₃): δ 8.41 (m, 2H, ArH); 8.15-7.91 (m, 4H, ArH), 7.87-7.76 (m, 3H, ArH), 7.02 (m, 2H. ArH), 4.84-4.54 (m, 3H, OCH₂CO, CH), 4.14 (q, 2H, J = 7.0 Hz, CH_2CH_3), 3.76 (s, 3H, PhOCH₃), 2.29 (m, 4H, CHC H_2 C H_2 CO), 1.32 (t, 6H, J = 7.0 Hz, $2 \times \text{CH}_2$ C H_3). ¹³C NMR (50 MHz, CDCl₃): δ 171.54, 171.11, 162.74 (3 × CO), 159.77, 157.08, 155.67, 153.97, 148.80, 147.57, 144.71, 125.37, 124.74, 123.56, 118.83, 117.67, 115.82, 114.78 (ArCH), 67.48 (OCH₂CO), $61.24 \ (2 \times CH_2CH_3), \ 53.57 \ (PHOCH_3), \ 51.24 \ (CH), \ 28.54, \ 27.11$ $(CHCH_2CH_2CO)$, 14.21 $(2 \times CH_3)$. Ms (ESI) $m/z = 621.39 [M+1]^+$. Anal. Calcd for C₃₀H₃₂N₆O₉ (620.22): C, 58.06; H, 5.20; N, 13.54. Found: C, 57.98; H, 5.14; N, 13.60.

1.6. 2-{4-[2'-Methoxy-4-(p-nitrophenylazo)phenylazo] phenoxy}-acetyl-1'-glutamic acid (1e)

KOH (0.54, 9.67 mmol) was added to a solution of the diester 1d (2 g, 3.22 mmol) in H₂O-THF 1:1 (20 mL) and the mixture was stirred at room temperature for 20 h. TLC showed the disappearance of the starting material (EtOAc, $R_f = 0.83$) and formation of one major spot at the baseline. The reaction mixture was evaporated to dryness under reduced pressure and the residue dissolved in water (20 mL). The resulting solution was cooled in an ice bath and the pH adjusted to 2 by dropwise addition of 1 N HCl. The resulting suspension was extracted with CH₃Cl (20 mL) and the organic phase was dried over Na₂SO₄, filtered, and evaporated under reduced pressure to afford 1e (1.78 g, 98%) as a black powder, mp 271–275 °C (dec). **1e** is soluble in water at pH >7. ¹H NMR (200 MHz, CDCl₃): δ 8.40 (m, 2H, ArH); 8.15–7.91 (m, 4H, ArH), 7.88–7.78 (m, 3H, ArH), 7.01 (m, 2H. ArH), 4.87–4.51 (m, 3H, OCH₂-CO, CH), 3.74 (s, 3H, PhOCH₃), 2.29-2.07 (m, 4H, CHCH₂, CH₂CO). ¹³C NMR (50 MHz, CDCl₃): δ 176.97, 174.54 (2 × CO), 162.55 (CO), 159.77, 157.08, 155.67, 153.97, 148.80, 147.57, 144.71, 125.37, 124.74, 123.56, 118.83, 117.67, 115.82, 114.78 (ArCH), 67.48 (OCH₂CO), 53.54 (PhOCH₃). MS (ESI) m/z = 565.21 [M+1]⁺. Anal. Calcd for $C_{26}H_{24}N_6O_9$ (564.16): C, 55.32; H, 4.29; N, 14.89. Found: C, 55.22; H, 4.18; N, 15.12.

1.7. 2-{4-[2'-Methoxy-4-(p-nitrophenylazo)phenylazo] phenoxy}-acetyl-1'-glutamic-bis-{4-0-[6-0-amino-6-deoxy-3,4-0-(isopropylidene)-β-D-galactopyranosyl]-2,3:5,6-di-0isopropylidene-aldehydo-D-glucose dimethyl acetal}amide (1f)

N-Methyl morpholine (NMO, 0.88 mL,7.98 mmol) was added to a solution of 1e (1.5 g, 2.66 mmol) in THF (15 mL) and the mixture was stirred at room temperature for 5 min. The resulting solution cooled to 0 °C, 2-chloro-4,6-dimethoxy-1,3,5-triazine (1.34 g,7.98 mmol) was added and the mixture was stirred at room temperature. After 2 h, TLC indicated the formation of the activated intermediate ($R_f = 0.77$, $CH_2Cl_2-CH_3OH$ 10:0.5) and the disappearance of the starting acid ($R_f = 0.1$). Amino lactose 4 (2.70 g, 5.32 mmol) was added and the reaction mixture was stirred at room temperature for 24 h when TLC showed the formation of one major spot at ($R_f = 0.39$, $CH_2Cl_2-CH_3OH$ 10:0.5). The reaction mixture was evaporated to dryness under reduced pressure and the residue was dissolved in CH₃Cl (20 mL) and washed with 5% HCl (20 mL) and water (3 \times 20 mL). The organic solution was dried over Na₂SO₄ and filtered, the filtrate was concentrated under reduced pressure and the residue was purified by FCC eluting with $CH_2Cl_2-CH_3OH$ 10:0.4 ($R_f = 0.35$) to afford **1f** (3.73 g, 91%) as a red foam, mp 143–146 °C (chrom). 1 H NMR (200 MHz, CDCl₃): δ 8.43-8.38 (m, 2H, ArH); 8.12-7.89 (m, 4H, ArH), 7.79-7.63 (m, 3H, ArH), 7.03-6.97 (m, 2H, ArH), 4.87-4.51 (m, 7H), 4.38-4.35 (m. 2H), 4.28-4.24 (m. 3H) 4.15-3.94 (m. 12H), 3.74-3.49 (m. 14H), 3.44–3.41 (s, 12H, $4 \times OCH_3$), 2.30–2.11 (m, 4H, CHCH₂, CH₂CO), 1.60-1.20 (various overlapping signals, 36H). ¹³C NMR (50 MHz, CDCl₃): δ 174.87, 173.64 (2 × CO), 162.33 (CO), 159.77, 157.08, 155.67, 153.97, 148.80, 147.57, 144.71, 125.37, 124.74, 123.56, 118.83, 117.67, 115.82, 114.78 (ArCH), 110.44, 109.57, 108.12 [C(CH₃)₂], 67.48 (OCH₂CO), 53.54 (PhOCH₃), 51.77 (CH), 29.11, 28.81, 27.66, 26.84, 26.44, 25.68, 25.25, 24.47. Glycidic signals were also at 106.1, 103.5, 79.0, 78.0, 76.3, 76.6, 74.2, 72.6, 71.3, 70.7, 64.7, 40.3. UV-vis $\lambda_{\text{max}} = 417 \text{ nm}$. MS (ESI) m/z = 1543.11[M]⁺. Anal. Calcd for C₇₂H₁₀₂N₈O₂₉ (1543.62): C, 56.02; H, 6.66; N 7.26. Found: C, 56.47; H, 6.69; N, 7.50.

1.8. 2-{4-[2'-Methoxy-4-(p-nitrophenylazo)phenylazo] phenoxy}-acetyl-1'-glutamic-bis-(6'-amino-lactose)amide (1g)

A solution of 1f (2.0 g, 1.29 mmol) in 90% aqueous CF₃COOH (15 mL) was stirred at room temperature overnight. The TLC indicated the disappearance of starting material ($R_f = 0.33$, CH_2Cl_2 -CH₃OH 10:0.5) and the formation of compound **1g** ($R_f = 0.1$). The violet solution was evaporated to dryness and repeatedly coevaporated with toluene (5 × 25 mL) at reduced pressure to give the final product **1g** (1.59 g, 99%) as red powder, mp 201–204 °C. ¹H NMR (200 MHz, D_2O): δ 8.35–8.29 (m, 2H, ArH, both anomers); 8.18–7.89 (m, 4H, ArH, both anomers), 7.81–7.64 (m, 3H, ArH, both anomers), 7.74–7.68 (m, 2H, ArH, both anomers), 5.08–4.57 (m, 7H both anomers) 4.24-4.17 (m, 8H, both anomers) 3.91-3.81 (m, 12H, both anomers), 3.74 (s, 3H, PhOCH₃ both anomers), 3.43-3.40 (m, 4H, both anomers) 2.29-2.07 (m, 4H, CHCH₂, CH₂CO). ¹³C NMR (50 MHz, D_2O): δ 176.97–173.54 (2 × CO), 162.55 (CO), 159.77, 157.08, 155.67, 153.97, 148.80, 147.57, 144.71, 125.37, 124.74, 123.56, 118.83, 117.67, 115.82, 114.78 (ArCH), 67.48 (OCH₂CO), 53.54 (PhOCH₃), 51.77 (CH), 29.11-26.87 (CHCH₂, CH₂CO) other signals for glycidic moiety: 103.7, 79.6, 78.4, 74.1, 71.9, 61.5, 106.6,74.4, 77.8, 73.5, 77.6, 64.5). MS (ESI) m/ $z = 1210.31 \text{ [M]}^+ \text{ Anal. Calcd for } C_{50}H_{66}N_8O_{27} (1210.40)$: C, 49.59; H, 5.49; N, 9.25. Found: C, 49.44; H, 5.41; N, 9.39.

1.9. *N*-Ethyl-*N*-(2-(acetylacetoxy)ethyl)-4-(4'-nitrophenylazo) aniline (2b)

To a solution of disperse dye 2a (1.2 g, 3.8 mmol) in THF (24 mL), NaH (60% disperse in mineral oil, 352 mg, 8.8 mmol) was added at room temperature. After 8 h, ethyl 2-bromoacetate (1.1 ml, 9.9 mmol) was added dropwise and the reaction mixture was stirred overnight and then carefully quenched with 1:1 saturated NH₄Cl-H₂O (50 mL) at 0 °C. The whole was extracted with EtOAc (50 mL), the organic phase was separated, washed with brine (50 mL), and dried over Na₂SO₄. The suspension was filtered under reduced pressure and the filtrate was evaporated to dryness. The residue was purified by FCC, eluting with 98:2 CH₂Cl₂-EtOAc to afford **2b** as a red amorphous solid (1.1 g, 72%), R_f 0.55 (98:2 CH₂Cl₂-EtOAc), mp 86-88 °C (chrom). ¹H NMR (200 MHz, CDCl₃): δ 8.32–8.30 (m, 2H, 3'-H, 5'-H), 7.92–7.87 (m, 4H, 2'-H, 6'-H, 3-H, 5-H), 6.79–6.76 (m, 2H, 2-H, 6-H), 4.22 (q, 2H, I = 7.2 Hz, CH_2CH_3), 4.11 (s, 2H, OCH₂CO), 3.78 (t, 2H, J = 5.8 Hz, OCH₂CH₂N), 3.69 (t, 2H, J = 5.8 Hz, OCH₂CH₂N) 3.57 (q, 2H, J = 7.2 Hz, NCH₂CH₃), 1.30–1.24 (m 6H, NCH₂CH₃, CH₂CH₃). ¹³C NMR (50 MHz, CDCl₃): δ 170.1 (CO), 156.8, 151.4, 147.3, 143.6, 126.2, 124.6, 122.5, 111.3 (ArC) 69.0 (OCH₂CO), 68.7 (OCH₂CH₃N), 61.0 (NCH₂CH₃), 50.1, 46.0, 14.2 (CH₂CH₃), 12.2 (NCH₂CH₃). MS (ESI) $m/z = 401.11 \text{ [M+1]}^+$. Anal. Calcd for C₂₀H₂₄N₄O₅ (400.20): C, 59.99; H, 6.04; N, 13.99. Found: C, 59.87; H, 5.97; N, 14.08.

1.10. *N*-Ethyl-*N*-(2-(2'-hydrocarboxy)ethyloxy)-4-(4-nitrophenylazo)aniline (2c)

KOH (0.55 g, 9.8 mmol) was added to a solution of **2b** (1.96 g, 4.9 mmol) in 1:1 THF-H₂O (16 mL) and the resulting mixture was stirred at room temperature for 2 h. The TLC indicated the disappearance of the starting product (EtOAc-petroleum ether 3:7, $R_{\rm f}$ = 0.66) and the formation of a major spot ($R_{\rm f}$ = 0.1). The solution was diluted with water (25 mL) and extracted with CH₃Cl $(3 \times 20 \text{ mL})$. The aqueous solution was acidified with 1 N HCl to pH 2 and extracted with CH₃Cl (30 mL). The organic phase was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford **2c** (1.54 g, 84%) as a red solid, mp 159–162 °C. **2c** is soluble in water at pH >7. 1 H NMR (200 MHz, acetone- d_6): δ 8.32– 7.92 (m, 4H, 2'-H, 3'H, 5'H, 6'H), 7.90-6.79 (m, 4H, 8'H, 9'H, 11'H, 12'H), 4.31 (s, 2H, OCH₂CO), 3.71–3.26 (m, 6H, $3 \times NCH_2$ –), 1.14 (t, 3H, I = 7.1 Hz, CH_2CH_3). ¹³C NMR (50 MHz, acetone- d_6): δ 168.87 (CO), 156.60, 151.10, 147.3, 143.7, 126.2, 124.6, 122.6, 111.3 (ArC) 66.47, (OCH₂CO), 61.5 (NCH₂CH₃), 48.7, 45.7 (NCH₂CH₂, NCH_2CH_3), 12.2 (NCH_2CH_3). MS (ESI) $m/z = 373.35 [M+1]^+$. Anal. Calcd for $C_{18}H_{20}N_4O_5$ (372.21): C, 58.06; H, 5.41; N, 15.05. Found: C, 58.01; H, 5.34; N, 15.12.

1.11. *N*-Ethyl-*N*-(2-(2'-carboxyglutamic(diethyl ester)-1'-amido) ethyloxy)-4-(4-nitrophenylazo)aniline (2d)

Thionyl chloride (0.24 mL, 3.3 mmol) was added to a solution of 2c (1.12 g, 3.0 mmol) in CH_2Cl_2 (12 mL) at 0 °C. The whole was stirred at 0 °C for 1.5 h and then at room temperature for 3 h. The dark red solution was thereafter added dropwise to an ice precooled solution of L-glutamic acid diethyl ester hydrochloride (0.7 g, 3.0 mmol) and TEA (2.1 mL, 15.1 mmol) in CH_2Cl_2 (12 mL). Stirring was continued for 2 h at 0 °C and then at room temperature overnight. The mixture was diluted with CH_2Cl_2 (24 mL) and washed with CH_2Cl_2 (12 mL). The organic phase was separated, dried over CH_2Cl_2 (12 mL) and the resulting suspension filtered under reduced pressure. The filtrate was collected and evaporated to dryness to afford CH_2CH_2 as a crude red solid (1.5 g, 90%) which was used without further purification for the next step. CH_2CH_2 (12 mL) as 8.32–7.92 (m, 4H, 2'-H, 3'H, 5'H, 6'H), 7.90–6.79 (m, 4H, 8'H, 9'H, 11'H,

12'H), 4.44–4.38 (m, 1H, CH), 4.29–4.12 (m, 6H, $2 \times CH_2CH_3$, OCH₂CO), 3.69–3.24 (m, 6H, $2 \times NCH_2CH_2$, NCH_2CH_3), 2.32–2.25 (m, 4H, CHCH₂, CH₂CO), 1.24–1.14 (m, 9H, $2 \times CH_2CH_3$, NCH_2CH_3). ¹³C NMR (50 MHz, CDCl₃): δ 171.19 (2 × CONH), 168.87 (CO), 156.60, 151.10, 147.3, 143.7, 126.2, 124.6, 122.6, 111.3 (ArC) 66.47, (OCH₂CO), 61.57 (CH₂CH₃), 61.47 (NCH₂CH₂), 52.14 (CH), 48.77, 45.67 (NCH₂CH₂, NCH₂CH₃), 28.47, 26.25 (CHCH₂, CH₂CO), 13.97 (CH₂CH₃), 12.2 (NCH₂CH₃). MS (ESI) m/z = 558.08 [M+1]*. Anal. Calcd for C₂₇H₃₅N₅O₈ (557.21): C, 58.16; H, 6.33; N, 12.56. Found: C, 58.04; H, 6.18; N, 12.69.

1.12. *N*-Ethyl-*N*-(2-(2'-carboxyglutamic acid-1'-amido) ethyloxy)-4-(4-nitrophenyl-azo)aniline (2e)

KOH (0.56 g. 10 mmol) was added to a solution of the diester 2d (1.4 g, 2.5 mmol) in H₂O-THF 1:1 (30 mL) and the mixture was stirred at room temperature overnight. TLC showed the disappearance of the starting material ($R_f = 0.35$, 2:1 EtOAc-petroleum ether) and the formation of a major spot at the baseline. The reaction mixture was evaporated to dryness under reduced pressure and the residue dissolved in water (30 mL). The resulting solution was cooled in an ice bath and the pH adjusted to 2 with dropwise addition of 1 N HCl. The resulting suspension was filtered and the cake was washed with H₂O until pH neutral. Compound **2e** was obtained, after drying in an oven at 60 °C overnight, as a red amorphous solid (1.2 g, 96%), mp 186–190 (dec). ¹H NMR (200 MHz, acetone- d_6): δ 8.32–7.92 (m, 4H, 2'-H, 3'H, 5'H, 6'H), 7.90-6.79 (m, 4H, 8'H, 9'H, 11'H, 12'H), 4.37 (m, 1H, CH), 4.29-4.13 (s, 2H, OCH₂CO), 3.68-3.21 (m, 6H, NCH₂CH₂, NCH₂CH₃, NCH₂CH₂), 2.31–2.26 (m, 4H, CHCH₂, CH₂CO), 1.24–1.14 (t, 3H, J = 7.1 Hz, CH_2CH_3). ¹³C NMR (50 MHz, acetone d_6): δ 172.15 (2CONH), 168.87 (CO), 156.65, 151.17, 147.35, 143.74, 126.24, 124.65, 122.61, 111.31 (ArC) 66.51, (OCH2CO), 61.44 (NCH₂CH₂), 52.55 (CH) 48.71, 45.62 (NCH₂CH₂, NCH₂CH₃), 28.46, 26.33, (CHCH₂, CH₂CO) 12.28 (NCH₂CH₃). MS (ESI) m/ $z = 502.32 \text{ [M+1]}^+$. Anal. Calcd for $C_{23}H_{27}N_5O_8$ (501.24): C, 55.09; H, 4.53; N, 13.97. Found: C, 54.84; H, 5.27; N, 14.19.

1.13. *N*-Ethyl-*N*-(2-(2'-carboxyglutamic-bis-{4-*O*-[6-*O*-amino-6-deoxy-3,4-*O*-(isopropylidene)-β-D-galactopyranosyl]-2,3:5,6-di-*O*-isopropylidene-*aldehydo*-D-glucose dimethyl acetal}-1'-amido)ethyloxy)-4-(4-nitrophenyl-azo)aniline (2f)

N-Methyl morpholine (0.26 mL, 2.4 mmol) was added to a solution of **2e** (0.5 g, 1.0 mmol) in THF (5 mL) and the mixture was stirred at room temperature for 5 min. The resulting solution was cooled to 0 °C, 2-chloro-4,6-dimethoxy-1,3,5-triazine (0.42 g, 2.4 mmol) was added and the mixture was stirred at room temperature. After 2 h the TLC indicated the formation of the activated intermediate $(R_f = 0.79, 10:0.4 \text{ CH}_2\text{Cl}_2 - \text{CH}_3\text{OH})$ and the disappearance of the starting acid ($R_f = 0.1$). Amino lactose **4**(1.0 g, 2 mmol) was added and the reaction mixture was slowly allowed to warm to room temperature and stirred overnight. TLC showed the formation of one major spot $(R_{\rm f} = 0.35, 10:0.4 \, \text{CH}_2\text{Cl}_2 - \text{CH}_3\text{OH})$. The reaction mixture was evaporated to dryness under reduced pressure. The residue was dissolved in CH₂Cl₂ (20 mL) and washed with a solution of 5% aq HCl (20 mL) and H_2O (3 × 20 mL). The organic solution was dried over Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by FCC, eluting with 95:5 CH₂Cl₂-CH₃OH to afford **2f** (0.86 g, 60%) as red foam having R_f 0.4 (95:5 CH_2Cl_2 -MeOH), mp 96-98 °C (chrom). δ 8.34-8.30 (m, 2H, 3'-H, 5'-H); 7.93-7.88 (m, 4H, 2'-H, 6'-H, 3-H, 5-H), 7.67 (d, 1H, J = 7.2 Hz, CONHCH), 7.22–7.19 (m, 1H, CHCONHCH₂), 6.81–6.78 (m, 2H, 2-H, 6-H), 6.69-6.66 (m, 1H, CH₂CH₂CONHCH₂) 4.57-4,48 (m, 3H), 4.37-4.34 (m, 3H), 4.31-4.26 (m, 3H), 4.19-4.16 (m, 2H), 4.11-4.09 (m, 1H), 4.08–3.97 (m, 8H), 3.95–3.87 (m, 4H), 3.83–3.69 (m, 7H), 3.63-3.37 (m, 17H), 3.25-3.18 (m, 1H), 3.14 (s, 1H), 3.07 (s,

1H), 2.43–2.12 (m, 3H), 2.03–1.91 (m, 1H), 1.48–1.38 (m, 12H), 1.32 (s, 12H), 1.29–1.25 (m, 15H). 13 C NMR (50 MHz, CDCl₃): δ 172.3 (CO), 171.4 (CO), 169.0 (CO), 156.7, 151.2, 147.4, 143.7, 126.2, 124.6, 122.6, 111.4, (ArCH), 110.4 (2C), 110.2 (2C), 108.4 (2C), 108.2, 107.2, 103.4, 103.3, 78.9 (2C), 77.8, 77.5 (2C), 77.0, 76.8, 76.7 (2C), 76.6 (2C), 74.0, 73.9 (2C), 73.8, 72.4, 71.8, 70.7, 69.2 (2C), 64.5, 57.9, 57.4, 56.2, 56.0, 51.9, 49.8, 46.0, 40.4, 31.6, 29.0, 28.1 (2C), 27.2, 27.1, 26.4, 26.3, 26.2 (2C), 25.6 (2C), 24.0 (2C), 12.2. MS (ESI) m/z = 1480.41 [M]⁺. Anal. Calcd for $C_{69}H_{105}N_7O_{28}$ (1480.60): C, 55.97; H, 7.15; N, 8.54. Found: C, 55.22; H, 6.94; N, 8.61.

1.14. *N*-Ethyl-*N*-(2-(2'-carboxyglutamic bis[6'amidoyl-lactose]-1'-amido)ethyloxy)-4-(4-nitrophenyl-azo)aniline (2g)

A solution of 2f (0.7 g, 0.47 mmol) in 90% aqueous TFA (5 mL) was stirred at room temperature overnight. The TLC showed the disappearance of the starting material (R_f 0.4, 95:5 CH₂Cl₂-MeOH) and the formation of a major spot with $R_{\rm f}$ 0.1. The violet solution was repeatedly co-evaporated with toluene (5 \times 25 mL) at reduced pressure. The residue was treated with acetone (10 mL) at room temperature overnight and the fine suspension was centrifuged (1500 rpm) for 15 min. The supernatant liquid was removed and the solid was dried in vacuo at room temperature to obtain 2g as a red powder (0.42 g, 78%), mp 145-148 °C. ¹H NMR (200 MHz, DMSO- d_6): δ 8.32–7.92 (m, 4H, 2'-H, 3'-H, 5'-H, 6'-H); 7.90–6.79 (m, 4H, 8'-H, 9'-H, 11'-H, 12'-H), 5.08-4.57 (m, 4H), 4.33-4.13 (m, 3H, OCH₂CO), 3.68-3.21 (m, 6H, NCH₂CH₂, NCH₂CH₃, NCH₂CH₂), 2.31-2.26 (m, 4H, CHCH₂, CH₂CO), 1.24-1.14 (t, 3H, J = 7.0 Hz, NCH₂CH₃). ¹³C NMR (50 MHz, DMSO- d_6): δ 172.33 $(2 \times CONH)$, 168.66 (CO), 156.48, 151.17, 147.35, 143.74, 126.24, 124.54, 122.57, 111.28, (ArCH), 66.51 (OCH₂CO), 61.44 (NCH₂CH₂), 52.55 (CH), 48.71, 45.62 (NCH₂CH₂, NCH₂CH₃), 28.46, 26.33, (CHCH₂, CH₂CO) 12.28 (NCH₂CH₃). MS (ESI) $m/z = 1148.23 \text{ [M+1]}^+$. Anal. Calcd for $C_{47}H_{69}N_7O_{26}$ (1148.08): C, 49.17; H, 6.06; N, 8.54. Found: C, 49.04; H, 5.87; N, 8.61.

Acknowledgements

We fully acknowledge Ente Cassa di Risparmio di Firenze for the grants that allowed us to buy the Varian-4000 spectrophotometer and the ThermoFisher LCQ-Fleet Esi-Mass apparatus.

References

- (a) Bianchini, R.; Bartalucci, G.; Catelani, G.; Seu, G. European Patent Application n. 04005253.4 deposit 03/05/2004.; (b) Bartalucci, G.; Bianchini, R.; Catelani, G.; D'Andrea, F.; Guazzelli, L. Eur. J. Org. Chem. 2007, 588–595; (c) Isaad, J.; Bianchini, R.; Catelani, G.; Frino, E.; Rolla, M. BioResources 2007, 2, 630–637; (d) Bianchini, R.; Catelani, G.; Isaad, J.; Cecconi, R.; D'Andrea, F.; Guazzelli, L.; Rolla, M. Eur. J. Org. Chem. 2008, 444–454.
- Corsi, M.; Bonanni, M. 'Colbiotech Project', POR CREO FSE 2007–2013 Ob. 2 fellowship, annual report, The University of Florence, unpublished results, 2010
- (a) Greenshields, J. N.; Hull, G.; Tury, B. US Patent 3957433, 18/05/1976.; (b)
 Dilling, P. US Patent 4131564, 26/12/1978.; (c) Indictor, N.; Koestler, R. J.;
 Sheryll, R. J. Am. Inst. Conserv. 1985, 24, 104; (d) Barni, E.; Savarino, P.; Viscardi, G. Acc. Chem. Res. 1991, 24, 98–103.
- 4. Isaad, J.; Rolla, M.; Bianchini, R. Eur. J. Org. Chem. 2009, 2748-2764.
- (a) Banat, I. M.; Nigam, P.; Singh, D.; Marchant, R. Bioresour. Technol. 1996, 58, 217–227;
 (b) Stolz, A. Appl. Microbiol. Biotechnol. 2001, 56, 69–80;
 (c) Vijayaraghavan, K.; Lee, M. W.; Yun, Y. S. Bioresour. Technol. 2008, 99, 5778–5785. and references cited therein.
- 6. Albertson, N. F. Org. React. 1962, 12, 157-355.
- Allen, C. F. H.; Byers, J. R.; Humphlett, W. J. Org. Synth. 1963, Coll. Vol. 4, 739
- 8. Bianchini, R.; Catelani, G.; Isaad, J.; Cecconi, R.; D'Andrea, F.; Frino, E.; Rolla, M. Carbohydr. Res. 2008, 343, 2067–2074.
- Barili, P. L.; Catelani, G.; D'Andrea, F.; De Rensis, F.; Falcini, P. Carbohydr. Res. 1997, 16, 1001–1010.
- 10. Falchi, A.; Giacomelli, G.; Porcheddu, A.; Taddei, M. Synlett 2000, 275-277.
- 11. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. **1978**, 43, 2923–2932.