Synthesis of benzo[c]chromen-6-ones via novel cyclic aryl-Pd(II)-ester enolate intermediates

Stephen R. Taylor, Alison T. Ung* and Stephen G. Pyne*
Department of Chemistry, University of Wollongong, Wollongong, New South Wales 2522, Australia

Received 24 May 2007; revised 2 August 2007; accepted 23 August 2007
Available online 30 August 2007

Abstract

The examination of the palladium catalysed arylation reactions of mono-iodo derivatives of the phenyl and benzyl esters of benzoic acid, phenylacetic acid and dehydrocinnamic acid has resulted in the formation of benzo[$c]$ chromen- 6 -ones, unexpected cinnamate and succinate products and diphenyl dimers. Many of these products can be rationalised as arising from novel cyclic $\operatorname{ArPd}($ II $)$-enolate intermediates, formed by intramolecular $\mathrm{C}-\mathrm{H}$ activation by $\mathrm{ArPd}(\mathrm{II})$. Crown Copyright © 2007 Published by Elsevier Ltd. All rights reserved.

1. Introduction

As a part of a project concerned with the synthesis of lactones of the type \mathbf{C} we have explored the palladium catalysed arylation reactions of mono-iodo di-aryl esters A and \mathbf{B} as shown in Scheme 1. The formation of benzo $[c]$ -chromen-6-ones $\mathbf{C}(m=n=0)$ has been readily achieved from palladium catalysed cyclisation of the corresponding mono-iodophenyl benzoate derivative using this strategy. ${ }^{1,2}$ In the successful cases reported, the iodo-substituent is normally attached to the more electron deficient benzoate ring as in the case of $\mathbf{A}(m=n=0)$. The formation of larger lactone rings has not been reported, however, the palladium catalysed arylation reaction has been used to form seven-membered carbocyclic and azepine rings. ${ }^{2 \mathrm{c}, 3} \mathrm{We}$

A, $X=I, Y=H$
$B, X=H, Y=1$

C

Scheme 1.

[^0]report here our results from the examination of the palladium catalysed arylation reactions of mono-iodo derivatives of the phenyl and benzyl esters of benzoic acid, phenylacetic acid and dehydrocinnamic acid.

2. Results and discussion

Treatment of the iodo-substituted phenyl benzoate derivatives 1a-c with $26 \mathrm{~mol} \%\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}$ in the presence of anhydrous sodium acetate (3 molar equiv) in DMA with heating in a sealed tube at $125^{\circ} \mathrm{C}$ for 3 h gave the benzo[$\left.c\right]$ chro-men-6-ones 2a-c in good yields (Scheme 2). In the case of 1c, a small amount (8\%) of the regioisomer $\mathbf{3}$ was also formed.

2c (71%)
a; $\mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{OMe}, \mathrm{R}^{3}=\mathrm{H}$
b; $\mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{OMe}, \mathrm{R}^{3}=\mathrm{OMe}$
c; $R^{1}=H, R^{2}=H, R^{3}=H$

Scheme 2.

When the 2-iodophenyl phenylacetates $\mathbf{4 a - c}$ were treated under identical conditions to $\mathbf{1 a}-\mathbf{c}$, only the products arising from hydrolysis of the ester group of $\mathbf{4 a - c}$ were obtained, even though the NaOAc and DMA had been carefully dried (Scheme 3).

Scheme 3.

Treatment of the phenyl dihydrocinnamate 5 under these conditions resulted in the formation of its cinnamate ester derivative 6 in 59% yield (Scheme 4). A possible mechanism is shown in Scheme 5. This mechanism involves oxidative addition of the aryl iodide to $\operatorname{Pd}(0)$ to give the $\operatorname{Pd}(\mathrm{II})$ intermediate \mathbf{D} from which base (NaOAc)-assisted cyclometallation occurs, via $\mathrm{C}-\mathrm{H}$ functionalisation, to give the palladacycle \mathbf{E}. Intermediate \mathbf{E} can undergo selective protonation to give the $\mathrm{Pd}(\mathrm{II})$-enolate species \mathbf{F}, which upon β-elimination would give the cinnamate 6 and $\mathrm{Pd}(\mathrm{II}) \mathrm{H}$. The latter species upon reaction with acetate ion would generate $\mathrm{Pd}(0)$ and acetic acid. The functionalisation of $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ and $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ bonds by $\mathrm{Pd}(\mathrm{II})$, as in the case of the conversion of intermediate \mathbf{D} to \mathbf{E}, has been well documented ${ }^{4}$ and palladium(IV) species have been suggested as intermediates in some of these reactions. ${ }^{4 \mathrm{~b}, \mathrm{~h}, \mathrm{k}, \mathrm{o}, \mathrm{p}}$ Indeed, oxidative addition of intermediate D could provide the palladium(IV) intermediate \mathbf{G}, which upon reductive elimination would result in intermediate \mathbf{F} and thus product 6 (Scheme 5).

Scheme 4.

The palladium catalysed reactions of the 2-iodobenzyl 3,4dimethoxyphenylacetates $\mathbf{7 a}$ and $\mathbf{7 b}$ gave a mixture of two products, which consisted of the benzo $[c]$ chromen- 6 -ones $\mathbf{8 a}$ and $\mathbf{8 b}$, respectively, and the biphenyls $9 \mathbf{a}$ and $9 \mathbf{b}$, respectively (Scheme 6). These compounds were readily separated by column chromatography. The 3,4-dimethoxybenzyl 2iodophenylacetates 10a,b gave different products. Iodide 10a gave a separable mixture of the succinate $\mathbf{1 1}$ (as a 1.8:1 mixture of diastereomers) and the biphenyl $\mathbf{1 2}$, while 10b gave the benzo[c]chromen-6-one $\mathbf{8 b}$ (Scheme 7). These unexpected products can be rationalised as arising through

$\mathrm{Pd}(0)+\mathrm{HOAc}$

Scheme 5. Palladium ligands not shown.
palladium intermediates similar to those suggested in Scheme 5. In Scheme 8, the Pd(II)-palladacycle intermediate \mathbf{I} is formed from 7a,b in an analogous fashion to \mathbf{E} in Scheme 5. Reductive elimination of I would provide the

Scheme 6

Scheme 7.

reductive
$\xrightarrow{\text { elimination }} \mathbf{8 a , b}+\operatorname{Pd}(0)$
Scheme 8. Palladium ligands not shown.
benzo $[c]$ chromen-6-one $\mathbf{8 a}$ or $\mathbf{8 b}$. Alternatively, dimerisation of intermediate \mathbf{H} would give the diphenyl $9 \mathbf{a}$ or $\mathbf{9 b}$.

In Scheme 9, the $\operatorname{ArPd}(\mathrm{II})$ intermediate \mathbf{J} could undergo deprotonation by NaOAc , perhaps assisted by coordination between the $\mathrm{Pd}(\mathrm{II})$ and the ester carbonyl, to give the $\mathrm{Pd}(\mathrm{II})-$ palladacycle \mathbf{K}, which could undergo selective protonation by HOAc to give the $O-\mathrm{Pd}(\mathrm{II})-$ enolate \mathbf{L}. The latter would be expected to be in equilibrium with the C - Pd (II)-enolate $\mathbf{M},{ }^{5}$ which could give rise to the same cyclic Pd (II)-enolate intermediate \mathbf{I} as suggested in Scheme 8 and then product $\mathbf{8 b}$ via reductive elimination. Alternatively, dimerisation of intermediate \mathbf{M} could provide the succinate 11. The proposed Pd (II)-palladacycle \mathbf{K} is similar to that proposed as an intermediate in the Pd-catalysed intramolecular coupling of ortho-bromophenylmethyl ketones to give benzofurans under basic conditions. ${ }^{5}$ However, no benzofuran products could be isolated from our reactions. We assume that because our reactions generate an equivalent of HOAc , from the transformation of intermediate \mathbf{J} to \mathbf{K}, protonation of \mathbf{K} to give \mathbf{L} is more rapid than benzofuran formation. ${ }^{6}$

Scheme 9. Palladium ligands not shown.

3. Conclusions

In conclusion, the examination of the palladium catalysed arylation reactions of mono-iodo derivatives of the phenyl and benzyl esters of benzoic acid, phenylacetic acid and dehydrocinnamic acid has resulted in the formation of benzo $[c]$ chromen-6-ones $\mathbf{2 a}-\mathbf{c}$ and $\mathbf{8 a}, \mathbf{b}$, the unexpected cinnamate 6 and the succinate $\mathbf{1 1}$ and diphenyl dimers ($9 \mathbf{a}, \mathbf{b}$ and 12). Many of these products can be rationalised as arising from novel cyclic $\mathrm{ArPd}(\mathrm{II})$-enolate intermediates (\mathbf{E} and I). While the formation of $\operatorname{ArPd}(\mathrm{II})$-enolate
intermediates is well documented, these are normally generated from the intermolecular reaction of an in situ generated or preformed enolate anion, using a stronger base than NaOAc as in this study, and a $\mathrm{ArPd}(\mathrm{II}) \mathrm{X}$ species ${ }^{7}$ and not by intramolecular $\mathrm{C}-\mathrm{H}$ activation by $\mathrm{ArPd}(\mathrm{II})$ as we have suggested in this paper.

4. Experimental

4.1. General

All NMR spectra were measured in CDCl_{3} solution at 300 MHz (${ }^{1} \mathrm{H}$ NMR) or $75 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right.$ NMR) unless otherwise indicated. NMR assignments are based on COSY, DEPT and HSQC experiments and sometimes HMBC and NOESY experiments. DCM refers to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and PS refers to petroleum spirit (bp $40-60^{\circ} \mathrm{C}$).

4.2. General methods for ester formation

4.2.1. 3,4-Dimethoxyphenyl 2-iodo-4,5-dimethoxy-

 benzoate 1a. A solution of 2-iodo-4,5-dimethoxybenzoic acid ($613 \mathrm{mg}, 1.99 \mathrm{mmol}$), 3,4-dimethoxyphenol (368 mg , 2.39 mmol) and DCC ($493 \mathrm{mg}, 2.39 \mathrm{mmol}$), DMAP (73 mg , $0.59 \mathrm{mmol})$ in DCM (20 mL) was stirred at rt for 18 h under N_{2}, diluted with DCM (20 mL), filtered and the filtrate washed with water (20 mL) and saturated NaHCO_{3} solution $(20 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, evaporated and the residue chromatographed, using EtOAc-PS (1:1) as the mobile phase, to yield the title compound as a white solid ($671 \mathrm{mg}, 76 \%$). Mp 146-148 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.64$ (s, 1H, Ar-H-6), 7.45 (s, 1H, Ar-H-3), 6.89 (d, $\left.1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ar}-H-5^{\prime}\right), 6.79$ (d, $\left.1 \mathrm{H}, J=2.2 \mathrm{~Hz}, \mathrm{Ar}-H-2^{\prime}\right)$, 6.78 (dd, 1H, J=8.0, $\left.2.2 \mathrm{~Hz}, \mathrm{Ar}-H-6^{\prime}\right), 3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-\right.$ 4), $3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-5\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-4^{\prime}\right), 3.88(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}-3^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 164.0(\mathrm{C}=\mathrm{O}), 152.2(\mathrm{Ar}-\mathrm{C}-$ $\left.\mathrm{OCH}_{3}-4\right), 149.3\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-3^{\prime}\right), 148.6\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-5\right)$, $146.8\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-4^{\prime}\right), 144.2\left(\mathrm{Ar}-C-1^{\prime}\right), 124.8(\mathrm{Ar}-C-1)$, 123.9 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-3$), 114.1 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6$), 112.9 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6^{\prime}$), 111.1 ($\left.\mathrm{Ar}-\mathrm{C}-\mathrm{H}-5^{\prime}\right), 105.8\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-2^{\prime}\right), 85.5(\mathrm{Ar}-\mathrm{C}-2)$, $56.2\left(\mathrm{Ar}-\mathrm{OCH}_{3}-4\right), 56.1\left(\mathrm{Ar}-\mathrm{OCH}_{3}-4^{\prime}\right), 56.0\left(\mathrm{Ar}-\mathrm{OCH}_{3}-\right.$ 5), $55.9\left(\mathrm{Ar}-\mathrm{OCH}_{3}-3^{\prime}\right) . \mathrm{MS}: m / z\left(\mathrm{EI}^{+}\right) 444\left(\mathrm{M}^{+}, 8 \%\right), 291$ (100\%). HRMS (EI^{+}): calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{IO}_{6}=444.0069$ $\left(\mathrm{M}^{+}\right)$, found 444.0053.
4.2.2. 3,4-Dimethoxyphenyl 2-iodo-3,4,5-trimethoxyben-

 zoate 1b. The title compound was prepared in 91% yield (white solid, 483 mg) from 2-iodo-3,4,5-trimethoxybenzoic acid ($379 \mathrm{mg}, 1.12 \mathrm{mmol}$) and 3,4-dimethoxyphenol (207 mg , $1.34 \mathrm{mmol})$ in the presence of DCC $(277 \mathrm{mg}, 1.34 \mathrm{mmol})$, DMAP ($34 \mathrm{mg}, 0.28 \mathrm{mmol}$) and DCM (10 mL) according to the general esterification method. Mp $98-100{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 7.39$ (s, $1 \mathrm{H}, \mathrm{Ar}-H-6$), 6.90 (dd, $1 \mathrm{H}, J=7.3$, $\left.2.4 \mathrm{~Hz}, \mathrm{Ar}-H-6^{\prime}\right), 6.84\left(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{Ar}-H-2^{\prime}\right), 6.82$ (d, $\left.1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{Ar}-H-5^{\prime}\right), 3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-5\right), 3.93$ (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}-4\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-3\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-\right.$ $\left.3^{\prime}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-4^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 165.1(\mathrm{C}=\mathrm{O})$, $153.9\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-3\right), 153.4\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-4\right), 149.4(\mathrm{Ar}-$ $\left.C-\mathrm{OCH}_{3}-4^{\prime}\right), 147.0\left(\mathrm{Ar}-C-\mathrm{OCH}_{3}-3^{\prime}\right), 145.3\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-\right.$ 5), $144.2\left(\mathrm{Ar}-\mathrm{C}-1^{\prime}\right), 129.9(\mathrm{Ar}-\mathrm{C}-1), 112.8\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-5^{\prime}\right)$, 111.1 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6$), 110.9 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6^{\prime}$), 105.6 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-$ $\left.2^{\prime}\right), 84.5(\mathrm{Ar}-\mathrm{C}-2), 61.0\left(\mathrm{OCH}_{3}-5\right), 60.8\left(\mathrm{OCH}_{3}-3^{\prime}\right), 56.3$ $\left(\mathrm{OCH}_{3}-4\right), 56.1\left(\mathrm{OCH}_{3}-3\right), 55.9\left(\mathrm{OCH}_{3}-4^{\prime}\right) . \mathrm{MS}: m / z\left(\mathrm{EI}^{+}\right)$$474\left(\mathrm{M}^{+}, 6 \%\right), 321(100 \%)$. HRMS (EI $\left.{ }^{+}\right)$: calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{IO}_{7}=474.0175\left(\mathrm{M}^{+}\right)$, found 474.0152.
4.2.3. 3,4-Dimethoxyphenyl 2-iodobenzoate 1c. The title compound was prepared in 93% yield (white solid, 1.15 g) from 2-iodobenzoic acid ($800 \mathrm{mg}, 3.22 \mathrm{mmol}$) and 3,4dimethoxyphenol ($547 \mathrm{mg}, 3.54 \mathrm{mmol}$) in the presence of DCC ($732 \mathrm{mg}, 3.54 \mathrm{mmol}$), DMAP ($130 \mathrm{mg}, 1.06 \mathrm{mmol}$) and DCM (15 mL) according to the general esterification method. Mp 74-76 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR: $\delta 8.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}$, $\mathrm{Ar}-H-3), 8.02(\mathrm{dd}, 1 \mathrm{H}, J=8.0,1.5 \mathrm{~Hz}, \mathrm{Ar}-H-6), 7.47$ $(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}-H-5), 7.21(\mathrm{dt}, 1 \mathrm{H}, J=8.0,1.5 \mathrm{~Hz}$, $\mathrm{Ar}-H-4), 6.99$ (d, $\left.1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}-H-5^{\prime}\right), 6.81$ (dd, 1 H , $\left.J=8.0,2.5 \mathrm{~Hz}, \mathrm{Ar}-H-6^{\prime}\right), 6.80\left(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}, \mathrm{Ar}-H-2^{\prime}\right)$, 3.89 (s, 3H, $\mathrm{OCH}_{3}-3^{\prime}$), 3.88 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-4^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 165.0(C=\mathrm{O}), 149.3\left(\mathrm{Ar}-C-\mathrm{OCH}_{3}-4\right), 147.0(\mathrm{Ar}-C-$ $\mathrm{OCH}_{3}-3$), $144.2\left(\mathrm{Ar}-C-1^{\prime}\right), 141.5(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-3), 134.1(\mathrm{Ar}-\mathrm{C}-1)$, 133.1 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-4$), 131.4 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6$), 127.9 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-5$), 112.8 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6^{\prime}$), 111.1 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-5^{\prime}$), 105.6 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-$ $\left.2^{\prime}\right), 94.5(\mathrm{Ar}-C-2), 56.1\left(\mathrm{Ar}-\mathrm{OCH}_{3}-4^{\prime}\right), 55.9\left(\mathrm{Ar}-\mathrm{OCH}_{3}-\right.$ $\left.3^{\prime}\right)$. MS: $m / z\left(\mathrm{EI}^{+}\right) 384\left(\mathrm{M}^{+}, 6 \%\right), 125$ (100\%). HRMS $\left(\mathrm{EI}^{+}\right)$: calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{IO}_{4}=383.9858\left(\mathrm{M}^{+}\right)$, found 383.9862.
4.2.4. 3,4-Dimethoxyphenyl 2-iodo-4,5-dimethoxyphenylacetate $4 \mathbf{a}$. The title compound was prepared in 76% yield (sticky white solid, 740 mg) from 2-iodo-4,5-dimethoxyphenylacetic acid ($686 \mathrm{mg}, 2.12 \mathrm{mmol}$) and 3,4-dimethoxyphenol ($361 \mathrm{mg}, 2.34 \mathrm{mmol}$) in the presence of DCC ($483 \mathrm{mg}, 2.34 \mathrm{mmol}$), DMAP ($73 \mathrm{mg}, 0.59 \mathrm{mmol}$) and DCM (10 mL) according to esterification method. Mp $76-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 7.27$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-H-3$), $6.90(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{Ar}-H-6$), 6.82 ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-H-5^{\prime}\right), 6.69\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-H-2^{\prime}\right)$, $6.68\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-H-6^{\prime}\right), 3.95\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}\right), 3.876(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}-3\right), 3.870\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-5\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-4^{\prime}\right)$, 3.85 (s, 3H, $\mathrm{OCH}_{3}-4$). ${ }^{13} \mathrm{C}$ NMR: $\delta 169.5(\mathrm{C}=\mathrm{O}), 149.4$ ($\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-4$), $149.3\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-3^{\prime}\right), 148.8(\mathrm{Ar}-\mathrm{C}-$ $\left.\mathrm{OCH}_{3}-3\right), 146.9\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-4^{\prime}\right), 144.3\left(\mathrm{Ar}-C-1^{\prime}\right), 129.5$ ($\mathrm{Ar}-\mathrm{C}-1$), 121.6 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-3$), 113.4 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6$), 112.7 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6^{\prime}$), $111.1\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-5^{\prime}\right), 105.6$ ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-2^{\prime}$), $88.9(\mathrm{Ar}-\mathrm{C}-2), 56.1\left(2 \times \mathrm{OCH}_{3}-3,5\right), 55.9\left(2 \times \mathrm{OCH}_{3}-4,4^{\prime}\right)$, $45.7\left(\mathrm{Ar}-\mathrm{CH}_{2}\right) . \mathrm{MS}: m / z\left(\mathrm{EI}^{+}\right) 458\left(\mathrm{M}^{+}, 3 \%\right), 149(100 \%)$. HRMS (EI^{+}): calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{IO}_{6}=458.0226\left(\mathrm{M}^{+}\right)$, found 458.0233.
4.2.5. 2-Iodophenyl 3,4-dimethoxyphenylacetate 4b. The title compound was prepared in 91% yield (clear oil, 1.65 g) from 3,4-dimethoxyphenylacetic acid (980 mg , $4.99 \mathrm{mmol})$ and 2-iodophenol ($1.0 \mathrm{~g}, 4.54 \mathrm{mmol}$) in the presence of DCC ($1.03 \mathrm{mg}, 4.99 \mathrm{mmol}$), DMAP (166 mg , $1.36 \mathrm{mmol})$ and $\mathrm{DCM}(20 \mathrm{~mL})$ according to esterification method. Mp 52-54 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 7.79$ (d, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}$, $\left.\mathrm{Ar}-H-3^{\prime}\right), 7.32\left(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}-H-5^{\prime}\right), 7.05(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=7.5 \mathrm{~Hz}, \mathrm{Ar}-H-6^{\prime}\right), 6.96$ (br s, $1 \mathrm{H}, \mathrm{Ar}-H-2$), 6.96-6.93 $(\mathrm{m}, 1 \mathrm{H}, \mathrm{Ar}-H-6), 6.94\left(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}-H-4^{\prime}\right), 6.85$ (d, $1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}-5$), 3.89 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}-3$), 3.869 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-4\right), 3.864\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 169.2(C=\mathrm{O}), 151.0\left(\mathrm{Ar}-C-1^{\prime}\right), 148.8\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-4\right)$, 148.3 ($\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-3$), $139.3\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-3^{\prime}\right), 129.2(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-$ $\left.5^{\prime}\right), 127.5\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-4^{\prime}\right), 125.3(\mathrm{Ar}-\mathrm{C}-1), 122.8\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6^{\prime}\right)$, 121.7 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6$), 112.7 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-2$), 111.1 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-5$), $90.1\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-2^{\prime}\right), 55.8\left(\mathrm{Ar}-\mathrm{OCH}_{3}-4\right), 55.7\left(\mathrm{Ar}-\mathrm{OCH}_{3}-3\right)$, $40.8\left(\mathrm{Ar}-\mathrm{CH}_{2}\right)$. MS: $\mathrm{m} / \mathrm{z}\left(\mathrm{EI}^{+}\right) 398\left(\mathrm{M}^{+}, 46 \%\right), 151$
(100\%). HRMS (EI'): calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{IO}_{4}=398.0015$ $\left(\mathrm{M}^{+}\right)$, found 398.0012.
4.2.6. 3,4-Dimethoxyphenyl 2-iodophenylacetate 4c. The title compound was prepared in 92% yield (clear oil, 1.41 g) from 2-iodophenylacetic acid ($1.00 \mathrm{~g}, 3.81 \mathrm{mmol}$) and 3,4 -dimethoxyphenol ($647 \mathrm{mg}, 4.19 \mathrm{mmol}$) in the presence of DCC ($866 \mathrm{mg}, 4.19 \mathrm{mmol}$), DMAP (140 mg , $1.14 \mathrm{mmol})$ and DCM (20 mL) according to esterification method. Mp 90-92 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 7.87(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}$, $\mathrm{Ar}-H-3), 7.37(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}-H-6), 7.33(\mathrm{t}, 1 \mathrm{H}$, $J=7.5 \mathrm{~Hz}, \mathrm{Ar}-H-5), 6.98(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}-H-4), 6.81$ $\left(\mathrm{d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \operatorname{Ar}-H-5^{\prime}\right), 6.69(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}, \mathrm{Ar}-H-$ $\left.2^{\prime}\right), 6.68$ (dd, $\left.1 \mathrm{H}, J=8.0,1.5 \mathrm{~Hz}, \mathrm{Ar}-H-6^{\prime}\right), 4.01(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{Ar}-\mathrm{CH}_{2}$), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-3^{\prime}\right), 3.83$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-4^{\prime}$). ${ }^{13} \mathrm{C}$ NMR: $\delta 169.1(C=\mathrm{O}), 149.1\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-3^{\prime}\right), 146.7$ ($\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-4^{\prime}$), $144.2\left(\mathrm{Ar}-\mathrm{C}-1^{\prime}\right), 139.4(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-3)$, 137.2 ($\mathrm{Ar}-C-1$), 130.7 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6$), 129.0 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-4$), 128.4 ($\mathrm{Ar}-C-\mathrm{H}-5$), $112.6\left(\mathrm{Ar}-C-\mathrm{H}-6^{\prime}\right), 111.0(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-$ $\left.5^{\prime}\right), 105.5\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-2^{\prime}\right), 100.8(\mathrm{Ar}-C-2), 56.0\left(\mathrm{Ar}-\mathrm{OCH}_{3}-\right.$ $\left.3^{\prime}\right), 55.8\left(\mathrm{Ar}-\mathrm{OCH}_{3}-4^{\prime}\right), 46.1\left(\mathrm{Ar}-\mathrm{CH}_{2}\right) . \mathrm{MS}: m / z\left(\mathrm{EI}^{+}\right) 398$ $\left(\mathrm{M}^{+}, 5 \%\right), 154$ (100%). HRMS ($\left.\mathrm{EI}^{+}\right)$: calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{IO}_{4}=398.0015\left(\mathrm{M}^{+}\right)$, found 398.0002.
4.2.7. 3,4-Dimethoxyphenyl 3-(2-iodo-4,5-dimethoxyphenyl)propionate 5. The title compound was prepared in 81% yield (cream solid, 669 mg) from 3-(2-iodo-4,5-dimethoxyphenyl)propanoic acid ($566 \mathrm{mg}, 1.68 \mathrm{mmol}$) and 3,4-dimethoxyphenol ($286 \mathrm{mg}, 1.85 \mathrm{mmol}$) in the presence of DCC ($382 \mathrm{mg}, 1.85 \mathrm{mmol}$), DMAP ($51 \mathrm{mg}, 0.42 \mathrm{mmol}$) and DCM (13 mL) according to the general esterification method. Mp 100-102 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 7.22$ (s, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}-$ 3), 6.83 (s, $1 \mathrm{H}, \mathrm{Ar}-H-6), 6.81\left(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}-H-5^{\prime}\right)$, 6.58 (dd, $\left.1 \mathrm{H}, J=8.7,2.5 \mathrm{~Hz}, \mathrm{Ar}-H-6^{\prime}\right), 6.55(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=2.5 \mathrm{~Hz}, \mathrm{Ar}-H-2^{\prime}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.09(\mathrm{t}$, $\left.2 \mathrm{H}, J=7.3, \mathrm{Ar}-\mathrm{CH}_{2}\right), 2.83\left(\mathrm{t}, 2 \mathrm{H}, J=7.3, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR: $\delta 171.3(\mathrm{C}=\mathrm{O}), 149.3\left(2 \times \mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-4,4^{\prime}\right)$, $148.1\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-5\right), 146.7\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-3^{\prime}\right), 144.1$ ($\mathrm{Ar}-\mathrm{C}-1^{\prime}$), $135.0(\mathrm{Ar}-\mathrm{C}-1), 121.7(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-3), 112.7$ ($\mathrm{Ar}-$ $C-\mathrm{H}-6), 112.6\left(\mathrm{Ar}-C-\mathrm{H}-6^{\prime}\right), 111.0\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-5^{\prime}\right), 105.5$ $\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-2^{\prime}\right), 87.7(\mathrm{Ar}-\mathrm{C}-2), 56.1\left(2 \times \mathrm{Ar}-\mathrm{OCH}_{3}-3^{\prime}, 5\right)$, $55.8\left(2 \times \mathrm{Ar}-\mathrm{OCH}_{3}-4,4^{\prime}\right), 35.4\left(\mathrm{Ar}-\mathrm{CH}_{2}\right), 34.6\left(\mathrm{Ar}-\mathrm{CH}_{2}-\right.$ CH_{2}). MS: $\mathrm{m} / \mathrm{z}\left(\mathrm{EI}^{+}\right) 472\left(\mathrm{M}^{+}, 19 \%\right), 154$ (100\%). HRMS $\left(\mathrm{EI}^{+}\right)$: calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{IO}_{6}=472.0383\left(\mathrm{M}^{+}\right)$, found 472.0373.
4.2.8. 2-Iodobenzyl (3,4-dimethoxyphenyl)acetate 7a. The title compound was prepared in 81% yield (clear oil, 1.42 g) from 3,4-dimethoxyphenylacetic acid (922 mg , $4.70 \mathrm{mmol})$ and 2-iodobenzyl alcohol ($1.00 \mathrm{~g}, 4.27 \mathrm{mmol}$) in the presence of DCC ($969 \mathrm{mg}, 4.70 \mathrm{mmol}$), DMAP $(156 \mathrm{mg}, 1.28 \mathrm{mmol})$ and DCM (20 mL) according to the general esterification method. Mp $52-54{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 7.82\left(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}-H-3^{\prime}\right), 7.30(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{Ar}-H-5^{\prime}\right), 7.28$ (d, $\left.1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}-H-6^{\prime}\right), 6.99$ (dt, 1 H , $\left.J=7.5,2.0 \mathrm{~Hz}, \mathrm{Ar}-H-4^{\prime}\right), 6.84(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}-H-6)$, 6.83 (br s, 1H, Ar-H-2), 6.80 (d, $1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}-H-5$), 5.13 (s, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{O}$), 3.85 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}-4$), 3.84 (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}-3\right), 3.63\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CO}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 171.1(C=\mathrm{O}), 148.8\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-3\right), 148.0(\mathrm{Ar}-\mathrm{C}-$ $\left.\mathrm{OCH}_{3}-4\right), 139.3\left(\mathrm{Ar}-C-\mathrm{H}-3^{\prime}\right), 138.1$ ($\mathrm{Ar}-C-1^{\prime}$), 129.7 $\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-4^{\prime}\right), 129.3\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6^{\prime}\right), 128.1\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-5^{\prime}\right)$,
126.0 ($\mathrm{Ar}-\mathrm{C}-1$), 121.4 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6$), 112.3 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-2$), 111.1 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-5$), $98.1\left(\mathrm{Ar}-\mathrm{C}-2^{\prime}\right), 70.1\left(\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{O}\right)$, $55.78\left(\mathrm{Ar}-\mathrm{OCH}_{3}-4\right), 55.73\left(\mathrm{Ar}-\mathrm{OCH}_{3}-3\right), 40.4\left(\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CO}\right)$. MS: $m / z\left(\mathrm{EI}^{+}\right) 412\left(\mathrm{M}^{+}, 62 \%\right), 151$ (100\%). HRMS (EI $)$: calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{IO}_{4}=412.0171\left(\mathrm{M}^{+}\right)$, found 412.0151.
4.2.9. 2-Iodo-4,5-dimethoxybenzyl 3,4-dimethoxyphenylacetate 7b. The title compound was prepared in 70% yield (92% based on recovered starting material orange solid, 720 mg) from 3,4-dimethoxyphenylacetic acid (474 mg , 2.41 mmol) and 2-iodo-4,5-dimethoxybenzyl alcohol $(645 \mathrm{mg}, 2.19 \mathrm{mmol})$ in the presence of DCC $(498 \mathrm{mg}$, 2.41 mmol), DMAP ($80 \mathrm{mg}, \quad 0.69 \mathrm{mmol}$) and DCM $(10 \mathrm{~mL})$ according to the general esterification method. (2-Iodo-4,5-dimethoxybenzyl alcohol (159 mg) was recovered from the reaction.) Mp $88-90^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 7.23(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{Ar}-H-3^{\prime}\right), 6.84(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{Ar}-H-5), 6.83-6.81$ (m, $1 \mathrm{H}, \mathrm{Ar}-H-6$), 6.81 (d, $1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{Ar}-H-2$), 6.79 (s, $\left.1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}^{\prime} 6^{\prime}\right), 5.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{O}\right), 3.86$ (s, 6 H , $\left.\mathrm{OCH}_{3}-4^{\prime}, 5^{\prime}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-3\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-4\right)$, 3.62 ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CO}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 171.3(\mathrm{C}=\mathrm{O})$, $149.3\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-4\right), 149.2\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-4^{\prime}\right), 148.8$ $\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-5^{\prime}\right), 148.1\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-3\right), 130.6(\mathrm{Ar}-\mathrm{C}-$ $\left.1^{\prime}\right), 126.2(\mathrm{Ar}-C-1), 121.6\left(\mathrm{Ar}-C-\mathrm{H}-3^{\prime}\right), 121.4(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-$ 5), 112.6 ($\left.\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6^{\prime}\right), 112.4(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6), 111.1(\mathrm{Ar}-\mathrm{C}-$ $\mathrm{H}-2), 86.9\left(\mathrm{Ar}-\mathrm{C}-2^{\prime}\right), 70.2\left(\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{O}\right), 56.1\left(\mathrm{Ar}-\mathrm{OCH}_{3}-\right.$ 3), $55.85\left(2 \times \mathrm{Ar}-\mathrm{OCH}_{3}-4,4^{\prime}\right), 55.83\left(\mathrm{Ar}-\mathrm{OCH}_{3}-5^{\prime}\right), 40.8$ $\left(\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CO}\right) . \mathrm{MS}: m / z \quad\left(\mathrm{EI}^{+}\right) 472 \quad\left(\mathrm{M}^{+}, 13 \%\right), 151$ (100%). HRMS $\left(\mathrm{EI}^{+}\right)$: calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{IO}_{6}=472.0383$ $\left(\mathrm{M}^{+}\right)$, found 472.0388.
4.2.10. 3,4-Dimethoxybenzyl (2-iodophenyl)acetate 10a. The title compound was prepared in 91% yield (clear oil, 1.42 g) from 2-iodophenylacetic acid ($1.0 \mathrm{~g}, 3.82 \mathrm{mmol}$) and 3,4-dimethoxybenzyl alcohol ($706 \mathrm{mg}, 4.19 \mathrm{mmol}$) in the presence of DCC $(866 \mathrm{mg}, 4.19 \mathrm{mmol})$, DMAP $(140 \mathrm{mg}, 1.14 \mathrm{mmol})$ and DCM $(20 \mathrm{~mL})$ according to esterification method. ${ }^{1} \mathrm{H}$ NMR: $\delta \quad 7.83 \quad(\mathrm{~d}, \quad 1 \mathrm{H}, \quad J=$ $8.0 \mathrm{~Hz}, \operatorname{Ar}-H-3), 7.29(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}-H-6), 7.28$ (t, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}-H-5$), 6.94 (t, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}-H-4$), $6.90\left(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}-H-6^{\prime}\right), 6.85$ (br s, 1H, Ar-H-2'), $6.81\left(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}-H-5^{\prime}\right), 5.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{O}\right)$, $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-3^{\prime}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-4^{\prime}\right), 3.82(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CO}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 170.2(\mathrm{C}=\mathrm{O}), 148.9(\mathrm{Ar}-\mathrm{C}-$ $\left.\mathrm{OCH}_{3}-4^{\prime}\right), 148.8\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-3^{\prime}\right), 139.3(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-3)$, 137.6 ($\mathrm{Ar}-C-1$), 130.5 ($\mathrm{Ar}-C-\mathrm{H}-5$), 128.7 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-4$), 128.3 ($\mathrm{Ar}-C-\mathrm{H}-6$), 128.1 ($\mathrm{Ar}-C-1^{\prime}$), $121.0\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6^{\prime}\right)$, 111.5 ($\mathrm{Ar}-C-\mathrm{H}-2^{\prime}$), $110.8\left(\mathrm{Ar}-C-\mathrm{H}-5^{\prime}\right), 100.9(\mathrm{Ar}-C-2)$, $66.7\left(\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{O}\right), 55.79\left(\mathrm{Ar}-\mathrm{OCH}_{3}-4^{\prime}\right), 55.78\left(\mathrm{Ar}-\mathrm{OCH}_{3}-\right.$ $\left.3^{\prime}\right), 46.2\left(\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CO}\right) . \mathrm{MS}: m / z\left(\mathrm{EI}^{+}\right) 412\left(\mathrm{M}^{+}, 48 \%\right)$, $151(100 \%)$. HRMS $\left(\mathrm{EI}^{+}\right)$: calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{IO}_{4}=412.0171$, found 412.0158.
4.2.11. 3,4-Dimethoxybenzyl 2-iodo-4,5-dimethoxyphenylacetate 10b. The title compound was prepared in 77% yield (white solid, 452 mg) from 2-iodo-3,4-dimethoxyphenylacetic acid ($400 \mathrm{mg}, 1.24 \mathrm{mmol}$) and 3,4-dimethoxybenzyl alcohol ($229 \mathrm{mg}, 1.36 \mathrm{mmol}$) in the presence of DCC ($282 \mathrm{mg}, 1.36 \mathrm{mmol}$), DMAP ($45 \mathrm{mg}, 0.37 \mathrm{mmol}$) and DCM (10 mL) according to esterification method. Mp $96-98{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 7.23$ (s, 1H, Ar-H-3), 6.91 (dd, 1 H , $\left.J=8.0,2.0 \mathrm{~Hz}, \mathrm{Ar}-H-6^{\prime}\right), 6.88\left(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{Ar}-H-2^{\prime}\right)$, $6.83\left(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}-H-5^{\prime}\right), 6.78$ (s, $\left.1 \mathrm{H}, \mathrm{Ar}-H-6\right)$,
5.11 (s, 2H, $\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{O}$), 3.87 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-3^{\prime}$), 3.86 (s , $\left.3 \mathrm{H}, \mathrm{OCH}_{3}-4^{\prime}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-5\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-\right.$ 4), 3.76 ($\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CO}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 170.6(\mathrm{C}=\mathrm{O})$, $149.0\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-4\right), \quad 148.9\left(2 \times \mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-4^{\prime}, 5^{\prime}\right)$, 148.6 ($\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-5$), $129.9(\mathrm{Ar}-\mathrm{C}-1), 128.2\left(\mathrm{Ar}-\mathrm{C}-1^{\prime}\right)$, 121.5 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-3$), $121.1\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6^{\prime}\right), 113.2$ ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6$), 111.6 ($\mathrm{Ar}-C-\mathrm{H}-5^{\prime}$), $110.8\left(\mathrm{Ar}-C-\mathrm{H}-2^{\prime}\right), 88.8(\mathrm{Ar}-C-2)$, $66.7\left(\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{O}\right), 56.1\left(\mathrm{Ar}-\mathrm{OCH}_{3}-5^{\prime}\right), 55.87(2 \times \mathrm{Ar}-$ $\left.\mathrm{OCH}_{3}-4,4^{\prime}\right), 55.86\left(\mathrm{Ar}-\mathrm{OCH}_{3}-3^{\prime}\right), 45.7\left(\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CO}\right)$. MS: $m / z\left(\mathrm{EI}^{+}\right) 472\left(\mathrm{M}^{+}, 9 \%\right), 151$ (100\%). HRMS (ES^{+}): calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{IO}_{6}=473.0461\left(\mathrm{M}+\mathrm{H}^{+}\right)$, found 473.0443.

4.3. General method for palladium-mediated arylation

4.3.1. 2,3,8,9-Tetramethoxy-6H-benzo $[c]$ chromen-6-one 2a. Compound 1a ($100 \mathrm{mg}, 0.22 \mathrm{mmol}$), $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}$ ($41 \mathrm{mg}, \quad 0.058 \mathrm{mmol}$), anhydrous NaOAc (55 mg , 0.67 mmol) and DMA (25 mL) were combined in an ACE^{\circledR} pressure tube. The solution was degassed for 20 min with Ar, the vessel sealed and heated at $120^{\circ} \mathrm{C}$ for 3 h . The tube was cooled to rt and the solid residue removed by filtration. The filtrate was diluted with 20 mL of $10 \% \mathrm{HCl}$ solution and extracted with $\mathrm{EtOAc}(2 \times 20 \mathrm{~mL})$. The combined extracts were washed with $\mathrm{H}_{2} \mathrm{O}(4 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, evaporated and the title compound was isolated as a white film ($57.2 \mathrm{mg}, 80 \%$) by flash silica gel chromatography using DCM-PS-EtOAc (2:2:1) as the eluent. Mp 217-219 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 7.69$ (s, 1H, Ar-H-7), 7.24 (s, 1H, Ar-H-10), 7.22 (s, 1H, Ar-H-1), 6.83 (s, 1H, $\mathrm{Ar}-H-4), 4.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-8\right), 4.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-2\right)$, 3.99 (s, 3H, $\mathrm{OCH}_{3}-9$), 3.94 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-3$). ${ }^{13} \mathrm{C}$ NMR: $\delta 161.4(C=\mathrm{O})$, $155.1\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-8\right), 150.9(\mathrm{Ar}-\mathrm{C}-$ $\left.\mathrm{OCH}_{3}-3\right), 149.3\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-9\right), 146.3(\mathrm{Ar}-\mathrm{C}-4 \mathrm{a}), 146.0$ $\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-2\right), 130.3(\mathrm{Ar}-\mathrm{C}-7 \mathrm{a}), 113.3(\mathrm{Ar}-\mathrm{C}-10 \mathrm{a})$, 110.5 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-7$), 110.0 ($\mathrm{Ar}-C-1 \mathrm{a}$), 103.8 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-10$), $102.0(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-1), 100.8(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-4), 56.6\left(\mathrm{Ar}-\mathrm{OCH}_{3}-2\right)$, $56.3\left(\mathrm{Ar}-\mathrm{OCH}_{3}-8\right), 56.2\left(\mathrm{Ar}-\mathrm{OCH}_{3}-9\right), 56.1\left(\mathrm{Ar}-\mathrm{OCH} 3^{-}\right.$ 3). MS: $m / z\left(\mathrm{EI}^{+}\right) 316\left(\mathrm{M}^{+}, 100 \%\right)$. HRMS $\left(\mathrm{CI}^{+}\right)$: calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{6}=317.1025\left(\mathrm{M}+\mathrm{H}^{+}\right)$, found $317.1026\left(\mathrm{M}^{+}\right)$.
4.3.2 2,3,8,9,10-Pentamethoxy-6H-benzo[c]chromen-6one 2b. The title compound was prepared in 85% yield (white solid, 63 mg) from $\mathbf{1 b}(100 \mathrm{mg}, 0.21 \mathrm{mmol})$, in the presence of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}(39 \mathrm{mg}, 0.055 \mathrm{mmol}), \mathrm{NaOAc}$ ($52 \mathrm{mg}, 0.63 \mathrm{mmol}$) and DMA (25 mL) according to the general arylation method described above. Mp 148$150{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\delta 8.39$ (s, 1H, Ar-H-7), 7.72 (s, $1 \mathrm{H}, \mathrm{Ar}-$ $H-1), 6.86$ (s, 1H, Ar-H-4), 4.05 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}-8$), 4.00 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-9$), $3.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-10\right), 3.98$ ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{OCH}_{3}-3$), 3.94 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-2$). ${ }^{13} \mathrm{C}$ NMR: $\delta 161.3$ $(C=\mathrm{O}), 152.8\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-10\right), 150.1\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-9\right)$, $149.9\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-2\right), 148.9\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-3\right), 145.7$ ($\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-8$), 145.4 ($\mathrm{Ar}-\mathrm{C}-4 \mathrm{a}$), 123.1 ($\mathrm{Ar}-\mathrm{C}-7 \mathrm{a}$), 116.2 (Ar-C-10a), 109.4 (Ar-C-1a), 108.1 ($\mathrm{Ar}-C-\mathrm{H}-7$), 107.9 ($\mathrm{Ar}-$ $C-\mathrm{H}-1), 100.3(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-4), 61.1\left(\mathrm{Ar}-\mathrm{OCH}_{3}-8\right), 60.6(\mathrm{Ar}-$ $\left.\mathrm{OCH}_{3}-3\right), 56.2\left(\mathrm{Ar}-\mathrm{OCH}_{3}-9\right), 56.1\left(\mathrm{Ar}-\mathrm{OCH}_{3}-10\right), 56.0$ ($\mathrm{Ar}-\mathrm{OCH}_{3}-2$). MS: $m / z\left(\mathrm{CI}^{+}\right) 347\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$. HRMS $\left(\mathrm{CI}^{+}\right)$: calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{7}=347.1131\left(\mathrm{M}+\mathrm{H}^{+}\right)$, found 347.1132 .
4.3.3. 2,3-Dimethoxy- $\mathbf{6 H}$-benzo $[\boldsymbol{c}]$ chromen- 6 -one $\mathbf{2 c}$ and
1,2-dimethoxy- $\mathbf{H} \boldsymbol{H}$-benzo $[\boldsymbol{c}]$ chromen- $\mathbf{6}$-one 3 . Compound
2c was prepared in 71% yield (white solid, 47.3 mg) from

1c $(100 \mathrm{mg}, 0.26 \mathrm{mmol})$ in the presence of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}$ ($39 \mathrm{mg}, 0.067 \mathrm{mmol}$), $\mathrm{NaOAc}(64 \mathrm{mg}, 0.78 \mathrm{mmol})$ and DMA (25 mL) according to the general arylation method described above. Regioisomer $\mathbf{3}$ was also isolated from the reaction as a white solid ($9.2 \mathrm{mg}, 8 \%$). NMR data were consistent with the literature for $\mathbf{2 c}$ and $3 .{ }^{8}$
4.3.4. 3,4-Dimethoxyphenyl (2E)-3-(3,4-dimethoxyphenyl)acrylate 6. The title compound was prepared in 59% yield (yellow film, 43 mg) from $5(100 \mathrm{mg}, 0.20 \mathrm{mmol})$ in the presence of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}(37 \mathrm{mg}, 0.053 \mathrm{mmol}), \mathrm{NaOAc}$ ($51 \mathrm{mg}, 0.61 \mathrm{mmol}$) and DMA (25 mL) according to the general arylation method described above. While this is a known compound NMR data were not reported. ${ }^{9}{ }^{1} \mathrm{H}$ NMR: $\delta 7.80(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{CH}=\mathrm{CH}), 7.16$ (dd, $1 \mathrm{H}, J=8.1,1.5 \mathrm{~Hz}, \mathrm{Ar}-H-6), 7.10(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}, \mathrm{Ar}-$ $H-2), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{Ar}-H-5), 6.86(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=9.3 \mathrm{~Hz}, \mathrm{Ar}-H-5^{\prime}\right), 6.72\left(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}, \mathrm{Ar}-H-2^{\prime}\right)$, 6.71 (dd, $\left.1 \mathrm{H}, J=9.3,2.7 \mathrm{~Hz}, \mathrm{Ar}-H-6^{\prime}\right), 6.48$ (d, 1 H , $J=15.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{CH}=\mathrm{CH}), 3.92\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}-3,4\right)$, 3.88 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}-3^{\prime}$), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-4^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 166.0(C=\mathrm{O}), 151.4\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-3\right), 149.3(\mathrm{Ar}-\mathrm{C}-$ $\left.\mathrm{OCH}_{3}-4\right), 149.2\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-4^{\prime}\right), 146.7\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-3^{\prime}\right)$, $146.4(\mathrm{Ar}-\mathrm{CH}=\mathrm{CH}), 144.4\left(\mathrm{Ar}-\mathrm{C}-1^{\prime}\right), 127.1(\mathrm{Ar}-\mathrm{C}-$ $\mathrm{CH}=\mathrm{CH}), 122.9(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6), 114.7(\mathrm{Ar}-\mathrm{CH}=\mathrm{CH}), 112.9$ ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6^{\prime}$), 111.1 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-5$), 111.0 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-5^{\prime}$), $109.7(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-2), 105.8\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-2^{\prime}\right), 56.1\left(\mathrm{Ar}-\mathrm{OCH}_{3}\right)$, $55.96\left(\mathrm{Ar}-\mathrm{OCH}_{3}\right), 55.94\left(\mathrm{Ar}-\mathrm{OCH}_{3}\right), 55.8\left(\mathrm{Ar}-\mathrm{OCH}_{3}\right)$. MS: $m / z\left(\mathrm{EI}^{+}\right) 344\left(\mathrm{M}^{+}, 13 \%\right), 191$ (100\%). HRMS (EI $\left.{ }^{+}\right)$: calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{6}=344.1260\left(\mathrm{M}^{+}\right)$, found 344.1256.
4.3.5. 4-(3,4-Dimethoxyphenyl)-1,4-dihydro-3H-isochro-men-3-one 8a and $2,2^{\prime}$-(dimethylenebiphenyl-2, $\mathbf{2}^{\prime}$ -diyl)[di(3,4-dimethoxyphenyl)]diacetate 9 a. Compounds 8a (white film, $20 \mathrm{mg}, 29 \%$) and $9 \mathbf{a}$ (white film, 31 mg , 30%) were prepared from 7 a ($100 \mathrm{mg}, 0.24 \mathrm{mmol}$) in the presence of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}(44 \mathrm{mg}, 0.063 \mathrm{mmol}), \mathrm{NaOAc}$ ($60 \mathrm{mg}, 0.73 \mathrm{mmol}$) and DMA (25 mL) according to the general arylation method described above.

Compound 8a: ${ }^{1} \mathrm{H}$ NMR: $\delta 7.38$ (d, $1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}-H-5$), 7.37 (t, $1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}-H-7$), 7.29 (d, $1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}-$ $H-8), 7.15(\mathrm{t}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{Ar}-H-6), 6.81(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=2.1 \mathrm{~Hz}, \operatorname{Ar}-H-2^{\prime}\right), 6.78\left(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{Ar}-H-5^{\prime}\right)$, 6.53 (dd, $\left.1 \mathrm{H}, J=8.2,2.1 \mathrm{~Hz}, \mathrm{Ar}-H-6^{\prime}\right), 5.23$ (ABq, 2 H , $\left.J=16.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{O}\right), 4.95(\mathrm{Ar}-\mathrm{CH}-\mathrm{CO}), 3.85(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}-4^{\prime}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-3^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 171.6$ $(C=\mathrm{O}), 149.6\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-3^{\prime}\right), 149.0\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-4^{\prime}\right)$, 134.4 ($\mathrm{Ar}-\mathrm{C}-5 \mathrm{a}$), 132.2 ($\mathrm{Ar}-C-8 \mathrm{a}$), 129.2 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-5$), 128.2 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6$), 128.0 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-7$), $126.7\left(\mathrm{Ar}-\mathrm{C}-1^{\prime}\right)$, $125.0(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-8), 120.5\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6^{\prime}\right), 111.7(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-$ $\left.2^{\prime}\right), 111.3\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-5^{\prime}\right)$, $69.7\left(\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{O}\right)$, $56.1(2 \times \mathrm{Ar}-$ $\left.\mathrm{OCH}_{3}-3,4\right), 51.5(\mathrm{Ar}-\mathrm{CH}-\mathrm{CO}) . \mathrm{MS}: m / z\left(\mathrm{EI}^{+}\right) 284\left(\mathrm{M}^{+}\right.$, 73%), 209 (100%). HRMS (EI^{+}): calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4}=$ $284.1048\left(\mathrm{M}^{+}\right)$, found 284.1057.

Compound 9a: ${ }^{1} \mathrm{H}$ NMR: $\delta 7.37$ (dd, $2 \mathrm{H}, J=7.5,1.5 \mathrm{~Hz}, \mathrm{Ar}-$ $\left.H-3^{\prime}\right), 7.33$ (dt, 2H, $\left.J=7.5,1.5 \mathrm{~Hz}, \mathrm{Ar}-H-5^{\prime}\right), 7.28$ (dt, 2 H , $\left.J=7.5,1.5 \mathrm{~Hz}, \mathrm{Ar}-H-4^{\prime}\right), 7.11$ (dd, $2 \mathrm{H}, J=7.5,1.0 \mathrm{~Hz}, \mathrm{Ar}-$ $\left.H-6^{\prime}\right), 6.78$ (d, $2 \mathrm{H}, J=9.0 \mathrm{~Hz}, \operatorname{Ar}-H-5$), 6.74 (dd, 2 H , $J=9.0,1.5 \mathrm{~Hz}, \mathrm{Ar}-H-6$), 6.73 (br s, $2 \mathrm{H}, \mathrm{Ar}-H-2$), 4.83 (ABq, 4H, J=12.5, Hz, Ar-CH2-O), 3.85 (s, 6H, OCH 3^{-} 4), $3.81\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}-3\right), 3.48\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CO}\right)$.
${ }^{13} \mathrm{C}$ NMR: $\delta 171.2(\mathrm{C}=\mathrm{O}), 148.8\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-3\right), 148.1$ $\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-4\right), 139.6$ ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-3^{\prime}$), 133.7 ($\mathrm{Ar}-\mathrm{C}-1^{\prime}$), $129.9\left(\mathrm{Ar}-\mathrm{C}-2^{\prime}\right), 128.9\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-3^{\prime}\right), 127.9(2 \times \mathrm{Ar}-\mathrm{C}-\mathrm{H}-$ $\left.4^{\prime}, 5^{\prime}\right), 126.2$ ($\mathrm{Ar}-C-1$), 121.4 ($\mathrm{Ar}-C-\mathrm{H}-6$), 112.3 ($\mathrm{Ar}-C-$ $\mathrm{H}-2), \quad 111.1 \quad(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-5), \quad 64.5 \quad\left(\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{O}\right), \quad 55.8$ $\left(\mathrm{Ar}-\mathrm{OCH}_{3}-4\right), 55.7\left(\mathrm{Ar}-\mathrm{OCH}_{3}-3\right), 40.7\left(\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CO}\right)$. MS: $m / z\left(\mathrm{EI}^{+}\right) 570\left(\mathrm{M}^{+}, 47 \%\right), 151$ (100\%). HRMS (EI ${ }^{+}$): calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{O}_{8}=570.2254\left(\mathrm{M}^{+}\right)$, found 570.2271.
4.3.6. 4-(3,4-Dimethoxyphenyl)-6,7-dimethoxy-1,4-dihydro$3 H$-isochromen-3-one 8 b and $2,2^{\prime}$-[dimethylene $\left(4,4^{\prime}, 5,5^{\prime}\right.$ -tetramethoxy)biphenyl-2,2'-diyl](di(3,4-dimethoxyphenyl))diacetate 9b. Compounds $\mathbf{8 b}$ (yellow film, 21 mg , 29%) and $9 \mathbf{~ b}$ (orange film, $39 \mathrm{mg}, 46 \%$) were prepared from 7b $(115 \mathrm{mg}, 0.24 \mathrm{mmol})$ in the presence of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}$ ($44 \mathrm{mg}, 0.063 \mathrm{mmol}$), $\mathrm{NaOAc}(60 \mathrm{mg}, 0.73 \mathrm{mmol})$ and DMA (25 mL) according to the general arylation method described above.

Compound $\boldsymbol{8 b}$: the spectral data for this compound is given below in Section 4.3.7.

Compound 9b: ${ }^{1} \mathrm{H}$ NMR: $\delta 6.84$ (s, 2H, Ar-H-6'), 6.78 (d, $2 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{Ar}-H-5), 6.76$ (d, $2 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{Ar}-H-6$), 6.75 (br s, 2H, Ar-H-2), 6.69 (s, 2H, $\left.\mathrm{Ar}-H-3^{\prime}\right), 4.81$ (ABq, $4 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{O}$), 3.85 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{OCH}_{3}-5^{\prime}$), 3.84 (s, 6H, $\mathrm{OCH}_{3}-4^{\prime}$), $3.81\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}-3\right), 3.80(\mathrm{~s}, 6 \mathrm{H}$ $\left.\mathrm{OCH}_{3}-4\right), 3.51\left(\mathrm{~s}, 4 \mathrm{H} \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CO}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 171.3$ $(C=\mathrm{O}), 148.9\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-4^{\prime}\right), 148.4\left(2 \times \mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-\right.$ $3,4), 148.3\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-3^{\prime}\right), 132.3\left(\mathrm{Ar}-\mathrm{C}-1^{\prime}\right), 126.3$ ($\mathrm{Ar}-\mathrm{C}-2^{\prime}$), 126.2 ($\mathrm{Ar}-\mathrm{C}-1$), 121.3 ($\left.\mathrm{Ar}-C-\mathrm{H}-6\right), 113.1(\mathrm{Ar}-$ $C-\mathrm{H}-3), 112.3$ ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-2$), 111.9 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6$), 111.1 $(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-5), 64.4\left(\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{O}\right), 56.0\left(\mathrm{Ar}-\mathrm{OCH}_{3}-3\right), 55.9$ $\left(\mathrm{Ar}-\mathrm{OCH}_{3}-4\right), 55.8\left(\mathrm{Ar}-\mathrm{OCH}_{3}-4^{\prime}\right), 55.7\left(\mathrm{Ar}-\mathrm{OCH}_{3}-3^{\prime}\right)$, $40.8\left(\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CO}\right) . \mathrm{MS}: \mathrm{m} / \mathrm{z}\left(\mathrm{EI}^{+}\right) 690\left(\mathrm{M}^{+}, 11 \%\right), 368$ (100\%). HRMS (EI ${ }^{+}$): calcd for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{O}_{12}=690.2676$ $\left(\mathrm{M}^{+}\right)$, found 690.2679.
4.3.7. 4-(3,4-Dimethoxyphenyl)-6,7-dimethoxy-1,4-di-hydro- $\mathbf{3 H}$-isochromen-3-one $\mathbf{8 b}$. The title compound was also prepared in 21% yield (yellow film, 15 mg) from 3,4-dimethoxybenzyl (2-iodo-4,5-dimethoxyphenyl)acetate $(115 \mathrm{mg}, 0.24 \mathrm{mmol})$ in the presence of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}$ ($44 \mathrm{mg}, 0.063 \mathrm{mmol}$), NaOAc ($60 \mathrm{mg}, 0.73 \mathrm{mmol}$) and DMA (25 mL) according to the general arylation method described above. ${ }^{1} \mathrm{H}$ NMR: $\delta 6.84$ (d, $1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{Ar}-H-2^{\prime}$), 6.77 (s, 1H, Ar-H-5), 6.78 (d, $\left.1 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}-H-5^{\prime}\right), 6.65$ (s, 1H, Ar-H-8), 6.51 (dd, $\left.1 \mathrm{H}, J=8.7,2.0 \mathrm{~Hz}, \mathrm{Ar}-H-6^{\prime}\right), 5.17$ ($\mathrm{ABq}, 2 \mathrm{H}, \mathrm{J}=13.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{O}$), 4.89 ($\mathrm{Ar}-\mathrm{CH}-\mathrm{CO}$), 3.92 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}-6$), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-7\right), 3.84(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}-3^{\prime}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-4^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 171.5$ $(C=\mathrm{O}), 149.8\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-3\right), 149.6\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-4^{\prime}\right)$, $149.0\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-4\right), 148.8\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-5^{\prime}\right), 127.0$ ($\mathrm{Ar}-C-5 \mathrm{a}$), $126.2\left(\mathrm{Ar}-C-1^{\prime}\right), 124.3(\mathrm{Ar}-C-8 \mathrm{a}), 120.2(\mathrm{Ar}-$ $\left.C-\mathrm{H}-6^{\prime}\right), 111.5\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-2^{\prime}\right), 111.3\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-5^{\prime}\right), 111.2$ ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-8$), $108.1(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-5), 69.6\left(\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{O}\right), 56.4$ $\left(\mathrm{Ar}-\mathrm{OCH}_{3}\right), 56.3\left(\mathrm{Ar}-\mathrm{OCH}_{3}\right), 56.2\left(\mathrm{Ar}-\mathrm{OCH}_{3}\right), 56.1(\mathrm{Ar}-$ $\left.\mathrm{OCH}_{3}\right), 50.9(\mathrm{Ar}-\mathrm{CH}-\mathrm{CO}) . \mathrm{MS}: m / z\left(\mathrm{EI}^{+}\right) 344\left(\mathrm{M}^{+}, 46 \%\right)$, $269(100 \%)$. HRMS $\left(\mathrm{CI}^{+}\right)$: calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{6}=345.1338$ $\left(\mathrm{M}+\mathrm{H}^{+}\right)$, found 345.1327.
4.3.8. $\mathrm{Di}(3,4$-dimethoxybenzyl) 2,3-diphenylsuccinate 11 and di(3,4-dimethoxybenzyl) $2,2^{\prime}$-biphenyl-2, 2^{\prime} -
diylacetate 12. Compound 11 was prepared in 27% yield (clear film, 19 mg) from $10 a(100 \mathrm{mg}, 0.24 \mathrm{mmol})$ in the presence of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}$ ($65 \mathrm{mg}, 0.093 \mathrm{mmol}$), NaOAc ($60 \mathrm{mg}, 0.73 \mathrm{mmol}$) and DMA (25 mL) according to the general arylation method described above, and with HPLC separation of $\mathbf{1 2}$ (clear film, $4 \mathrm{mg}, 7 \%$) from the reaction mixture. The major and minor diastereomers could not be separated by HPLC and are reported together. The diastereomeric ratio was major-minor $=1.8: 1$. NMR signals for the minor diastereomer are shown in brackets.

Compound 11: ${ }^{1} \mathrm{H}$ NMR: $\delta 7.47$ (dd, $2 \mathrm{H}, J=7.5,2.1 \mathrm{~Hz}, \mathrm{Ar}-$ $H-4), 7.13$ (t, 4H, J=7.5 Hz, Ar-H-3,5), 7.03 (dd, 4H, Ar-H2,6), 6.73 (d, 2H, $\left.J=7.8 \mathrm{~Hz}, \operatorname{Ar}-H-5^{\prime}\right), 6.59$ (dd, 2H, $J=7.8$, $\left.2.1 \mathrm{~Hz}, \mathrm{Ar}-H-6^{\prime}\right), 6.48\left(\mathrm{~d}, 2 \mathrm{H}, J=2.1 \mathrm{~Hz}, \mathrm{Ar}-H-2^{\prime}\right), 5.04$ (4.76) (ABq, $4 \mathrm{H}, J=12.3 \mathrm{~Hz},(\mathrm{ABq}, 4 \mathrm{H}, J=12.0 \mathrm{~Hz}), \mathrm{Ar}-$ $\mathrm{CH}_{2}-\mathrm{O}$), 4.30 (4.43) ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}-\mathrm{CO}$), 3.85 (3.85) (s , $\left.3 \mathrm{H}, \mathrm{OCH}_{3}-3^{\prime}\right), 3.74$ (3.69) ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-4^{\prime}$). ${ }^{13} \mathrm{C}$ NMR: $\delta 172.8(171.4)(C=\mathrm{O}), 148.9\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-3^{\prime}\right), 148.8$ $\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-4^{\prime}\right), 135.5$ (136.1) ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-2^{\prime}$), 128.5 (128.6) ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-4$), 128.3 (128.2) ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-3,5$), $128.4(\mathrm{Ar}-\mathrm{C}-1)$, 128.0 (127.9) ($\mathrm{Ar}-\mathrm{C}-1^{\prime}$), 127.4 (127.8) ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-2,6$), 120.8 (120.5) ($\left.\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6^{\prime}\right), 110.9$ (111.2) ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-2^{\prime}$), 110.7 (110.9) ($\left.\mathrm{Ar}-\mathrm{C}-\mathrm{H}-5^{\prime}\right), 66.6\left(\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{O}\right), 55.8(\mathrm{Ar}-$ $\left.\mathrm{OCH}_{3}\right), 55.7(55.6)\left(\mathrm{Ar}-\mathrm{OCH}_{3}\right), 54.8(54.9)(\mathrm{Ar}-\mathrm{CH}-\mathrm{CO})$. MS: $m / z\left(\mathrm{EI}^{+}\right) 570\left(\mathrm{M}^{+}, 10 \%\right), 151$ (100\%). HRMS (EI ${ }^{+}$): calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{O}_{8}=570.2253\left(\mathrm{M}^{+}\right)$, found 570.2231.

Compound 12: ${ }^{1} \mathrm{H}$ NMR: $\delta 7.30-7.26$ (m, 4H, $\mathrm{Ar}-\mathrm{H}-5,6$), 7.22-7.16 (m, 4H, Ar-H-3,4), 7.07 (d, 2H, J=7.2 Hz, Ar-$H-5), 6.78$ (d, $\left.2 \mathrm{H}, J=1.2 \mathrm{~Hz}, \mathrm{Ar}-H-2^{\prime}\right), 6.72$ (dd, 2 H , $\left.J=7.2,1.2 \mathrm{~Hz}, \mathrm{Ar}-H-6^{\prime}\right), 4.91$ (s, $4 \mathrm{H} \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{O}$), 3.85 (s, $\left.6 \mathrm{H}, \mathrm{OCH}_{3}-3^{\prime}\right), 3.80\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}-4^{\prime}\right), 3.36(\mathrm{ABq}, 4 \mathrm{H}$, $\left.J=16.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CO}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 171.4(C=\mathrm{O})$, $149.0\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-4^{\prime}\right), 148.9\left(\mathrm{Ar}-\mathrm{C}-\mathrm{OCH}_{3}-3^{\prime}\right), 140.6$ ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-3$), 132.4 ($\mathrm{Ar}-\mathrm{C}-1^{\prime}$), 130.2 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-5$), 130.1 ($\mathrm{Ar}-\mathrm{C}-\mathrm{H}-4$), $128.5(\mathrm{Ar}-\mathrm{C}-1), 127.7(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6), 126.9(\mathrm{Ar}-$ $\left.C-2^{\prime}\right), 121.1\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-6^{\prime}\right), 111.6\left(\mathrm{Ar}-\mathrm{C}-\mathrm{H}-2^{\prime}\right), 110.8$ ($\left.\mathrm{Ar}-\mathrm{C}-\mathrm{H}-5^{\prime}\right), 66.9\left(\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{O}\right), 55.9\left(\mathrm{Ar}-\mathrm{OCH}_{3}-4^{\prime}\right), 55.8$ $\left(\mathrm{Ar}-\mathrm{OCH}_{3}-3^{\prime}\right), 38.7\left(\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CO}\right) . \mathrm{MS}: m / z\left(\mathrm{EI}^{+}\right) 570$ $\left(\mathrm{M}^{+}, 5 \%\right), 151(100 \%)$. HRMS $\left(\mathrm{EI}^{+}\right)$: calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{O}_{8}=$ $570.2253\left(\mathrm{M}^{+}\right)$, found 570.2239.

Acknowledgements

We thank Johnson and Johnson Research Pty. Limited, Sydney and the University of Wollongong for supporting this research and Dr. Wayne Gerlach for encouragement and support.

References and notes

1. See for example: (a) Ames, D. E.; Opalko, A. Tetrahedron 1984, 40, 1919-1925; (b) Deshpande, P. P.; Martin, O. R. Tetrahedron Lett. 1990, 31, 6313-6316; (c) Hosoya, T.; Takashiro, E.;

Matsumoto, T.; Suzuki, E. J. Am. Chem. Soc. 1994, 116, 1004-1015; (d) Qabaja, G.; Jones, G. B. J. Org. Chem. 2000, 65, 7187-7194; (e) Bringmann, G.; Menche, D. Acc. Chem. Res. 2001, 34, 615-624; (f) Bringmann, G.; Menche, D.; Muhlbacher, J.; Reichert, M.; Saito, N.; Pfeiffer, S. S.; Lipshutz, B. Org. Lett. 2002, 4, 2833-2836; (g) Molander, G. A.; George, K. M.; Monovich, L. G. J. Org. Chem. 2003, 68, 9533-9540; (h) Abe, H.; Takeda, S.; Fujita, T.; Nishioka, K.; Takeuchi, Y.; Harayama, T. Tetrahedron Lett. 2004, 45, 2327-2329; (i) Abe, H.; Nishioka, K.; Takeda, S.; Arai, M.; Takeuchi, Y.; Harayama, T. Tetrahedron Lett. 2005, 46, 31973200; (j) Cordero-Vargas, A.; Quiclet-Sire, B.; Zard, S. Z. Org. Biomol. Chem. 2005, 3, 4432-4443.
2. For the synthesis of the corresponding lactams, see: (a) Harayama, T.; Kawata, Y.; Nagura, C.; Sata, T.; Miyagoe, T.; Abe, H.; Takeuchi, Y. Tetrahedron Lett. 2005, 46, 6091-6094; (b) Harayama, T.; Hori, A.; Abe, H.; Takeuchi, Y. Heterocycles 2006, 67, 385-390; (c) Campeau, L.-C.; Parisien, M.; Jean, A.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 581-590.
3. Campeau, L.-C.; Fagnou, K. Chem. Commun. 2006, 1253-1264.
4. (a) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1699-1712; (b) Larock, R. C.; Doty, M. J.; Cacchi, S. J. Org. Chem. 1993, 58, 4579-4583; (c) Campo, M. A.; Huang, Q.; Yao, T.; Tian, Q.; Larock, R. C. J. Am. Chem. Soc. 2003, 125, 11506-11507; (d) Huang, Q.; Fazio, A.; Dai, G.; Campo, M. A.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 7460-7461; (e) Huang, Q.; Campo, M. A.; Yao, T.; Tian, Q.; Larock, R. C. J. Org. Chem. 2004, 69, 8251-8257; (f) Torres, J. C.; Pinto, A. C.; Garden, S. J. Tetrahedron 2004, 60, 9889-9900; (g) Ma, S.; Gu, Z. Angew. Chem., Int. Ed. 2005, 44, 7512-7517; (h) Zhao, J.; Campo, M.; Larock, R. C. Angew. Chem., Int. Ed. 2005, 44, 1873-1875; (i) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685-4696; (j) Zhao, J.; Larock, R. C. Org. Lett. 2005, 7, 701-704; (k) Zhao, J.; Larock, R. C. J. Org. Chem. 2006, 71, 5340-5348; (1) Zhou, C.; Larock, R. C. J. Org. Chem. 2006, 71, 3551-3558; (m) Chen, X.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 12634-12635; (n) Mota, A. J.; Dedieu, A. Organometallics 2006, 25, 3130-3142; (o) Zhao, J.; Yue, D.; Campo, M. A.; Larock, R. C. J. Am. Chem. Soc. 2007, 129, 5288-5295; (p) Campo, M. A.; Zhang, H.; Yao, T.; Ibday, A.; McCulla, R. D.; Huang, Q.; Zhao, J.; Jenks, W. S.; Larock, R. C. J. Am. Chem. Soc. 2007, 129, 6298-6307.
5. Churruca, F.; SanMartin, R.; Tellitu, I.; Dominguez, E. Eur. J. Org. Chem. 2005, 2481-2490; Willis, M. C.; Taylor, D.; Gillmore, A. T. Org. Lett. 2004, 6, 4755-4757; Terao, Y.; Satoh, T.; Miura, M.; Nomura, M. Bull. Chem. Soc. Jpn. 1999, 72, 2345-2350.
6. We thank a referee for drawing this possibility to our attention.
7. (a) Fox, J. M.; Huang, X.; Chieffi, A.; Buchwald, S. L. J. Am. Chem. Soc. 2000, 122, 1360-1370; (b) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234-245.
8. Beugelmans, R.; Bois-Choussy, M.; Chastanet, J.; Le Gleuher, M.; Zhu, J. Heterocycles 1993, 36, 2723-2732.
9. Cheetham, P.; Samual, J.; Bannister, N. E. PCT Int. Appl. WO 95 GB132519950607, 1995.

[^0]: * Corresponding authors. E-mail: spyne@uow.edu.au

