

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry

Bioorganic & Medicinal Chemistry 15 (2007) 7098-7107

Synthesis and pharmacological profile of serofendic acids A and B

Taro Terauchi,^{a,*} Naoki Asai,^a Takashi Doko,^a Ryota Taguchi,^a Osamu Takenaka,^a Hideki Sakurai,^a Masahiro Yonaga,^a Teiji Kimura,^a Akiharu Kajiwara,^a Tetsuhiro Niidome,^b Toshiaki Kume,^b Akinori Akaike^b and Hachiro Sugimoto^b

^aTsukuba Research Laboratories, Eisai Co., Ltd, Tsukuba-shi 300-2635, Japan

^bDepartment of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan

Received 26 June 2007; revised 11 July 2007; accepted 13 July 2007 Available online 22 August 2007

Abstract—We present efficient syntheses of serofendic acids A and B (SA-A and SA-B), novel neuroprotective substances isolated from fetal calf serum. Biological and pharmacological evaluation showed that SA-A and SA-B have potent protective action against glutamate-induced neurotoxicity, but do not interact directly with glutamate receptors. A pharmacokinetic study showed that they have good oral bioavailability in rats. The results indicate that SA-A and SA-B are potential lead compounds for candidate drugs to treat various neurological disorders.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

L-Glutamate (Glu) is a major excitatory neurotransmitter in the central nervous system (CNS) and plays an important role in neurological processes, including cognition, learning, and memory.¹ Excessive stimulation of glutamate receptors, under pathophysiological conditions, leads to neuronal damage and death. This Glu neurotoxicity is associated with various neurological disorders, including hypoxic-ischemic brain injury,² Alzheimer's disease,³ Huntington's disease, and Parkinson's disease.⁴ MK-801 (Dizocilpine) and phencyclidine, typical *N*-methyl-D-aspartate receptor (NMDAR) antagonists, showed potent neuroprotective effects in various neurodegenerative models,⁵ but in clinical trials they induced schizophrenia-like symptoms, which were ascribed to the NMDAR-antagonistic activity itself.⁶ Therefore, substances which can prevent Glu neurotoxicity without acting directly on NMDARs would be candidate drugs for the treatment of various neurological and neurodegenerative diseases.

Recently, many drug discovery programs have been based on high-throughput screening of huge chemical

0968-0896/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2007.07.037

libraries, including natural products derived from marine sources or plants.⁷ We have sought to discover novel neuroprotective substances from animal sources, based on the hypothesis that animals may have intrinsic antineurodegenerative mechanisms.

We previously reported serofendic acids A and B (SA-A 1 and SA-B 2, respectively) (Fig. 1), which were found in a lipophilic fraction of fetal calf serum, as novel neuroprotective substances.⁸ These compounds have a unique structure, that is, an atisane-type diterpenoid (15-hydroxy-17-methylsulfinylatisane-19-oic acid) with a sulfoxide group, the epimers of which correspond to SA-A and SA-B. In order to clarify the pharmacological profile of the serofendic acids and their derivatives, we required a synthetic route to provide substantial amounts of the compounds. Here, we report the synthesis and pharmacokinetic profile of SA-A and SA-B and their derivatives.

Figure 1. Structure of serofendic acids A (1) and B (2).

Keywords: Serofendic acid; Neuroprotective; Neurodegenerative disease; Neurotoxicity; Glutamate; Atisane.

^{*} Corresponding author. Tel.: +81 29 847 5843; fax: +81 29 847 4012; e-mail: t-terauchi@hhc.eisai.co.jp

2. Results and discussion

2.1. Chemistry

Our synthetic route is depicted in Schemes 1 and 2.9 The diterpene skeleton of SA-A and SA-B was derived from commercially available isosteviol (3) according to Coates and Bertram's method with some modifications.¹⁰ Isosteviol (3) was converted to 4 by Baeyer-Villiger oxidation, followed by esterification and reduction with lithium borohydride to provide the diol 6. Acetylation of the primary hydroxyl group of 6 gave 7. Coates reported that dehydration with thionyl chloride-collidine/CH₂Cl₂ afforded the desired olefin 8 and undesired olefin 9 in 2:1 ratio. To increase the selectivity between 8 and 9, we tried to use only acid. Use of methanesulfonic acid gave a complex reaction mixture that did not include 8 or 9, but use of TFA gave 8 in a 6:1 ratio over 9. Hydrolysis of the mixture of 8 and 9 with NaOH/ EtOH provided a primary alcohol. The C19 carbomethoxy group remained intact, presumably because of high steric hindrance. Tosylation then gave a mixture of 10 and 11. Solvolysis of the tosylate mixture, followed by alkaline hydrolysis, gave the cyclized 12 and unchanged 11. Dehydration of the tertiary alcohol 12 with thionyl chloride/pyridine-CH2Cl2 afforded the exo-olefin 13 and endo-olefin 14 in 1:1 ratio (76% yield). Although regioselectivity was not obtained, both isomers might lead to the desired product. Thus, we tried to introduce the functional groups at the C15 and C16 positions of 13 and 14 by means of SeO₂ oxidation followed by hydroboration. Oxidation of 13 gave the corresponding oxidized products, while the reaction of 14 did not proceed at all. This result presumably reflects steric hindrance at C15, which is the primary reaction site for SeO₂. Next, chemoselective dehydration of 12 to 13 was investigated. Satisfactory results were not achieved with TFA or MsCl-collidine (Table 1). It has been reported that 2-methylbicyclo[2.2.1]heptan-2-ol was predominantly dehydrated on the exocyclic double

bond with the (COCl)₂–DMSO–TEA reagent system.¹¹ When this condition was examined, we obtained 13 with a modestly improved selectivity (13:14 = 4.5:1, 95%)vield). Regarding E2 elimination, it is known that Hofmann elimination tends to be favored over Savtzeff elimination when the leaving group is large or cationic. Based on this insight, dehydration of 12 with Martin's dehydrating agent was conducted.¹² Finally, we found that preparation of the reagent and the dehydration reaction could be conducted in one pot to obtain the olefins with high selectivity (13:14 = 11.5:1) and high yield (93%). Next, treatment of the olefins 13 and 14 with SeO₂ afforded 16, 17, and 18, together with unchanged 14. Each alcohol was isolated and the stereochemistries of 16 or 17 were determined by means of NOESY experiments (Fig. 2). Although we tried to get the diol $2\hat{2}$ by straightforward oxidation, hydroboration of 16 with the same stereochemistry at the C15 position as those of the serefendic acids gave a *svn*-diastereomer **19** as the only product. Similarly, hydroboration of 17 afforded the corresponding syn-diastereomer 20. The relative configuration at C15 and C16 of 19 or 20 was determined based on the coupling constants for H15 and H16 in the ¹H NMR spectra. The results indicated that the borane reagent selectively approached from the opposite side to the secondary alcohol at the C15 position. Since the product obtained by the oxidation reaction did not exhibit the natural configuration, inversion of the secondary alcohol on 20 by the Mitsunobu method (HCO₂H, DEAD, PPh₃, and THF)¹³ was investigated. However, the reaction did not proceed at all. Then, we tried to invert the secondary alcohol of 20 by means of an oxidation followed by reduction process. Selective oxidation of the secondary alcohol of the diol 20 was attempted. Use of NaBrO₃-NaHSO₃¹⁴ gave the keto alcohol 21 in high yield (80%), and this was reduced with NaB(OAc)₃H to provide the diol 22 in 73% yield. Selective tosylation of the resulting diol 22 followed by thiomethylation and simultaneous hydrolysis of the methylester with NaSMe gave the sulfide 24 in 51%

Scheme 1. Reagents and conditions: (a) H_2O_2 aq, H_2SO_4 , AcOH, rt, 71 h, 93%; (b) i—(COCl)₂, DMF, CH₂Cl₂, rt, 2.5 h; ii—TEA, MeOH, rt, 1 h, 92%; (c) LiBH₄, THF, rt, 61 h, 72%; (d) Ac₂O, pyridine, rt, 9 h, 97%; (e) TFA, CH₂Cl₂, rt, 18 h; (f) i—NaOH, EtOH, rt; ii—TsCl, pyridine, rt, 16 h; (g) i—Na₂CO₃, HCO₂H, rt, 16 h; ii—NaOH, EtOH, rt, 3 h, 61% from 7; (h) dehydrating condition.

Scheme 2. Reagents and conditions: (a) Ph–C(CF₃)₂–OK, (Ph)₂S, Br₂, CCl₄, rt, 3 h then 12, CHCl₃, rt, 3 h, 93%, 13:14 = 11.5:1; (b) SeO₂, *t*-BuOOH, CH₂Cl₂, rt, 15 h, 26% 16, 28% 17, 2.9% 18; (c) BH₃–THF, THF, rt, 4 h then NaOH aq, H₂O₂ aq, rt, 2 h, 80%; (d) BH₃–THF, THF, rt, 4 h then NaOH aq, H₂O₂ aq, rt, 3 h, 91%; (e) NaBrO₃, NaHSO₃, CH₃CN, H₂O, rt, 3 h, 80%; (f) NaB(OAc)₃H, AcOH, CH₃CN, rt, 4 h, 73%; (g) TsCl, DMAP, pyridine, rt, 17 h, 67%; (h) NaSMe, HMPA, 80 °C, 43 h, 76%; i—Davis's oxaziridine (2-benzenesulfonyl-3-phenyloxazirine), CHCl₃, 0 °C, 2 h, quant; (j) i—NaSMe, DMF, rt, 2 h; ii—Davis's oxaziridine (2-benzenesulfonyl-3-phenyloxazirine), CHCl₃, 0 °C, 1 h, 73%, 2 step.

Table 1. Dehydration of 12

$\begin{array}{ll} 12 \rightarrow 13 14 \\ \text{Condition (equiv.)} \end{array}$	13:14	Yield (%)
1 SOCl ₂ (4.5), pyridine-CH ₂ Cl ₂ , rt, 5 min	1:1	76
2 TFA (10), CH ₂ Cl ₂ , rt, 3 h		0
3 MsCl (3), collidine (10), CH ₂ Cl ₂ ,	1.4:1	a
$-60 \ ^{\circ}\text{C} \rightarrow \text{rt}, \ 14 \ \text{h}$		
4 DMSO (8), (COCl)2 (4), TEA (12)	4.5:1	95
$CH_2Cl_2, -70 \ ^\circ C \rightarrow rt, \ 2 \ h$		
5 Martin's agent (2), CH ₂ Cl ₂ , rt, 3 h	11.5:1	93
9777.44		

^a Yield was not confirmed.

overall yield. Finally, oxidation of the sulfide group in **24** by using Davis's oxaziridine¹⁵ quantitatively yielded SA-A (1) and SA-B (**2**) as a 1:2 mixture. After separation of the diastereomers by HPLC, it was confirmed that each synthetic isomer was consistent with the corresponding natural isomer in physico-chemical properties and biological activity.⁸ The absolute stereochemistry was estimated by chiral derivatization and HPLC-MS analysis.^{9a} X-ray structure determination of SA-A (1) or SA-B (**2**) (Fig. 3) confirmed the structures.

The corresponding ester derivatives of the serofendic acids were also prepared.¹⁶ Since the ester group at C4 is resistant to hydrolysis at room temperature, the methylester analogues of serefendic acid (25) were obtained by thiomethylation at room temperature, followed by oxidation of the sulfide group in the same way as described for the synthesis of serofendic acid. HPLC separation afforded 25A and 25B.

2.2. Neuroprotective activity

Neuroprotective effect of SA-A (1) or SA-B (2) was evaluated on primary neuronal cultures obtained from the cerebral cortex of fetal rats (17–19 days of gestation).¹⁷ Neurotoxicity was induced by incubating the cells with 500 μ M Glu for 10 min. Under this condition, MK-801 (1 μ M) completely blocked the Glu-induced neurotoxicity (data not shown). As shown in Figure 4, incubation of the cells with SA-A (1) or SA-B (2) for 1 h before, 10 min during, and 24 h after Glu exposure had a protective effect. In order to identify the mechanism of action, we employed a panel assay with 76 receptors and ion channels, including NMDAR and

Figure 2. Protons of 16 and 17 were assigned with COSY spectra, NOESY spectra, TOCSY spectra, HMQC spectra, and HMBC spectrum. The key NOEs were observed in the NOESY spectra which indicate the C15 stereochemistry as shown.

Figure 3. Single crystal X-ray structure determination of serofendic acids A (1) and B (2).

Figure 4. Protective effect of synthetic serofendic acids against Glu neurotoxicity in cultured cortical neurons. Cultures were exposed to Glu (500 μ M) for 10 min and then incubated in glutamate-free medium for 24 h. Cultures were treated with serofendic acid for 1 h before, 10 min during, and 24 h after Glu exposure. ***P* < 0.01, compared with Glu alone.

 α -amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR). The serofendic acids had no effect on any of them up to 10 μ M. Next, the effect of the serofendic acids on neurotoxicity induced by nitric oxide or oxidative stress was investigated. ^{8,18} The neuroprotective effect was found to be as potent as that against Glu neurotoxicity. Further, it has been reported that the serofendic acids protect cardiac myocytes against oxidant-induced cell death,¹⁹ and prevent the loss of mitochondrial membrane potential and the activation of caspase-3 induced by Glu exposure in rat cultured cortical cells.²⁰ Since nitric oxide or oxidative stress activates caspase-3²¹ and activated caspase-3 induces overrelease of Glu in synapses,²² the serofendic acids might act at some point prior to over-activation of glutamate receptors, for example, by protecting the functional integrity of mitochondria. Detailed investigation of the mechanism of action is ongoing.

2.3. Pharmacokinetics

Since the serofendic acids showed attractive in vitro biological activity, an in vivo study was conducted. Table 2 shows the pharmacokinetic parameters of SA-A (1), SA-B (2), and the methylester analogue 25 after intravenous administration at a dose of 1 mg/kg in rats. The AUC (area under the concentration-time curve) value of 2 was 1.4 times higher than that of **1**. The stereochemistry of the sulfoxide moiety thus influenced the pharmacokinetic profile. Although biological conversion of sulfoxide isomers might occur via a reduction-oxidation process, in fact, interconversion between 1 and 2 was not observed when either isomer was administered. The methylester analogue 25, a mixture of isomers, exhibited a relatively high clearance value and low AUC value in a preliminary study, presumably reflecting its greater lipophilicity. In addition, the serofendic acids were detected as metabolites (AUC value: 0.08 µg h/ml).

Table 2. Pharmacokinetic result in rats for intravenous administration of serofendic acids (1, 2) and methylester analogue (25) (1 mg/kg each)

Compound	$T_{1/2}$ (h)	V _{dss} (l/kg)	Cl total (l/h/kg)	AUC (µg h/ml)	B/P 0.5 h	B/P 2 h
1 (1 mg/kg iv)	0.48	0.33	0.52	1.95	N.T	N.T
2 (1 mg/kg iv)	0.65	0.33	0.36	2.78	0.021	N.D
25 (1 mg/kg iv)	0.55	0.57	0.88	1.44	2.20	2.21

N.T, not tested; N.D, no detected.

Table 3. Pharmacokinetic result in rats for oral administration of serofendic acid B (2) (5 mg/kg)

Compound	$T_{\rm max}$ (h)	$T_{1/2}$ (h)	C_{\max} (µg/ml)	AUC (µg h/ml)	B.A. (%)
2 (5 mg/kg po)	0.33	3.90	2.05	5.64	41

Brain concentrations of the compounds were measured at 0.5 h and 2 h after administration. While the methylester analogue showed a high brain-to-plasma (B/P) concentration ratio, serofendic acid (only isomer B was measured) had a very low B/P value. We speculate that the carboxylic group of serofendic acid might be the main cause of the low permeability into the brain. A pharmacokinetic study of serofendic acid B (2) in rats after oral administration at a dose of 5 mg/kg (Table 3) showed relatively good oral bioavailability (B.A.). On the other hand, compound 25 was not detected in plasma after oral administration at a dose of 5 mg/kg (data not shown). These data indicate that the serofendic acids and 25 may be ineffective in the clinical context. Work to improve the brain penetration or oral bioavailability by modification of the serofendic acids or 25 is ongoing.

3. Conclusion

We have developed an efficient synthesis of serofendic acids A and B, novel neuroprotective substances isolated from fetal calf serum. Biological and pharmacological evaluation indicated that the serofendic acids exhibited a potent protective action against neurotoxicity induced by glutamate, but this did not involve direct interaction with glutamate receptors. A pharmacokinetic study showed good oral bioavailability, but low concentration in the brain. In contrast, the methylester analogues exhibited high concentrations in the brain. Single crystal X-ray diffraction studies of the serofendic acids supported the stereochemistry of the sulfoxide group indicated by NMR spectroscopic analysis. SA-A and SA-B appear to be potential lead compounds for candidate drugs to treat various neurological disorders.

4. Experimental

4.1. Chemistry

Melting points were taken with a Yanaco MP-S3. The infrared absorption spectra were obtained on an FT/ IR-620 spectrometer (Jasco, Tokyo). The following NMR spectra were recorded on a Varian Unity 400, a Varian Unity INOVA 500, or a JEOL JNM-α600 spectrometer: ¹H NMR, ¹³C NMR, COSY, NOESY, TOC-SY, HMQC, and HMBC. Chemical shifts are given in

ppm (δ) from tetramethylsilane as an internal standard and coupling constants are given in Hz (J). When CD₃OD was used as the NMR solvent, chemical shifts were referred to the solvent peaks: $\delta_{\rm H}$ 3.35 for CD₂HOD and $\delta_{\rm C}$ 49.0 for CD₃OD. Column chromatography was performed on Fuji Silysia BW silica gel (200-400 mesh). TLC was carried out on silica gel Merck 60F₂₅₄. Reagents and solvents were purchased and used without further purification. HPLC separation was performed with a Biotage Parallex Flex or a MDA-0054 (Waters) apparatus. Electrospray ionization (ESI) MS were recorded on a Thermo Fisher Scientific SSO7000 mass spectrometer. ESI-HRMS spectra were recorded with a Q-TOF Ultima Global Alliance 2695 (Waters) and API-III plus mass spectrometer (Applied Biosystems). Specific rotations were measured on a JASCO DIP-1000 digital polarimeter.

4.1.1. (1R,4S,5R,9S,10R,13S)-5,9,13-Trimethyl-15-oxo-14-oxatetracyclo[11.3.1.0^{1,10}.0^{4,9}]heptadecane-5-carbox-

ylic acid (4). To a solution of isosteviol (30 g, 94.1 mmol) in AcOH (315 ml) and H₂SO₄ (5.25 ml) was added dropwise a 30% hydrogen peroxide solution (105 ml) over 30 min at 0 °C. The reaction mixture was then stirred for 71 h at room temperature and cooled with a dryice ethanol bath (ca. -40 °C). Saturated ag Na₂S₂O₃ was slowly added, while the temperature was kept below 20 °C. The disappearance of peroxide was confirmed with potassium iodide-starch paper, then the mixture was diluted with water (2000 ml) and extracted with Et₂O (700 ml \times 2). The organic layer was washed with brine (300 ml), dried over MgSO₄, and evaporated under reduced pressure. The resulting solid was washed with *n*-heptane/Et₂O (4:1, v/v, 400 ml) and collected by filtration to afford **4** (29.1 g, 93%) as a white solid. mp 268–270 °C. $[\alpha]_{\rm D}^{26}$ –50.90 (*c* 1.007, CHCl₃). ESI-MS *m*/*z* 357 (M+Na)⁺. ¹H NMR (CDCl₃): δ 0.83–1.52 (m, 9H), 0.87 (s, 3H), 1.25 (s, 3H), 1.35 (s, 3H), 1.53-1.62 (m, 2H), 1.66–1.75 (m, 1H), 1.76–2.02 (m, 5H), 2.05 (d, J = 18.4 Hz, 1H), 2.18 (broad d, J = 13.6 Hz, 1H), 3.12 (dd, J = 18.8, 2.8 Hz, 1H). Anal. Calcd for C₂₀H₃₀O₄ (334.2144): C, 71.82; H, 9.04. Found: C, 71.62; H, 8.90.

4.1.2. Methyl (1R,4S,5R,9S,10R,13S)-5,9,13-Trimethyl-15-oxo-14-oxatetracyclo [11.3.1.0^{1,10}.0^{4,9}] heptadecane-5carboxylate (5). Oxalyl chloride (22.4 ml, 261 mmol) was added to a solution of 4 (29.1 g, 87 mmol) in CH₂Cl₂ (426 ml) and DMF (2.8 ml) at 0 °C. The mixture was at room temperature for 2.5 h, then cooled to 0 °C again, and MeOH (71 ml) was added, followed by triethylamine (60.6 ml, 436 mmol). The reaction mixture was stirred for 1 h at room temperature, solvent was evaporated under reduced pressure, and water (500 ml) was added. The mixture was extracted with EtOAc (400 ml ×2), and the organic layer was washed with brine (250 ml), dried over MgSO₄, and evaporated under reduced pressure. The resulting solid was washed with MeOH (300 ml) and collected by filtration to afford **5** (27.8 g, 92%) as a white solid. mp 206–207 °C. $[\alpha]_{D}^{26}$ -40.90 (c 1.392, CHCl₃). ESI-MS m/z 371 (M+Na)⁺. ¹H NMR (CDCl₃): δ 0.76 (s, 3H), 0.81–0.91 (m, 1H), 0.94 (dd, J = 12.4, 3.0 Hz, 1H), 1.01 (td, J = 13.6, 4.4 Hz, 1H), 1.08 (dd, J = 11.8, 2.8 Hz, 1H), 1.18 (s, 3H), 1.19–1.32 (m, 2H), 1.35 (s, 3H), 1.35–1.50 (m, 3H), 1.52-1.63 (m, 2H), 1.65-1.94 (m, 5H), 1.95-2.03 (m, 1H), 2.04 (d, J = 18.8 Hz, 1H), 2.18 (broad d, J = 13.6 Hz, 1H), 3.08 (dd, J = 18.8, 2.6 Hz, 1H), 3.63 (s, 3H). Anal. Calcd for C₂₁H₃₂O₄ (348.2300): C, 72.38; H, 9.26. Found: C, 72.32; H, 9.17.

Methvl (5β,8α,9β,10α,13α)-13-Hydroxy-8-(2-4.1.3. hydroxyethyl)-13-methylpodocarpan-15-oate (6). LiBH₄ (6.52 g, 299 mmol) was added to a solution of 5 (17.4 g, 49.9 mmol) in THF (250 ml) at 0 °C. The reaction mixture was stirred for 61 h at room temperature, and then water (300 ml) was added at 0 °C. The mixture was stirred for 3 h at room temperature, then extracted with EtOAc $(300 \text{ ml} \times 2)$, and the organic layer was washed with brine (200 ml), dried over MgSO₄, and evaporated under reduced pressure. The resulting solid was washed with nheptane/Et₂O (1:2, v/v, 200 ml) to afford **6** (12.7 g, 72%) as a white solid. mp 213–214 °C. $[\alpha]_D^{26}$ –26.63 (*c* 0.815, CHCl₃). ESI-MS *m*/*z* 375 (M+Na)⁺. ¹H NMR (CDCl₃): δ 0.68 (s, 3H), 0.74–0.94 (m, 4H), 1.01 (td, J = 13.6, 4.4 Hz, 1H), 1.09 (dd, J = 12.0, 3.2 Hz, 1H), 1.16 (s, 3H), 1.17 (s, 3H), 1.36 (td, J = 13.2, 4.4 Hz, 1H), 1.40-1.52 (m, 2H), 1.53-1.94 (m, 8H), 1.98 (dd, J = 14.8, 2.4,1H), 2.10–2.20 (m, 2H), 3.63 (s, 3H), 3.69–3.79 (m, 2H). Anal. Calcd for C₂₁H₃₆O₄ (352.2613): C, 71.56; H, 10.29. Found: C, 71.27; H, 10.18.

4.1.4. Methyl (5β,8α,9β,10α,13α)-8-(2-Acetoxyethyl)-13hydroxy-13-methylpodocarpan-15-oate (7). According to the procedure reported by Coates, **6** (27.3 g, 77.4 mmol) was converted to 7 (29.5 g, 97%, white solid). mp 145– 147 °C. $[\alpha]_{\Pi}^{26}$ -37.21 (*c* 0.088, CHCl₃). ESI-MS *m*/*z* 417 (M+Na)⁺. ^H NMR (CDCl₃): δ 0.71 (s, 3H), 0.74–0.95 (m, 4H), 1.01 (td, *J* = 13.6, 4.4 Hz, 1H), 1.09 (dd, *J* = 12.2, 2.6 Hz, 1H), 1.16 (s, 3H), 1.17 (s, 3H), 1.33 (td, *J* = 13.6, 4.4 Hz, 1H), 1.40–1.65 (m, 3H), 1.69–1.98 (m, 8H), 2.05 (s, 3H), 2.15 (broad d, *J* = 13.6 Hz, 1H), 2.26–2.36 (m, 1H), 3.65 (s, 3H), 4.03 (td, *J* = 10.0, 5.6 Hz, 1H), 4.34 (td, *J* = 10.0, 5.6 Hz, 1H). Anal. Calcd for C₂₃H₃₈O₅ (394.2719): C, 70.02; H, 9.71. Found: C, 69.97; H, 9.66.

4.1.5. Methyl $(5\beta,8\alpha,9\beta,10\alpha)$ -8-(2-Acetoxyethyl)-13methylpodocarp-12-en-15-oate (8) and methyl $(5\beta,8\alpha,9\beta,$ $10\alpha)$ -8-(2-acetoxyethyl)-13-methylpodocarp-13-en-15-oate (9). TFA (58 ml) was added dropwise to a solution of 7 (29.5 g, 74.8 mmol) in CH₂Cl₂ (300 ml) over 30 min at 0 °C. The reaction mixture was stirred for 18 h at room temperature and then evaporated to half the initial volume under reduced pressure. Water (500 ml) was added, and the mixture was extracted with Et_2O (300 ml \times 2). The organic layer was washed with water (200 ml), saturated aq NaHCO₃ (200 ml), and brine (200 ml), dried over MgSO₄, and evaporated under reduced pressure to afford a mixture of 8 and 9 as a crude light yellow oil (31.8 g, 100%). The ratio of 8 and 9 was determined from the olefin proton NMR peak integration value, and was found to be 6:1. HRESI(+)MS calcd for C₂₃H₃₆NaO₄ (M+Na)⁺ 399.2511; found: 399.2538. ¹H NMR (CDCl₃): δ 0.68 (s, 3H, for 9), 0.72 (s 3H, for 8), 0.78–2.24 (m, 23H), 1.17 (s, 3H, for 9), 1.18 (s 3H, for 8), 2.04 (s, 3H), 3.65 (s, 3H), 3.86-3.98 (m, 1H), 4.0-4.14 (m, 1H), 5.08 (broad s, 1H, for 9), 5.35 (broad s, 1H, for 8).

4.1.6. Methyl (58,8*a*,98,10*a*,12*a*)-16-Hydroxyatisan-19oate (12). According to the procedure reported by Coates, the crude mixture of 8 and 9 (34.3 g) was converted to diastereomeric 12 (15.9 g, 61% from 7, white solid), from which the diastereomers 12-A and 12-B were slightly separated by column chromatography on silica gel with *n*-heptane/EtOAc (100:0 to 6:1, v/v) as an eluent. **12-A**: mp 139–141 °C. $[\alpha]_{p}^{26}$ –51.76 (*c* 0.701, CHCl₃). ESI-MS *m*/*z* 357 (M+Na)⁺ ^H NMR (CDCl₃): δ 0.77 (s, 3H), 0.78–1.90 (m, 19H), 1.17 (s, 3H), 1.28 (s, 3H), 1.92-2.04 (m, 1H), 2.16 (broad d, J = 12.4 Hz, 1H), 3.64 (s, 3H). Anal. Calcd for C₂₁H₃₄O₃ (334.2507): C, 75.41; H, 10.25. Found: C, 75.30; H, 10.14. 12-B: mp 148–150 °C. $[\alpha]_{\rm P}^{26}$ –36.73 (*c* 0.802, CHCl₃). ESI-MS *m*/*z* 357 (M+Na)⁺. ¹H NMR (CDCl₃): δ 0.78 (s, 3H), 0.79– 0.89 (m, 1H), 0.90-1.09 (m, 5H), 1.17 (s, 3H), 1.17-1.69 (m, 9H), 1.28 (s, 3H), 1.69–1.76 (m, 2H), 1.76–1.91 (m, 2H), 1.96–2.07 (m, 1H), 2.16 (broad d, J = 13.2 Hz, 1H), 3.64 (s, 3H). Anal. Calcd for $C_{21}H_{34}O_3$ (334.2507): C, 75.41; H, 10.25. Found: C, 75.35; H, 10.14.

(5β,8α,9β,10α,12α)-Atis-16-en-19-oate 4.1.7. Methyl (13). Br₂ (2.63 ml, 51.4 mmol) was added dropwise to a solution of potassium 1,1,1,3,3,3-hexafluoro-2-phenyl-2-propoxide (29 g, 103 mmol)^{12a} and diphenyl sulfide (8.56 ml, 51.4 mmol) in CCl₄ (200 ml) over 10 min at room temperature. The reaction mixture was stirred for 3 h at rt, then cooled with an ice-NaCl bath (ca. -15 °C), and a solution of diastereometric 12 (8 g, 23.9 mmol) in CHCl₃ (120 ml) was added dropwise for 15 min. The reaction mixture was stirred for 3 h at room temperature and then evaporated under reduced pressure. The mixture was diluted with Et_2O (300 ml), washed with 5 N aq NaOH (100 ml ×2), water (100 ml), saturated aq NH₄Cl (100 ml), and brine (100 ml), dried over MgSO₄, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with n-heptane/Et₂O (100:0 to 25:1, v/v) as an eluent to afford 13 (7.05 g, 93%) as a white solid. The resulting 13 contained 14 in ca. 11.5:1 ratio, as determined from the olefin proton NMR peak integration values. HRESI(+)MS calcd for $C_{21}H_{32}NaO_2$ (M+Na)⁺ 339.2300; found: 339.2343. ¹H NMR (CDCl₃): δ 0.78 (s, 3H), 0.84 (td, J = 13.6,

4.0 Hz, 1H), 0.93–1.16 (m, 5H), 1.18 (s, 3H), 1.34–1.65 (m, 7H), 1.67–2.00 (m, 5H), 2.04 (dt, J = 16.8, 2.0 Hz, 1H), 2.13–2.20 (m, 1H), 2.22 (quintet, J = 3.0 Hz, 1H), 3.65 (s, 3H), 4.57 (q, J = 2.0 Hz, 1H), 4.73 (q, J = 2.0 Hz, 1H), 5.58 (broad t, J = 1.8 Hz, 1 H for 14).

4.1.8. Methyl (5β,8α,9β,10α,12α,15β)-15-Hydroxyatis-16-en-19-oate (16) and methyl (5β,8α,9β,10α,12α,15α)-15-hydroxyatis-16-en-19-oate (17) and methyl (5β,8α,9β,10α,12α)-17-hydroxyatis-15-en-19-oate (18). To a suspension of SeO₂ (246 mg, 2.22 mmol) in CH₂Cl₂ was added 70% aq tert-butyl hydroperoxide (9.21 ml, 66.6 mmol) at room temperature. The mixture was stirred for 15 min at room temperature, then cooled to 0 °C, and 13 (7.01 g, 22.2 mmol) was added. Stirring was continued for 15 h at room temperature, then the mixture was cooled to 0 °C, and saturated aq Na₂S₂O₃ (200 ml) was added. The whole was extracted with EtOAc (200 ml \times 2), and the organic layer was washed with brine (200 ml), dried over MgSO₄, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with n-heptane/ EtOAc (20:1 to 8:1, v/v) to afford 16 (1.9 g, 26%, white solid), 17 (2.04 g, 28%, white solid), and 18 (217 mg, 3%, white solid). Compound 16: mp 194–195 °C. $[\alpha]_{D}^{26}$ -43.54 (c 0.790, CHCl₃). ESI-MS m/z 355 (M+Na)⁺. ¹H NMR (CDCl₃): δ 0.81 (s, 3H), 0.81–1.09 (m, 4H), 1.14-1.21 (m, 1H), 1.18 (s, 3H), 1.32-1.45 (m, 3H), 1.45-1.60 (m, 4H), 1.64-1.89 (m, 4H), 1.97-2.07 (m, 1H), 2.12-2.20 (m, 1H), 2.27-2.33 (m, 1H), 3.59 (dt, J = 5.6, 2.0 Hz, 1H), 3.65 (s, 3H), 5.00 (broad t, J = 1.6 Hz, 1H), 5.06 (broad t, J = 1.6 Hz, 1H). Anal. Calcd for $C_{21}H_{32}O_3$ (332.2351): C, 75.86; H, 9.70. Found: C, 75.74; H, 9.66. Compound 17: mp 134-135 °C. $[\alpha]_{D_1}^{26}$ -57.39 (*c* 0.905, CHCl₃). ESI-MS *m*/*z* 355 (M+Na)⁺. ¹H NMR (CDCl₃): δ 0.80–0.91 (m, 1H), 0.83 (s, 3H), 0.93-1.15 (m, 4H), 1.19 (s, 3H), 1.33-1.66 (m, 7H), 1.66–1.90 (m, 5H), 2.14–2.21 (m, 1H), 2.26– 2.31 (m, 1H), 3.58–3.62 (m, 1H), 3.65 (s, 3H), 4.98 (broad t, J = 1.6 Hz, 1H), 5.05 (broad t, J = 1.6 Hz, 1H). Anal. Calcd for C₂₁H₃₂O₃ (332.2351): C, 75.86; H, 9.70. Found: C, 75.89; H, 9.66. Compound 18: mp 97–99 °C. $[\alpha]_{\rm p}^{26}$ –61.62 (*c* 0.472, CHCl₃). ESI-MS *m/z* 355 (M+Na)⁺. HRESI(+)MS calcd for C₂₁H₃₂NaO₃ (M+Na)⁺ 355.2249; found: 355.2202. ^IH NMR (CDCl₃): δ 0.74–0.91 (m, 2H), 0.80 (s, 3H), 0.95–1.11 (m, 3H), 1.15–1.64 (m, 7H), 1.19 (s, 3H), 1.71–1.93 (m, 4H), 2.00 (dt, J = 9.6, 3.2 Hz, 1H), 2.11–2.20 (m, 1H), 2.42–2.48 (m, 1H), 3.65 (s, 3H), 4.13 (d, J = 1.6 Hz, 2H), 5.83 (s, 1H).

4.1.9. Methyl (5β , 8α , 9β , 10α , 12α , 15β , 16β)-15,17-Dihydroxyatisan-19-oate (19). Diborane (1 M in THF, 18.1 ml, 18.1 mmol) was added to a solution of 16 (2 g, 6.02 mmol) in THF (60 ml) at 0 °C. The reaction mixture was stirred for 4 h at room temperature and then cooled to 0 °C again. Water (9 ml), 2 N aq NaOH (20 ml), and 30% aq H₂O₂ (18 ml) were added, and the mixture was stirred for 2 h at room temperature. Saturated aq Na₂S₂O₃ (100 ml) was added, the mixture was extracted with EtOAc (100 ml ×2), and the organic layer was washed with brine (100 ml), dried over MgSO₄, and evaporated under reduced pressure. The resulting solid was washed with *n*-heptane/Et₂O (2:1, v/v, 100 ml) and collected by filtration to afford **19** (1.68 g, 80%) as a white solid. mp 185–187 °C. $[\alpha]_D^{26}$ –3.86 (*c* 0.609, CHCl₃). ESI-MS *m*/*z* 373 (M+Na)⁺. HRESI(+)MS calcd for C₂₁H₃₄NaO₄ (M+Na)⁺ 373.2355; found: 373.2355. ¹H NMR (CD₃OD): δ 0.83 (s, 3H), 0.84–0.99 (m, 2H), 0.99–1.15 (m, 4H), 1.17 (s, 3H), 1.34–1.44 (m, 1H), 1.44–1.55 (m, 2H), 1.55–1.71 (m, 5H), 1.73–2.04 (m, 5H), 2.14 (broad d, *J* = 12.8 Hz, 1H), 3.40 (d, *J* = 9.2 Hz, 1H), 3.57 (dd, *J* = 10.4, 7.8 Hz, 1H), 3.63 (s, 3H), 3.88 (dd, *J* = 10.4, 7.6 Hz, 1H).

4.1.10. Methyl (5β,8α,9β,10α,12α,15α)-15,17-Dihydroxyatisan-19-oate (20). Diborane (1.1 M in THF, 16.7 ml, 18.4 mmol) was added to a solution of 17 (2.04 g, 6.14 mmol) in THF (60 ml) at 0 °C. The reaction mixture was stirred for 4 h at room temperature and then cooled to 0 °C again. Water (10 ml), 5 N aq NaOH (15 ml), and 30% aq H₂O₂ (20 ml) were added, and the mixture was stirred for 3 h at room temperature. Saturated aq $Na_2S_2O_3$ (100 ml) was added, the mixture was extracted with EtOAc (100 ml \times 2), and the organic layer was washed with brine (100 ml), dried over MgSO₄, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with n-heptane/EtOAc (8:1 to 3:2, v/v) as an eluent to afford **20** (1.95 g, 91%) as a white solid. mp 155–156 °C. $[\alpha]_D^{26} - 92.67$ (*c* 0.319, CHCl₃). ESI-MS *m*/*z* 373 $(M+Na)^+$. HRESI(+)MS calcd for C₂₁H₃₄NaO₄ (M+Na)⁺ 373.2355; found: 373.2358. ^IH NMR (CD₃OD): δ 0.85 (s, 3H), 0.93 (td, J = 13.6, 4.0 Hz, 1H), 0.98–1.11 (m, 4H), 1.17 (s, 3H), 1.21–1.33 (m, 1H), 1.35–1.54 (m, 4H), 1.54–1.93 (m, 8H), 1.94–2.04 (m, 1H), 2.14 (broad d, J = 12.8 Hz, 1H), 3.42 (dd, J = 9.6, 1.6 Hz, 1 H), 3.56 (dd, J = 11.2, 7.6 Hz, 1 H), 3.63 (s, 3H), 3.90 (dd, J = 10.8, 7.6 Hz, 1H).

4.1.11. Methyl (56,8\alpha,96,10\alpha,12\alpha)-17-Hydroxy-15-oxoatisan-19-oate (21). A solution of NaHSO₃ (1.39 g, 13.3 mmol) in H₂O (13.4 ml) was added dropwise to a solution of **20** (1.95 g, 5.56 mmol) and NaBrO₃ (2.01 g, 13.3 mmol) in CH₃CN (22.4 ml)-H₂O (6.7 ml) for 10 min at 0 °C. The reaction mixture was stirred for 3 h at room temperature, and saturated aq Na₂S₂O₃ (30 ml) was added. The mixture was extracted with EtOAc (80 ml \times 2), and the organic layer was washed with brine (80 ml), dried over MgSO₄, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with n-heptane/ EtOAc (10:1 to 2:1, v/v) as an eluent to afford 21 (1.55 g, 80%) as a white solid. mp 151 °C. $[\alpha]_D^{29}$ –22.13 (c 0.592, CH₃OH). ESI-MS m/z 371 (M+Na)⁺. ¹H NMR (CD₃OD): δ 0.87–0.99 (m, 1H), 0.93 (s, 3H), 1.00-1.16 (m, 3H), 1.18 (s, 3H), 1.27-1.46 (m, 3H), 1.51-1.96 (m, 9H), 2.10-2.31 (m, 3H), 2.31-2.38 (m, 1H), 3.59 (dd, J = 10.8, 9.6 Hz, 1H), 3.65 (s, 3H), 3.87 (dd, J = 10.8, 5.0 Hz, 1H). Anal. Calcd for $C_{21}H_{32}O_4$ (348.2300): C, 72.38; H, 9.26. Found: C, 72.29; H, 9.23.

4.1.12. Methyl $(5\beta,8\alpha,9\beta,10\alpha,12\alpha,15\beta)-15,17$ -Dihydroxyatisan-19-oate (22). AcOH (2.55 ml, 44.5 mmol) was added to a solution of NaB(OAc)₃H (4.72 g, 22.3 mmol) in CH₃CN (45 ml) at 0 °C. Then, a solution of 21 (1.55 g, 4.45 mmol) in CH₃CN (10 ml) was added, and the mixture was stirred for 4 h at 0 °C. H₂O (150 ml) was added, the mixture was extracted with EtOAc $(2 \times 80 \text{ ml})$, and the organic layer was washed with brine (50 ml), dried over MgSO₄, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with n-heptane/EtOAc (5:1 to 1:2, v/v) to afford 22 (1.14 g, 73%) as a white solid. mp 163–165 °C. $[\alpha]_{\rm P}^{26}$ –74.56 (*c* 0.542, CHCl₃). ESI-MS *m*/*z* 373 (M+Na)⁺. ^H NMR (CD₃OD): δ 0.64–0.76 (m 1H) 0.82 (c 0.11) (m, 1H), 0.83 (s, 3H), 0.90-1.12 (m, 4H), 1.17 (s, 3H), 1.23-1.34 (m, 1H), 1.34-1.45 (m, 2H), 1.46-1.89 (m, 10H), 1.94 (ddd, J = 14.8, 11.2, 3.6 Hz, 1H), 2.16 (broad d, J = 13.4 Hz, 1H), 2.63 (d, J = 4.4 Hz, 1H), 3.42 (t, J = 10.6 Hz, 1H), 3.60–3.67 (m, 1H), 3.63 (s, 3H). Anal. Calcd for $C_{21}H_{34}O_4$ (350.2457): C, 71.96; H, 9.78. Found: C, 71.68; H, 9.69.

4.1.13. Methyl (5β,8α,9β,10α,12α,15β)-15-Hydroxy-17-{[(4-methylphenyl)sulfonyl]oxy}atisan-19-oate (23). TsCl (1.09 g, 5.71 mmol) and 4-dimethylaminopyridine (417 mg, 3.43 mmol) were added to a solution of 22 (400 mg, 1.14 mmol) in pyridine (11 ml) at 0 °C. This mixture was stirred for 17 h at room temperature, then H₂O (80 ml) was added. The mixture was extracted with EtOAc (50 ml \times 2), and the organic layer was washed with brine (50 ml), dried over MgSO₄, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with n-heptane/ EtOAc (8:1 to 3:1, v/v) as an eluent to yield 23 (386 mg, 67%) as a white solid. mp 155 °C. $[\alpha]_{D}^{29}$ -42.57 (c 0.237, CH₃OH). ESI-MS m/z 527 (M+Na)⁺. ¹H NMR (CDCl₃): δ 0.59–0.69 (m, 1H), 0.77 (s, 3H), 0.92 (td, J = 13.2, 4.0 Hz, 1H), 0.96-1.10 (m, 3H), 1.16(s, 3H), 1.20–1.45 (m, 4H), 1.45–1.87 (m, 9H), 1.72 (d, J = 4.4 Hz, 1H) 1.93 (ddd, J = 14.4, 11.2, 3.2 Hz, 1H), 2.15 (broad d, J = 13.6 Hz, 1H), 2.45 (s, 3H), 2.80 (t, J = 4.2 Hz, 1H), 3.63 (s, 3H), 3.95 (t, J = 9.4 Hz, 1H), 4.05 (dd, J = 9.4, 7.4 Hz, 1H), 7.34 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 8.4 Hz, 2H). Anal. Calcd for C₂₈H₄₀O₆S (504.2545): C, 66.64; H, 7.99. Found: C, 66.50; H, 7.93.

4.1.14. Methyl (5β,8α,9β,10α,12α,15β)-15-Hydroxy-17-(methylsulfanyl)atisan-19-oate (24). NaSMe (1.16 g, 16.6 mmol) was added to a solution of 23 (1.66 g, 3.29 mmol) in HMPA (16.5 ml) at room temperature. The mixture was stirred for 43 h at 80 °C, then cooled to room temperature, and saturated aq NH₄Cl (100 ml) was added. The mixture was extracted with EtOAc (100 ml \times 2), and the organic layer was washed with brine (100 ml), dried over MgSO₄, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with n-heptane/ EtOAc (5:1 to 2:1, v/v) as an eluent to afford 23 (923 mg, 76%) as a colorless solid. mp 145–147 °C. $[\alpha]_{D}^{26}$ -125.3 (c 0.255, CHCl₃). ESI-MS m/z 389 $(M+Na)^+$. ¹H NMR (CDCl₃): δ 0.69–0.81 (m, 1H), 0.92 (s, 3H), 0.92–1.18 (m, 4H), 1.25 (s, 3H), 1.25–1.46 (m, 4H), 1.46–1.75 (m, 6H), 1.76–1.92 (m, 3H), 1.99 (td, J = 11.4, 3.0 Hz, 1H), 2.11–2.20 (m, 1H), 2.14 (s, 3H), 2.53 (d, J = 7.6 Hz), 2.95 (d, J = 4.0 Hz, 1H). Anal.

Calcd for $C_{21}H_{34}O_3S$ (366.22287): C, 68.81; H, 9.35. Found: C, 68.52; H, 9.32.

4.1.15. Serofendic acid A (1) and serofendic acid B (2). Davis's oxaziridine (2-benzenesulfonyl-3-phenyloxazirine) (856 mg, 3.28 mmol) was added to a solution of 24 (923 mg, 2.52 mmol) in CHCl₃ (25.2 ml) at 0 °C. The reaction mixture was stirred for 2 h at 0 °C, Me₂S (1 ml) was added, and the whole was evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with *n*-heptane/EtOAc (2:1, v/v) and CH₂Cl₂/MeOH (15:1 to 10:1, v/v) as eluents to yield serofendic acids A and B (1.01 g, 105%) as a white solid. The resulting isomer mixture (1 g) was purified by HPLC with a Daicel Chiralpak AD-H column and an n-hexane/EtOH (30%) isocratic solvent system to yield serofendic acid A (1) (393 mg, front peak, white solid) and serofendic acid B (2) (544 mg, back peak, white solid). Single crystals of the two compounds were obtained by crystallization from *n*-hexane/ EtOAc. Serofendic acid A: mp 214–216 °C. $[\alpha]_{D}^{29}$ –122.9 (c 1.280, CH₃OH). HRESI(+)MS: $(M+H)^+$ m/z383.2256 ($C_{21}H_{34}O_4S$, Δ 0.0 mmu). ESI(+)MS/MS: *m*/*z* 383, 365, 347, 319, 301, 283, 255. IR (KBr, cm^{-1}): 3432 (v_{O-H}), 2927 (v_{C-H}), 1698 ($v_{C=O}$). ¹H NMR (600 MHz, CD₃OD): δ 2.99 (1H, dd, J = 13.0, 9.3 Hz, H17a), 2.97 (1H, d, J = 3.7 Hz, H15), 2.87 (1H, dd, J = 13.0, 6.1 Hz, H17b), 2.72 (3H, s, H21), 2.17 (1H, brd, J = 14.2 Hz, H3 α), 2.06 (1H, ddd, J = 14.2, 11.7, 2.9 Hz, H14a), 1.96 (1H, m, H16), 1.93 (1H, m, H2β), 1.90 (1H, m, H6a), 1.83 (1H, m, H6b), 1.74 (1H, ddd, J = 13.2, 13.2, 4.5 Hz, H7 β), 1.71 (1H, m, H12), 1.68 (1H, m, H13a), 1.66 (1H, m, H1a), 1.63 (1H, m, H11β), 1.61 (1H, m, H9), 1.45 (1H, m, H11α), 1.42 (1H, m, H2a), 1.42 (1H, m, H13β), 1.24 (3H, s, H18), 1.11 (1H, J = ddd, 13.2, 2.9, 2.9 Hz, H7 α), 1.07 (1H, m, H3β), 1.07 (1H, m, H5), 1.00 (1H, m, H1β), 0.99 (3H, s, H20), 0.87 (1H, ddd, J = 14.2, 12.0, 6.6 Hz, H14β). ¹³C NMR (150 MHz, CD₃OD): δ 181.7 (C19), 81.3 (C15), 60.9 (C17), 57.8 (C5), 44.7 (C4), 44.5 (C16), 42.8 (C9), 41.2(C1), 39.3 (C3), 39.2 (C10), 38.8 (C21), 37.7 (C8), 34.3 (C7), 32.2 (C12), 30.0 (C11), 29.5 (C18), 28.2 (C14), 22.2 (C13), 20.9 (C6), 20.0 (C2), 13.4 (C20). Anal. Calcd for $C_{21}H_{34}O_4S$ (382.2177): C, 65.93; H, 8.96; O, 16.73; S, 8.38. Found: C, 65.64; H, 8.99; O, 16.81; S, 8.34. Serofendic acid *B*: mp 229–230 °C. $[\alpha]_D^{29}$ –13.73 (*c* 1.408, CH₃OH). HRESI(+)MS: (M+H)⁺ *m/z* 383.2261 (C₂₁H₃₄O₄S, Δ +0.5 mmu). ESI(+)MS/MS: m/z 383, 365, 347, 319, 301, 283, 255. IR (KBr, cm^{-1}): 3420(v_{O-H}), 2927 (v_{C-H}) , 1699 $(v_{C=O})$. ¹H NMR (500 MHz, CD₃OD): δ 3.04 (1H, dd, J = 13.2, 6.8, H17a), 2.95 (1H, d, J =4.4 Hz, H15), 2.91 (1H, dd, J = 13.2, 9.0 Hz, H17b), 2.73 (3H, s, H21), 2.18 (brd, J = 13.2 Hz, H3 α), 2.08 $(1H, ddd, J = 14.0, 11.7, 3.0 Hz, H14\alpha), 1.96 (1H, m,$ H2β), 1.92 (1H, m, H16), 1.90 (1H, m, H6α), 1.83 (1H, m, H6β), 1.79 (1H, m, H12), 1.73 (1H, ddd, J = 13.2, 13.2, 4.4 Hz, H7 β), 1.66 (1H, m, H1 α), 1.66 (1H, m, H13α), 1.63 (1H, m, H11β), 1.62 (1H, m, H9), $1.46 (1H, m, H11\alpha), 1.44 (1H, m, H13\beta), 1.42 (1H, m, m)$ $H2\alpha$), 1.23 (3H, s, H18), 1.10 (1H, ddd, J = 13.2, 2.9,2.9 Hz, H7 α), 1.06 (1H, m, H3 β), 1.06 (1H, m, H5), 1.00 (1H, m, H1^β), 0.99 (3H, s, H₂O), 0.86 (1H, ddd,

J = 14.0, 12.2, 6.5 Hz, H14 β). ¹³C NMR (125 MHz, CD₃OD): δ 181.0 (C19), 81.2 (C15), 59.8 (C17), 57.9 (C5), 44.8 (C4), 44.3 (C16), 42.9 (C9), 41.3 (C1), 39.4 (C3), 39.2 (C10), 38.3 (C21), 37.7 (C8), 34.3 (C7), 30.8 (C12), 29.9 (C11), 29.6 (C18), 28.4 (C14), 21.9 (C13), 21.0 (C6), 20.1 (C2), 13.5 (C20). Anal. Calcd for C₂₁H₃₄O₄S: C, 65.93; H, 8.96; O, 16.73; S, 8.38. Found: C, 65.73; H, 8.99; O, 16.85; S, 8.28.

4.1.16. Serofendic acid methylester (25). NaSMe (55.5 mg, 0.792 mmol) was added to a solution of 23 (200 mg, 0.396 mmol) in DMF (4 ml) at room temperature. The reaction mixture was stirred for 2 h at room temperature, then H₂O (40 ml) was added. The mixture was extracted with EtOAc (30 ml \times 2), and the organic layer was washed with brine (30 ml), dried over MgSO₄, and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with *n*-heptane/EtOAc (10:1 to 5:1, v/v) to afford methyl $(5\beta, 8\alpha, 9\beta, 10\alpha, 12\alpha,$ 15β)-15-hydroxy-17-(methylsulfanyl)atisan-18-oate (121 mg, 80%) as a white solid. mp 107–108 °C. $[\alpha]_{\rm D}^{26}$ –101.7 (*c* 0.200, CHCl₃). ESI-MS *m*/*z* 403 (M+Na)⁺. ¹H NMR (CDCl₃): δ 0.69–0.80 (m, 1H), 0.80 (s, 3H), 0.85–1.14 (m, 4H), 1.18 (s, 3H), 1.23–1.46 (m, 4H), 1.46–1.88 (m, 9H), 1.91 (d, J = 4.0 Hz, 1H), 1.92–2.01 (m, 1H), 2.12–2.19 (m, 1H), 2.14 (s, 3H), 2.52 (s, 1H), 2.53 (d, J = 1.2 Hz, 1H), 2.94 (t, J = 4.0 Hz, 1H), 3.64 (s, 3H). Anal. Calcd for C₂₂H₃₆O₃S (380.2385): C, 69.43; H, 9.53. Found: C, 69.31; H, 9.39.

Davis's oxaziridine (2-benzenesulfonyl-3-phenyloxazirine) (91.6 mg, 0.35 mmol) was added to a solution of methyl (5 β ,8 α ,9 β ,10 α ,12 α ,15 β)-15-hydroxy-17-(methylsulfanyl)atisan-18-oate (111 mg, 0.292 mmol) in CHCl₃ (2 ml) at 0 °C. The reaction mixture was stirred for 1 h at 0 °C, Me₂S (0.1 ml) was added, and the mixture was evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with *n*-heptane/EtOAc (2:1, v/v) and EtOAc/MeOH (15/1, v/v) to yield serofendic acid methylester (**25**) (105 mg, 91%) as a white solid.

The resulting isomeric mixture of serofendic acid methylester (60 mg) was purified by HPLC with a YMC pack ProC18 column and an H₂O/CH₃CN (37%) isocratic solvent system to afford serofendic acid methylester A (25-A) (15.1 mg, front peak, white solid) and serofendic acid methylester B (25-B) (24.3 mg, back peak, white solid). The stereochemistry of the sulfoxide group of 25-A and 25-B has not been determined. Compound 25-A: mp 164–166 °C. $[\alpha]_{\rm P}^{26}$ –132.0 (*c* 0.283, CHCl₃). ESI-MS *m*/*z* 419 (M+Na)⁺. ⁺H NMR (CD₃OD): δ 0.76–0.88 (m, 1H), 0.83 (s, 3H), 0.89–1.11 (m, 4H), 1.17 (s, 3H), 1.25–1.44 (m, 3H), 1.48–1.88 (m, 9H), 1.88–1.94 (m, 1H), 1.94– 2.04 (m, 1H), 2.14 (broad d, J = 13.6 Hz, 1H), 2.67 (s, 3H), 2.81 (dd, J = 13.2, 6.0 Hz, 1H), 2.89–2.98 (m, 2H), 3.63 (s, 3H). Anal. Calcd for C₂₂H₃₆O₄S (396.2334): C, 66.63; H, 9.15. Found: C, 66.48; H, 9.19. Compound **25-B**: mp 197–199 °C. $[\alpha]_{\rm p}^{26}$ –24.98 (*c* 0.304, CHCl₃). ESI-MS *m*/*z* 419 (M+Na)⁻¹H NMR (CD₃OD): δ 0.76–0.88 (m, 1H), 0.83 (s, 3H), 0.90–1.01 (m, 1H), 1.01–1.11 (m, 3H), 1.17 (s, 3H), 1.27–1.45 (m,

3H), 1.48–1.91 (m, 10H), 1.94–2.04 (m, 1H), 2.14 (broad d, J = 13.6 Hz, 1H), 2.68 (s, 3H), 2.87 (dd, J = 13.2, 9.4 Hz, 1H), 2.91 (d, J = 4.4 Hz, 1H), 2.99 (dd, J = 13.2, 6.8 Hz, 1H), 3.63 (s, 3H). Anal. Calcd for C₂₂H₃₆O₄S (396.2334): C, 66.63; H, 9.15. Found: C, 66.38; H, 9.02.

4.2. Single crystal X-ray structure determination

Single crystal X-ray diffraction data were collected with a R-AXIS RAPID II (Rigaku), using CuK α radiation ($\lambda = 1.54187$ Å). Crystallographic data, excluding structure factors, were deposited with the Cambridge Crystallographic Data Center as supplementary Publication numbers CCDC 647840 and 647841 for compounds **1** and **2**. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam..ac.uk/data_request/cif.

4.3. Neuroprotective activity

Eagle's minimal essential salt medium (Eagle's MEM) was purchased from Nissui Pharmaceutical (Tokyo, Japan). Fetal bovine serum and horse serum were purchased from JRH Biosciences (Lenexa, KS, USA). Poly(ethyleneimine) solution and cytosine β -D-arabino-furanoside hydrochloride were from Sigma–Aldrich Corp. (St. Louis, MO, USA). Trypan blue was from Wako Pure Chemical Industries, Ltd (Osaka, Japan). Sodium pentobarbital was from Dainippon Pharmaceutical, Co, Ltd (Osaka, Japan). All other drugs were obtained from Nacalai Tesque (Kyoto, Japan).

Primary neuronal cultures were obtained from the cerebral cortex of fetal rats (17-19 days of gestation) according to the procedures described previously.¹⁷ Briefly, pregnant Wistar rats (Nihon SLC, Shizuoka, Japan) were anesthetized with sodium pentobarbital, and the cerebral cortex was rapidly removed bilaterally and placed in ice-cold Hanks' solution (137 mM NaCl, 5.4 mM KCl, 3.4 mM Na₂HPO₄, 0.5 mM KH₂PO₄, 5.6 mM D-(+)-glucose, and 2.4 mM Hepes, pH 7.2). The cerebral cortex was mechanically dissociated with a scalpel and by trituration with a Pasteur pipette. Dissociated cells were filtered through a stainless steel mesh with a pore size of 150 µm and centrifuged at 200g for 3 min. The supernatant was removed, and cells were resuspended in complete medium (Eagle's MEM supplemented with 10% heat-inactivated fetal bovine serum, 2 mM L-glutamine, 11 mM D-(+)-glucose, 24 mM NaH-CO₃, and 10 mM Hepes). Finally, single cell suspensions were plated onto 0.1% polyethyleneimine-coated glass coverslips, which were placed in 60 mm dishes $(5.1 \times 10^6 \text{ cells per dish})$. Cultures were maintained in the above-mentioned complete medium (1-8 days after plating) or Eagle's MEM supplemented with 10% heat-inactivated horse serum, 2 mM L-glutamine, 11 mM D-(+)-glucose, 24 mM NaHCO₃, and 10 mM Hepes (9–15 days after plating). Cultures were incubated at 37 °C in a humidified 5% CO₂ atmosphere. To prevent proliferation of non-neuronal cells, 10 µM cytosine β-D-arabinofuranoside hydrochloride was added after 6 days of plating. The culture medium was changed every

two days. Mature cells after 11–15 days in vitro were used in all experiments. Animals were treated in accordance with the guidelines of the Kyoto University animal experimentation committee and the guidelines of the Japanese Pharmacological Society.

Cell viability was assessed by means of trypan blue exclusion assay using Hoffman modulation contrast microscopy, as described in our previous report.^{17a} On the day of the experiment, culture medium was replaced with drug-containing medium at 37 °C. After incubation, cultures were immediately stained with 1.5% trypan blue for 10 min at room temperature, fixed with isotonic formalin, and then rinsed with physiological saline. Cells stained with trypan blue were regarded as non-viable. The viability of the cultures was calculated as the percentage of the number of unstained cells (viable cells) relative to the total number of cells counted (viable cells plus non-viable cells). Over 200 cells per coverslip were counted. In each experiment, cells on five coverslips were counted to obtain means \pm SEM of the cell viability.

Data were expressed as means \pm SEM. The statistical significance of differences between groups was determined by one-way analysis of variance (ANOVA) followed by Dunnett's two-tailed test using the InStat program (Graph Pad Software, San Diego, CA, USA). Statistical significance was defined as a probability value of less than 5%.

4.4. Pharmacokinetic study

Fasted SD rats (n = 3, 290–260 g, obtained from Nihon SLC) were used for the study. The dosing solution containing the test compound (1 mg/ml) was administered (dosing solution: 30% DMSO/5% glucose for iv; 0.5% methyl cellulose for po). Blood samples were collected at designated time points: 0.25, 0.5, 1, 2, 4, 6, and 8 h. Brain samples were collected at designated time points: 0.5 and 2 h. MeOH/HClO₄ (500:1, 0.2 ml) solution was added to plasma (0.1 ml) or brain homogenate (20% saline) (0.1 ml), centrifuged (12,000 rpm, 5 min), and filtered. Then the samples were examined by using LC-MS methodology (MS: SIM positive 406; column: Develosil C30 2 × 150; column temperature: 40 °C; mobile phase: CH₃CN/H₂O = 30/70 containing 0.02% HCO₂H).

Acknowledgments

We are grateful to Mrs. S. Sasaki of this laboratory for the single crystal X-ray crystallographic measurement. We are also grateful to Mrs. M. Gomibuchi of this laboratory for the HRMS measurement.

References and notes

- 1. Collingridge, G. L.; Laster, R. A. Pharmacol. Rev. 1989, 41, 143.
- 2. Choi, D. W. Trends Neurosci. 1988, 11, 465.

- (a) Koh, J. Y.; Yang, L. L.; Cotamn, C. W. Brain Res. 1990, 553, 315; (b) Le, W. D.; Colom, L. V.; Xie, W. J.; Smith, R. G.; Alexianu, M.; Appel, S. Brain Res. 1995, 686, 49.
- Sawada, H.; Shimohama, S.; Tamura, Y.; Kawamura, T.; Akaike, A.; Kimura, J. J. Neurosci. Res. 1996, 686, 49.
- (a) John, W. M.; Faye, S. S.; Michael, V. J. Brain Res. 1989, 490, 33; (b) Clineschmidt, B. V.; Martin, G. E.; Bunting, P. R. Drug Dev. Res. 1982, 2, 123; (c) Clineschmidt, B. V.; Martin, G. E.; Bunting, P. R.; Papp, N. L. Drug Dev. Res. 1982, 2, 135; (d) Gill, R.; Foster, A. C.; Woodruff, G. N. J. Neurosci. 1987, 7, 3343.
- (a) Showalter, C. V.; Thornton, W. E. Am. J. Psychiatry 1977, 134, 1234; (b) Javitt, D. C.; Zukin, S. R. Am. J. Psychiatry 1991, 148, 1301; (c) Willetts, J.; Balster, R. L.; Leander, J. D. Trend Pharmacol. Sci. 1990, 11, 423; (d) Tricklebank, M. D.; Singh, L.; Oles, R. J.; Preston, C.; Iversen, S. D. Eur. J. Pharmacol. 1989, 167, 127; (e) Koek, W.; Woods, J. H.; Winger, G. D. J. Pharmacol. Exp. Ther. 1988, 245, 969.
- (a) Macarron, R. Drug Discov. Today 2006, 11, 277; (b) Butler, M. S. J. Nat. Prod. 2004, 67, 2141; (c) Wilson, R. M.; Danishefsky, S. J. J. Org. Chem. 2006, 71, 8329.
- Kume, T.; Asai, N.; Nishikawa, H.; Mano, N.; Terauchi, T.; Taguchi, R.; Shirakawa, H.; Osakada, F.; Mori, H.; Asakawa, N.; Yonaga, M.; Nishizawa, Y.; Sugimoto, H.; Shimohama, S.; Katsuki, H.; Kaneko, S.; Akaike, A. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 3288.
- (a) Terauchi, T.; Asai, N.; Yonaga, M.; Kume, T.; Akaike, A.; Sugimoto, H. *Tetrahedron Lett.* **2002**, *43*, 3625; (b) Toyota, M.; Asano, T.; Ihara, M. Org. Lett. **2005**, *7*, 3929.
- 10. Coates, R. M.; Bertram, E. F. J. Org. Chem. 1971, 36, 2625.
- 11. Gleiter, R.; Herb, T.; Hofmann, J. Synlett 1996, 987.
- (a) Martin, J. C.; Arhart, R. J.; Franz, J. A.; Perozzi, E. F.; Kaplan, L. J. Org. Synth. 1988, VI, 163; (b) Arhart, R. J.; Martin, J. C. J. Am. Chem. Soc. 1972, 94, 5003.
- 13. Mitsunobu, O. Synthesis 1981, 1.
- Sakaguchi, S.; Kikuchi, D.; Ishii, Y. Bull. Chem. Soc. Jpn. 1977, 70, 2561.
- 15. Davis, F. A.; Lal, S. G. J. Org. Chem. 1988, 53, 5004.
- Terauchi, T.; Doko, T.; Yonaga, M.; Kajiwara, A.; Niidome, T.; Taguchi, R.; Kume, T.; Akaike, A.; Sugimoto, H. *Bioorg. Med. Chem. Lett.* 2006, 16, 5080.
- (a) Nishikawa, H.; Hashino, A.; Kume, T.; Katsuki, H.; Kaneko, S.; Akaike, A. *Eur. J. Pharmacol.* 2000, 404, 41; (b) Kume, T.; Nishikawa, H.; Taguchi, R.; Hashino, A.; Katsuki, H.; Kaneko, S.; Minami, M.; Satoh, M.; Akaike, A. *Eur. J. Pharmacol.* 2002, 455, 91.
- Osakada, F.; Kawato, Y.; Kume, T.; Katsuki, H.; Sugimoto, H.; Akaike, A. . J. Pharmacol. Exp. Ther. 2004, 311, 51.
- Takeda, T.; Akao, M.; Matsumoto-Ida, M.; Kato, M.; Takenaka, H.; Kihara, Y.; Kume, T.; Akaike, A.; Kita, T. *J. Am. Coll. Cardiol.* **2006**, *47*, 1882.
- Kume, T.; Taguchi, R.; Katsuki, H.; Akao, M.; Sugimoto, H.; Kaneko, S.; Akaike, A. *Eur. J. Pharmacol.* 2006, 542, 69.
- (a) Takahashi, A.; Masuda, A.; Sun, M.; Victoria, E. C.; Herman, B. *Brain Res. Bull.* **2004**, *62*, 497; (b) Blaise, G. A.; Gauvin, D.; Gangal, M.; Authier, S. *Toxicology* **2005**, *208*, 177; (c) Uchiyama, T.; Otani, H.; Okada, T.; Ninomiya, H.; Kido, M.; Imamura, H.; Nogi, S.; Kobayashi, Y. *J. Mol. Cell. Cardiol.* **2002**, *34*, 1049.
- William, B. H.; Gibb, S. L.; Williams, E. O.; Pasinelli, P.; Brown, R. H., Jr.; Trotti, D. J. Biol. Chem. 2006, 281, 14076.