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Total synthesis of didmolamides A and B
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Abstract—The first total synthesis of didmolamides A (1) and B (2) has been accomplished by the solid phase assembly of thiazole-
containing amino acids and commercially available Fmoc-protected amino acids. The synthesis of didmolamide B was also achieved
in high yield using solution phase peptide synthesis. The thiazole-containing amino acid composing 1 and 2 was synthesized by a
MnO2 oxidation of a thiazoline, prepared from an Ala-Cys dipeptide using bis(triphenyl)oxodiphosphonium trifluoromethanesulf-
onate. The final macrolactamization was accomplished efficiently by PyBOP and DMAP in solution.
� 2005 Elsevier Ltd. All rights reserved.
Many oxazole and/or thiazole-containing macrolactams
have been recently isolated from marine organisms.1

Their activities, including cytotoxicity, multiple drug
resistance pump inhibition, as well as their metal bind-
ing, and transport properties, have led to much synthetic
interest.2,3 Didmolamides A and B (Fig. 1), isolated
from the marine ascidian Didemnum molle collected in
Madagascar, were shown to be mildly cytotoxic with
IC50 values of 10–20 lg/mL.4 Recently, we reported a
facile and efficient biomimetic synthesis of thiazolines
accomplished by treating N-acylated cysteine substrates
with bis(triphenyl)oxodiphosphonium trifluorome-
thanesulfonate.5 Thiazoles can in turn be obtained by
oxidation of the thiazolines. Dendroamide A,6 bistrat-
amides E–J,7 tenuecyclamides A–D8 and their analogs
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Figure 1. Line drawings of didmolamides A (1) and B (2).
have been efficiently synthesized by taking advantage
of this methodology. In this letter, we report the total
synthesis of didmolamides A (1) and B (2).

The retrosynthetic analysis for didmolamide A (1) is
shown in Figure 2. Disconnections at the amide bonds
and oxazoline ring result in two commercially available
amino acids and two identical thiazole-based amino
acids (3).

The thiazole-containing amino acid (3) was synthesized
as shown in Scheme 1. The synthesis commences with
the protection of the carboxylic acid of N-Fmoc-S-tri-
tyl-LL-cysteine as an allyl ester. Fmoc deprotection allows
the resulting amine to be coupled with an active ester of
N-Fmoc-LL-alanine to afford the fully protected dipeptide
4 (84% overall, three steps). Bis(triphenyl)oxodiphos-
phonium trifluoromethanesulfonate was utilized to con-
vert the trityl protected cysteine-containing dipeptide 4
into thiazoline 5 (92%). Thiazoline 5 was oxidized to
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Figure 2. Retrosynthetic analysis for didmolamide A (1).

mailto:jkelly@scripps.edu


FmocNH

S

N
OAllyl

O

Fmoc-Cys(Trt)-OH
a, b, c

Fmoc-Ala-Cys(Trt)-OAllyl
d

(84%) (92%)

FmocNH

S

N
OAllyl

O
e

(91%)

6

4

5

f

(100%)
3

Scheme 1. Synthesis of the thiazole-containing amino acid 3. Reagents and conditions: (a) HBTU, HOBt, DIEA, allyl alcohol; (b) diethylamine,

CH3CN; (c) HBTU, HOBt, DIEA, N-Fmoc-Ala-OH; (d) Ph3PO, Tf2O, CH2Cl2, �20 �C; (e) activated MnO2; (f) Pd(OAc)2 , PS–PPh3, PhSiH3,

CH2Cl2.
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thiazole 6 employing activated manganese oxide (91%;
>97% ee). Removal of the allyl ester protecting group
using a palladium catalyst, generated from Pd(OAc)2
and polymer-supported triphenylphosphine, afforded
the amino acid 3.9

The solid phase synthesis of 1 on Wang resin is depicted
in Scheme 2.10 The first coupling between the resin and
thiazole amino acid 3 utilizing HBTU and HOBt in the
presence of DIEA was performed for 8–12 h to ensure
completion of ester bond formation. Removal of the
Fmoc group was accomplished with 20% piperidine in
DMF (1 h). Subsequent amide bond formation between
the resin bound amine and the next thiazole-based ami-
no acid residue (3) of the growing chain was enabled
using HBTU/HOBt (2 h). After sequentially coupling
N-Fmoc-allo-threonine and N-Fmoc-LL-phenylalanine
to the resin-bound peptide utilizing HBTU and HOBt
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Scheme 2. Solid phase synthesis of didmolamide A (1). Reagents and condit

0.5 M in DMF), 8–12 h; (b) 20% piperidine in DMF, 1 h; (c) HBTU (2 equiv

HBTU (2 equiv), HOBt (2 equiv), DIEA (3 equiv), N-Fmoc-allo-Thr-OH (2 e

(3 equiv), N-Fmoc-Phe-OH (2 equiv, 0.5 M in DMF), 2 h; (f) 95% TFA in

CH2Cl2, DMF; (h) Burgess reagent, THF, reflux.
in the presence of DIEA, the terminal Fmoc group
was removed and the thiazole containing triamide was
cleaved from the Wang resin using 95% TFA in CH2Cl2.
Removal of the solvent yielded the amino acid macro-
lactamization precursor, which was transformed into
the macrolactam 7 using a combination of PyBOP (benzo-
triazole-1-yl-oxy-tris-pyrrolidino-phosphonium hexaflu-
orophosphate) and DMAP (4-dimethylaminopyridine)
in CH2Cl2/DMF (v/v: 2/1). Didmolamide A (1) was ob-
tained as a white semisolid after refluxing the macrolac-
tam 7 and the Burgess reagent in THF (56%).2b,11 Its 1H
and 13C NMR spectra are identical to those reported in
the literature.4

Didmolamide B (2) was synthesized utilizing the same
approach (Scheme 3), minus the treatment of the macro-
lactam with Burgess reagent. The O-trityl protecting
group on the threonine residue was removed during
O

O

N
H

N
O

S

N

S
O

O

b, d

N
HO N

NH

S

N
HN

N

S

O

O

O

Didmolamide A (1)

Ph

b, c

h

(56%)

ions: (a) HBTU (2 equiv), HOBt (2 equiv), DIEA (3 equiv), 3 (2 equiv,

), HOBt (2 equiv), DIEA (3 equiv), 3 (2 equiv, 0.5 M in DMF), 2 h; (d)

quiv, 0.5 M in DMF), 2 h; (e) HBTU (2 equiv), HOBt (2 equiv), DIEA
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Scheme 3. Solid phase synthesis of didmolamide B (2). Reagents and conditions: (a) HBTU (2 equiv), HOBt (2 equiv), DIEA (3 equiv), 3 (2 equiv,

0.5 M in DMF), 8–12 h; (b) 20% piperidine in DMF, 1 h; (c) HBTU (2 equiv), HOBt (2 equiv), DIEA (3 equiv), 3 (2 equiv, 0.5 M in DMF), 2 h; (d)

HBTU (2 equiv), HOBt (2 equiv), DIEA (3 equiv), N-Fmoc-Thr(Trt)-OH (2 equiv, 0.5 M in DMF), 2 h; (e) HBTU (2 equiv), HOBt (2 equiv), DIEA

(3 equiv), N-Fmoc-Phe-OH (2 equiv, 0.5 M in DMF), 2 h; (f) PhSH (1.1 equiv), 95% TFA in CH2Cl2, 3 h; (g) PyBOP (2 equiv), DMAP (2 equiv),

DIEA (2 equiv), CH2Cl2, DMF.
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cleavage of the peptide from the Wang resin using TFA.
Didmolamide B (2) was obtained as a white foam. Its 1H
and 13C NMR spectra were reported in an undefined
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Scheme 4. Solution phase synthesis of didmolamide B (2). Reagents and con

Fmoc-Thr(Trt)-OH, HBTU, HOBt, DIEA; (d) N-Fmoc-Phe-OH, HBTU, H

DMAP, DMF/CH2Cl2 (1/2); (g) TFA, PhSH, CH2Cl2.
mixture of CDCl3 and CD3OD, however, upon request
the author provided the 1H spectrum in DMSO-d6,
which is very similar to our spectra excepting the amide
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OBt, DIEA; (e) Pd(OAc)2 , PS–PPh3, PhSiH3, CH2Cl2; (f) PyBOP,
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resonances and the Thr hydroxyl resonance, which may
be shifted owing to the presence of H2O in their sample.4

In order to ensure the integrity of didmolamide B (2), its
total synthesis was also accomplished in solution
(Scheme 4). The carboxylic acid 3 was coupled with
the free amine derived from 6 (generated by removing
the Fmoc group with diethylamine) utilizing HBTU
and HOBt in the presence of DIEA (Scheme 4). The
amide-linked bisheterocycle 8 was obtained in 95%
yield. Compound 8 was coupled sequentially with N-
Fmoc-O-trityl-LL-threonine and N-Fmoc-LL-phenylala-
nine employing HBTU/HOBt/DIEA affording 9 (91%)
and 10 (94%), respectively.

Deprotecting the Fmoc group in 10 using diethylamine
followed by removal of the allyl ester protecting group
using a palladium catalyst, generated from Pd(OAc)2
and polymer-supported triphenylphosphine, gave the
amino acid macrolide precursor.9 The macrolactamiza-
tion was mediated by PyBOP and DMAP yielding 11
in 88% yield. After removing the trityl group from the
threonine residue in 11, didmolamide B (2) was ob-
tained. The properties of this compound were identical
to those of didmolamide B (2) synthesized using a solid
phase strategy.

In summary, the first total synthesis of didmolamides A
(1) and B (2) has been accomplished by the solid phase
assembly of thiazole-containing amino acids and
Fmoc-protected a-amino acids. The synthesis of didmo-
lamide B was also achieved using solution phase peptide
synthesis (48% overall yield). The crucial thiazole amino
acid (3) was synthesized by a MnO2 oxidation of a thiaz-
oline prepared from an Ala-Cys dipeptide using bis(tri-
phenyl)oxodiphosphonium trifluoromethanesulfonate.
The final macrolactamization was accomplished effi-
ciently by PyBOP and DMAP in all cases.
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