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A new application of the sequential hydrolysis-oxidation-Wittig olefination (SHOWO) protocol to a D-glu-
cose derivative, and an anomeric deoxygenation reaction of a xylo-D-furanose derivative is presented for
the five-step formal synthesis of (�)-Jaspine B.
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Since the publication of the original report on the isolation of
Jaspine B from the Okinawa marine sponge Pachastrissa sp. by Higa
and coworkers1 the organic synthetic community has been deeply
interested to develop the most concise total synthesis of this anti-
tumor compound.2 Although some asymmetric total syntheses
have been reported, in which are included: Sharpless asymmetric
epoxidation,2f Sharpless asymmetric dihydroxylation,2k or Davies
conjugate additions of homochiral lithium amides,2k,m the chiron
approach represents probably the better way for preparing Jaspine
B and even other biologically active Jaspines (Fig. 1).3

Among the wide repertory of (+)/(�)-Jaspine B and 2-epi-(+)/(�)-
Jaspine B total syntheses, where the chiron approach is used, we real-
ized that the use of both D-glucose (1) and D-xylose offers more
advantages than any other carbohydrate. Two of those advantages
are: rapid construction of the tetrahydrofuran ring and easy installa-
tion of the long chain. In this regard, Chandrasekhar and coworkers
obtained the truncated (+)-Jaspine B in 12 steps from L-xylose 2 fea-
turing Wittig olefination of aldehyde 3 for chain elongation, and
reductive removal of the methoxy group of 4 with triethylsilane
for the formation of the tetrahydrofuranose ring.4

In this sense, we realized that it could be feasible to develop a
highly efficient and concise formal synthesis of (�)-Jaspine B if we
only applied the sequential hydrolysis-oxidation-Wittig olefination
(SHOWO) protocol5 to the DAG derivative 5 for chain elongation, and
the Robins anomeric deoxygenation6 to 1,2-O-isopropylidene-a-D-
xylofuranose derivative 6 for the construction of the tetrahydrofuran
moiety (Scheme 1).

In this sense, we started with the benzylation of the hydroxyl
group at C-3 of DAG under standard conditions (BnBr/NaH) to afford
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scil).
5 in quantitative yield (98%); then 5 was submitted to SHOWO pro-
tocol,7 which consists of one-pot three-step processes: hydrolysis of
the 5,6-O-isopropylidene group/oxidative cleavage of the formed
5,6-diol and Wittig olefination, to afford compound 6 in only 6 h
and 86% yield. It is important to note that, following the traditional
procedure for this type of chain elongation (aqueous hydrolysis/
NaIO4 5,6-diol cleavage and Wittig olefination), two days are needed
and lower overall yields are obtained. Having the compound 6 in
hand (major Z-olefine isomer), the formation of the tetrahydrofuran
ring (8) was achieved in a straightforward manner via nucleophilic
substitution reaction at the anomeric position of 6 under Robins
conditions (Et3SiH/BF3�OEt2).6,8 Finally, the (�)-Jaspine B precursor
7 was obtained via the eventual formation of the triflate group with
trifluoromethanesulfonic chloride and DMAP followed by a S2

N dis-
placement reaction with sodium azide in the presence of tetrabutyl-
ammonium fluoride (Scheme 2).9 It is important to note that this
procedure is effective for the azide group introduction and avoids
the formation of the elimination products.4
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Figure 1. Natural and unnatural Jaspines B with cytotoxic activity.
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Scheme 2. Five-steps formal synthesis of (�)-Jaspine B.
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Scheme 1. Chandrasekhar synthesis of truncated (+)-Jaspine B (12 steps) and
current approach for (�)-Jaspine B.
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In summary, we have described here, a five-step formal synthe-
sis of (�)-Jaspine B (six-step total synthesis if we used the general
one-pot reduction and deprotection protocol widely reported),
which represents the most concise route to (�)-Jaspine B. Addi-
tionally, in this Letter it has been shown (once again) that the SHO-
WO protocol is an effective and powerful tool in the synthetic
scenario for chain elongation processes.
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