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Human African Trypanosomiasis (HAT), one of the neglected 

tropical diseases (NTDs), caused by protozoan Trypanosoma 
brucei is a declining public health problem on the African 

continent due to a gradual decrease in the number of reported 
cases in the past few years.   It is most prevalent, at the moment, 

in the Democratic Republic of the Congo. Historically, the lack 

of adequate and rapid diagnostic tools as well as lack of effective, 
safe, and accessible medicines to treat HAT resulted in the death 

of hundreds of thousands of people. Despite the decrease in 
reported case, the lack of good network of primary healthcare 

facilities in most rural and remote places on the continent as well 
as the possibility of continuous transmission of the parasite from 

animal reservoirs to humans, make the disease a continuous 
threat to millions of people.

1-4
 Discovery and development of 

effective oral drugs remains a key objective in combating the 
disease. In this regard, a promising drug candidate, 

nitroimidazole fexinidazole, is in the approval stages for the 
treatment of human African trypanosomiasis. It would be the first 

approved oral medicine to treat human African trypanosomiasis 
in several decades. Fexinidazole is also being investigated as a 

potential treatment for Chagas Disease.
5,6

 Despite these recent 
gains, the drug development pipeline for HAT is sparse and there 

is need for continued investment and investigation into new 
chemical entities that can be developed as treatments and/or as 

prophylactic agents against the disease. Many plant-derived 
natural products have been reported as antiprotozoal agents. See 

review by Schmidt and colleagues.
7
 In addition, natural products 

have been widely explored in anti-infective drug discovery. Most 

anti-infective agents are natural products-based/inspired.
8
 

However, due to the complexity and scarcity of most active 

agents, follow-up studies are usually difficult and rarely pursued 
in NTDs drug discovery.  

      The compounds described in this work were synthesized as 

outlined in Schemes 1 and 2. For compounds 5 to 25, allyl 
phenyl sulfone (1) was reacted with bromine to obtain the 1,2-

dibromide (2), in good yield (93%). This was followed by 
dehalogenation of the vicinal dibromide with sodium carbonate 

in diethyl ether to obtain (E)-((3-bromoprop-1-en-1-
yl)sulfonyl)benzene (3).  Compounds 4a-c were obtained via 

etherification reaction between the appropriate 4-
hydroxyphenylacetic acids and 3 in ethanol, using potassium 

hydroxide and sodium iodide. Compounds 4a-c were then used to 
synthesize the corresponding amides (5-10) and esters (11-25) 

using CDI or DCC and DMAP as coupling reagents.
9-13

 Detailed 
synthesis and compound characterization data are provided as 

supporting information.  
The compounds were subsequently tested for their ability to 

inhibit the growth of T. brucei in vitro.
14

 The parasites were 
exposed to the compounds for 48 hours. Most of the compounds 

displayed selective but moderate growth inhibitory activity 
against T. brucei when compared with mammalian cells (Hep 

G2).
15

 Compounds derived from 8-aminoquinoline (9), (1R)-
nopol (15, 24), 6-bromo-2-naphthol (16), (+) fenchol (21) and 4-

benzylphenol (23) were 
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A series of natural products-based phenyl sulfone derivative and their property-based analogues 

were investigated as potential growth inhibitors of Trypanosoma brucei. Trypanosoma brucei is 

a kinetoplastid protozoan parasite that causes trypanosomiasis. In this work, we found that 

nopol- and quinoline-based phenyl sulfone derivative were the most active and selective for T. 

brucei, and they were not reactive towards the active thiol of T. brucei’s cysteine protease 

rhodesain. A thiol reactive variant of the quinoline-based phenyl sulfone was subsequently 

investigated and found to be a moderate inhibitor of rhodesain. The quinoline-based compound 

that is not reactive towards rhodesain can serve a template for phenotypic-based lead discovery 

while its thiol-active congener can serve as template for structure-based investigation of new 

antitrypanosomal agents.   
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Scheme 1. Synthesis of target compounds 5-25. 

 
Table 1. The antitrypanosomal activities of compounds 5-27. 

 
 R1 R2 R3 T. brucei 

IC50 

Hep G2 

IC50 

5 H H 

 
11.72 ± 0.83 >20 

6 H H 

 

10.77 ± 0.31 >20 

7 H  H 

 
>20 >20 

8 H H 

 
>20 >20 

9 H H 

 

0.76 ± 0.11 >80 

10 H H 

 
5.45 ± 0.20 >20 

11 H H 

 
7.16 ± 0.42 >20 

12 H H 

 
5.62 ± 0.65 >20 

13 H H 

 
>20 >20 

14 H H 

 
>20 >20 

15 H H 
 

2.01 ± 0.12 >80 

16 H H 

 

2.18 ± 0.25 >80 

17 H H 

 
6.04 ± 0.03 >20 

18 H H 

 
>20 >20 

19 H H 

 

>20 >20 

20 H H 

 
5.63 ± 0.61 >20 

21 H H 

 
4.04 ± 0.01 

11.9 ± 1.03 

 

22 H H 
 

>20 >20 

23 H H 
 

1.47 ± 0.40 >80 

24 Cl H 
 

3.04 ± 0.07 >80 

25 H F 
 

         7.03 ± 0.17 >20 

27   

 

5.97 ± 0.12 

>80 

 Suramin 0.004 ± 0.001 n/a 

  Podophyllotoxin n/a 0.008 ± 0.0003 

 

the most active (Table 1). The 8-aminoquinoline-based 
compound (9), being the most selective, was evaluated for in vivo 

antitrypanosomal activity. Two groups of T. brucei (STIB795)-
infected mice were treated for 4 consecutive days 

intraperitoneally with 50 mg/kg/day and 100 mg/kg/day of 9, 
respectively.

16
 The infected mice were positive for parasites 24 

hours posttreatment, suggesting that compound 9 lack in vivo 
efficacy. Several generations of aminoquinoline-based 

compounds have found clinical use in the treatment of malaria 
but not in the treatment of trypanosomiasis.

17
 This is perhaps due 

to the unique mechanism of action of aminoquinolines in 
plasmodium-infected cells.  However, there are increasing reports 

of quinoline-based growth inhibitors of trypanosomes, although, 
the mechanism of action of the quinoline-based compounds have 

not been deciphered.
18-21 

 

The presence of the vinyl sulfone moiety in 5-25 suggests that 
they are potential covalent inhibitors of trypanosoma cysteine 

proteases. Compounds 5-25 were then tested for inhibitory 
activity against the major cathepsin L protease in T. brucei, 

rhodesain.  
Rhodesain is a validated drug target and it is known to be 

essential for the survival and infectivity of the parasite. Its role in 

the ability of the parasite to proliferate has been extensively 
investigated.

22-24
 None of the compounds displayed noteworthy 

inhibition of the protease at 20 µM. The inactivity of the 
compounds may be because of the proximity of the vinylic 

Michael acceptor to the phenoxide oxygen in 5-25. It is also 
possible that the compounds are just unable to adopt favorable 

orientation at the active site of the protease. Nevertheless, a 
quinoline-based thiol reactive structural variant of 9 was 

synthesized and tested for protease inhibition, and for 
trypanocidal activity.  Compound 27 was synthesized from boc-

protected (E)-5-phenyl-1-(phenylsulfonyl)pent-1-en-3-amine 
(26).  Compound 26 was a generous gift from Prof. J Love 

(University of British Columbia), and it was reported by Kiemele 
and co-workers in 2016.

25
 Compound 27 was able to completely 

inactivate rhodesain at 20 µM after 1 hour of incubation with 
estimated IC50 value of 800 nM, and a Kinact/Ki value of 99 M

-1
s

-1 

(Figure 1).
26 

 

 
 
Scheme 2. Synthesis of target compound 27. 

 
Figure 1. Pseudo-first order inhibition plots for compound 27. 
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It has a moderate antitrypanosomal activity with an IC50 value of 

5.97 uM. Compound 27 was also tested for inhibitory activity 
against human cathepsin L, but it was inactive (from 0.1 µM to 

125 µM).
26

 Crystallographic investigation of rhodesain-inhibitor 
(27) complex has been attempted but it has not been successful. 

However, it is still being pursued. In order to understand the 
interactions responsible for the inhibitory activity of 27 on 

rhodesain, template docking was used.
27

 Compound 27 was 
docked in the previously reported crystal structure of rhodesain 

using the bound ligand (D1R) as template.
28

 Three of the top five 
docking poses suggests that the vinyl group is in the vicinity of 

active thiol (Cys25), while the homophenyl moiety occupies the 
P1 site, and the quinoline moiety occupies the P2 site (Figure 2a 

and 2b).   The phenyl sulfone moiety is predicted to have steric 
interactions with Gln19 and His162 while the quinolyl motif 

have steric interactions with Met68. Quite noticeable is the empty 
P3 site. 

 

In conclusion, a series of phenyl sulfone natural products-based 
compounds were synthesized and evaluated as potential 

antitrypanosomal agents. Quinoline- and nopol-based 
compounds, 9 and 15, were the most active and selective. The 

quinoline-based compound (9) can serve a template for 
phenotypic-based lead discovery and the thiol-active compound 

(27) may serve as template for structure-based investigation of 
new covalent antitrypanosomal agents.   
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