

View Article Online View Journal

RSC Advances

This article can be cited before page numbers have been issued, to do this please use: A. S. Negi, Y. Gautam, S. Dwivedi, A. Srivastava, H. Hamidullah, A. Singh, D. Chanda, J. Singh, S. Rai and R. Konwar, *RSC Adv.*, 2016, DOI: 10.1039/C6RA02663J.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Journal Name

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

2-(3', 4'-dimethoxybenzylidene) tetralone induces anti-breast cancer activity through microtubule stabilization and activation of reactive oxygen species

Yashveer Gautam,^{a†} Sonam Dwivedi,^{b†} Ankita Srivastava,^a Hamidullah,^b Arjun Singh,^a D. Chanda,^a Jyotsna Singh,^b Smita Rai,^b Rituraj Konwar,^b* and Arvind S. Negi^a*

Breast cancer is a leading cause of women mortality worldwide. Diverse analogues of 2-benzylidene tetralone have been synthesized and evaluated for anti-cancer activity against a panel of cancer cell lines. Among these, compounds **13**, **15** and **19** exhibited potent anti-cancer activity (IC_{50} =1-3µM) against human breast cancer cells, MDA-MB-231 and non-toxic towards non-malignant cell line, HEK-293. Compounds **13**, **15** and **19** significantly stabilized tubulin polymerization and arrested cell cycle progression at GO/G1 phase instead of typical mitotic arrest at G2/M phase as observed in case of tubulin polymerization modulators suggesting induction of mitotic slippage followed by cell death. Further, mechanistic studies revealed that compound **13** induced reactive oxygen species generation and apoptosis in breast cancer cells. Inhibition of ROS by N-acetyl-L-cysteine prevented compound **13** induced cytotoxicity. Compound **13** showed potent anticancer activity (74-79% tumour reduction) in syngeneic rat mammary tumour model without any adverse side effect. It was well tolerated up to 1000 mg/kg dose in acute oral toxicity. The identified lead molecule **13** may further be optimized for better activity.

Introduction

Breast cancer is the most common invasive cancer in female worldwide. It accounts 26% of female cancer cases and causes about 18.2% female cancer deaths. Breast cancer affects one in eight women during their lives. It caused 1.7 million patients and about 0.52 million deaths in 2012.¹ The disease has high complexity of more than 18 sub-types of breast cancer. Among various risk factors for developing breast cancer life style, environmental, genetic and biological are predominant. There are a number of treatments available to tackle this cancer including surgery, radiation therapy, chemotherapy, hormonal therapy and targeted therapy. Based on responsiveness, breast cancer is subdivided into hormone responsive (ER/PR/Her-2) and hormone non-responsive. In chemotherapy, cytotoxic drugs like paclitaxel, taxotere, doxorubicin etc., and hormone antagonists like tamoxifen, fulvestrant and aromatase inhibitors like anastrozole, letrozole etc. are in use.² However, multimodality approach is used to eradicate residual breast cancer cells to prevent recurrence of the disease. Several anti-breast cancer drugs have been developed, but the morbidity and mortality of the disease is so high that it is still a challenge to scientific fraternity. Microtubules have been considered as one of the most suitable targets for cancer drug development. $^{\mathbf{3},\mathbf{4}}$

The present study describes development of anti-cancer agents through microtubule modulation. Microtubules are tube like rigid hollow cylindrical filamentous structures built by polymerisation of tubulin dimers.⁵ Microtubules serve as cytoskeletons of the cells and also form framework for structures like spindle apparatus that helps in chromosome segregation during cell division. Owing to their crucial role in mitotic process, microtubules have become an attractive target especially in the treatment of cancer.⁶

We designed 2-substituted 1-tetralone derivatives as possible antitubulins. The basis of designing was inspired from structureactivity relationship of combretastatin A4, a natural antitubulin isolated from African Willow tree i.e. *Combretum caffrum*.⁷ According to its SAR, a diaryl system should be separated through a double bond (restricted rotation) and a 3,4,5-trimethoxyphenyl unit should be present at one of the phenyl ring.⁸ The 3,4,5-trimethoxyphenyl fragment is an important motif to interact with microtubule and induces antitubulin effect.⁶ Based on these facts we planned to synthesize 2-benzylidene tetralones as possible anti-cancer agent through microtubule modulation.

Results and Discussion Chemistry

2-Benzylidene tetralones were prepared as per Scheme 1. 6-Methoxytetralone (1) was treated with various aromatic benzaldehydes (2-11) using 3% alkaline KOH to afford corresponding 2-benzylidenetetralones (12-21) in good yields (68-86%) through Claisen-Schmidt reaction. Compounds were purified

^a CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow-226015, India.

^{b.}CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow-226031, India. † Equal authorship.

Electronic Supplementary Information (ESI) available: All the 1 H, 13 C and Mass spectra of potential compounds i.e. **13**, **15** and **19** will be available online. See DOI: 10.1039/x0xx00000x

DOI: 10.1039/C6RA02663J Journal Name

through column chromatography and confirmed through spectroscopy.

Scheme 1: Reagents and conditions: a) 3% KOH in MeOH, RT, 2-5h, 68-86%;

The best analogue of the series i.e. compound **13** was further modified as per scheme 2, to get some structural clues to 2-benzyltetralone (**25**) using catalytic hydrogenation (Pd/C). On reduction with NaBH₄-TFA, compound **13** afforded 2-benzyltetralin (**26**). 6,7-Dimethoxy-2-benzylidene tetralone (**22**) was also prepared as for compounds **12-21**. Compound **22** was selectively demethylated with anhydrous aluminium chloride to get phenolic products **23** and **24**.

Published on 24 March 2016. Downloaded by Washington University in St. Louis on 25/03/2016 05:35:40.

Scheme 2: Reagents and conditions: a) 10% Pd-C, THF, RT, quantitative; b) NaBH₄-TFA, 0°C to RT, 53%; c) 3% KOH in MeOH, RT, 3h, 79%; d) $AICI_3$ -DCM RT, 23:24=1:1, 87%.

Biological evaluation

Cytotoxicity evaluation

All the synthesized compounds were evaluated for anti-cancer activity against breast cancer cell lines MCF-7 (estrogen responsive proliferative breast cancer model) and MDA-MB-231 (estrogen independent aggressive breast cancer model), LA7 (rat mammary tumour), HCT116 (human colon cancer), H1299 (human lung cancer) and non-cancer cell line, HEK-293 (human embryonic kidney) using MTT assay to assess cell inhibition.⁹ Results are shown in Table 1. Out of fifteen synthesized analogues ten analogues showed significant cytotoxicity (IC₅₀=1-47µM) against MDA-MB-231, LA-7, HCT116 and H1299 cells rest were inactive at 50µM concentration. However, compounds 13, 15 and 19 showed potent cytotoxicity (IC₅₀=1-3.2µM) against highly aggressive breast cancer cell line (MDA-MB-231 cells). Compounds 15 effectively inhibited growth of MCF-7, MDA-MB-231, HCT116 and HCT1299 cells. Compound 25 was selective to both breast cancer cell lines. However, compounds 13 and 19 more effectively inhibited MDA-MB-231 cells as compared to other cell lines. Among the entire compounds screened, compound 13 was the most active analogue in this series with lowest IC_{50} (1.0µM) against MDA-MB-231 cells and IC₅₀ (7µM) against LA-7 cells. Furthermore, compound 13 did not show cytotoxicity against non-malignant cells (HEK-293). Collectively, these cytotoxicity data suggest that compound 13 was the most potent against MDA-MB-231 and LA-7 cells.

[**Table 1.** Cell inhibiting activity of the compounds (IC₅₀ \pm SEM in μ M)] placed at last

Structure activity relationship

These analogues had structural diversity mainly at benzylidene ring. However, some definite trends were observed. These compounds mostly exhibited potent cytotoxicity against MDA-MB-231 i.e. hormone independent breast cancer cell line. Hence, for SAR we focused on trend against this cell line. Analogue 12 possessing no substitution in benzylidene ring showed marginal activity (IC₅₀=40µM) against MDA-MB-231 cells. While, compound 13 with 3,4-dimethoxy substitution at benzylidene ring was the best analogue ($IC_{50}=1\mu M$). But, on introducing another methoxy group at C5' position of benzylidene ring (analogue 14) activity (IC₅₀=42µM) was reduced drastically as compared to 12. Introducing a Nitro (withdrawing) group at meta position (Analogue 18), activity was slightly enhanced (IC_{50} =36µM) but changing the position of nitro group from meta to para (analogue **19**) activity ($IC_{50}=1.5\mu M$) was enhanced remarkably. Similarly, another withdrawing group trifluoromethyl at benzylidene ring (analogue 15) also exhibited potent cytotoxicity (IC₅₀=3.2µM). But, in case of p-fluoro substitution (analogue 17) activity was abolished.

Analogues **13** exhibited best activity (IC_{50} =1.0µM). On introducing another methoxy group at C7 (analogue **22**) activity was reduced. Partial reduction of analogue **13** to 2-benzyl derivative (**25**), retained potential cytotoxicity (IC_{50} =8.9µM). While reducing the C1ketone, to C1-methylene (tetralin **26**) compound was inactive. Overall, from these modifications, it may be concluded that C1 ketone is essentially required in the tetralone skeleton and presence of 3,4-dimethoxy in benzylidene ring enhances the cytotoxicity.

Please do not adjust margins RSC Advances

Figure 2. Effect of compounds 13, 15 and 19 on cell cycle progression in MDA-MB-231 cells. Cells were treated with compounds 13, 15 and 19 at 1µM for 24h and 48h stained with PI and cell cycle was analyzed by flow cytometry.

Antimitotic activity

Microtubule dynamics is a crucial aspect of mitosis phase in cell cycle. Microtubule interfering agents induce mitotic arrest which leads to increase in 4N cells at G2/M phase.⁶ Therefore, we examined cell cycle phase distribution of MDA-MB-231 cells followed by compounds **13**, **15** and **19** treatments in MDA-MB-231 cells by PI staining using flow cytometry.¹⁰ In the kinetics graph (Figure 1), compounds **13**, **15** and **19** stabilized tubulin assembly at indicated concentrations in comparison to control groups. Microtubule assembly is vital for many fundamental cellular processes.¹¹ The conversion of tubulin to microtubule is in dynamic equilibrium which is very much crucial for mitotic process. Any

disturbance created in this dynamic equilibrium by the microtubule modulators (stabilizers or inhibitors) induces cell death.^{12, 13}

Cell cycle analysis

Flow cytogram results revealed that compounds **13**, **15** and **19** induced G0/G1 cells cycle arrest as compared to untreated vehicle control cells (Figure 2), while, there was subsequent decrease of synthetic phase (S-phase) of cells cycle. Usually, microtubule stabilizers like paclitaxel are known to induce G2/M arrest.^{14, 15} Following mitotic arrest, cells may have two fates, culminating into apoptosis or go for mitotic exit without proper cell division (mitotic slippage) depending on the inhibitor concentration and check point status. In case of mitotic slippage, aberrant mitosis occurs and cells appear arrested in G1 phase due to pseudo G1 accumulation.¹⁶ Since our microtubule polymerization results clearly showed

ARTICLE

induction of microtubule stabilization, in view of this we believe that the G1 arrest in cell cycle analysis may suggest mitotic slippage into pseudo G1 followed by cell death.^{17,18} Low concentration of paclitaxel has also been showed to induce G1 arrest.^{19,20} In addition, microtubule stabilization and microtubule destabilization leading to mitotic arrest may not be the only processes for inducing antitubulin effects. There can be a mixed mechanism which is not fully understood so far, this opens new avenues to explore this area. However, induction of cell cycle arrest in cancer cell lines constitutes one of the most prevalent strategies to stop or limit cancer spreading.^{21,22}

Apoptosis induction

In order to evaluate nuclear morphology in response to compound 13, Hoechst 33258 staining was carried out using microscopy in MDA-MB-231 cells. Shrunken nucleus and peripherally clumped and fragmented chromatin were seen following compound 13 treatments, a typical characteristic of cells undergone apoptosis (Figure 3A). To further confirm whether cell growth inhibition was associated with physiological apoptosis or non-specific necrosis AnnexinV-FITC and PI dual staining was carried out using flow cytometer.23 Compound 13, the most potent compound of this series induced time dependent increase of apoptotic cells (AnnexinV-FITC stained) and no necrotic (PI stained) population was observed in compound 13 treatment as compare to untreated vehicle control cells (Figure 3B). Mitotic arrest commonly observed as G2/M arrest directly lead to apoptosis called as mitotic death. Here, in our case, treatments of compounds probably induce mitotic slippage which is followed by apoptosis rather than senescence or resistance.

Figure 3. Effect of compound **13** on nuclear morphology and apoptosis in MDA-MB-231 cells. (A) Cells were treated with compound **13** at 1 μ m and nuclear morphology was checked by hoechst staining by microscopy at 40x. (B) Cells were treated with compound **13** at 1 μ M for 24h and 48h and apoptosis was evaluated using AnnexinV-FITC/PI dual staining kit by flow cytometry.

In vivo anti-tumour activity against rat mammary tumour

LA7 induced syngenic Sprague Dawley rat mammary tumour model was used to determine *in vivo* anti-cancer efficacy of compound **13**.²⁴ Daily oral administration of 5 mg/kg and 10 mg/kg of compound **13** resulted in significant regression of

Activation of Reactive Oxygen Species

Effect of compound **13** was evaluated on ROS generation by ROS sensitive probe DCFH-DA staining using flow cytometry in MDA-MB-231 cells.²⁴ There was increased ROS generation detected in compound **13** treated cells as compare to untreated vehicle control cells (Figure 4). Thus, ROS play as a key mediator in compound **13** mediated apoptosis induction and cancer cell inhibition. Activation of ROS by compound **13** and subsequent apoptosis induction demonstrates a possible pathway leading to cell death by these compounds. Role of ROS in regulation of apoptosis is well accepted and widely documented.^{25,26} Activated of ROS in response to paclitaxel and other microtubule stabilizer is also documented to be associated with apoptosis in cancer cells.²⁷ Therefore, interference in tubulin polymerization induced by compound **13** and subsequent apoptosis is probably mediated by ROS.

Figure 4. Effect of compound 13 at 1 μ m for 24h, and 48h on ROS generation in MDA-MB-231 cells. ROS level was evaluated using DCFH-DA dye by flow cytometry in response to compound 13.

To decipher role of increased ROS generation in compound **13** induced cytotoxicity, MDA-MB-231 cells were treated with NAC, a ROS scavenger followed by compound **13** treatment for 48h and cytotoxicity was evaluated using MTT assay. Result showed that in presence of ROS scavenger compound **13**-mediated cytotoxicity was abolished (Figure 5). This clearly suggests that ROS generation have a major role during compound **13** -induced cytotoxicity.

Figure 5. ROS is required in compound 13-mediated cytotoxicity in MDA-MB-231 for 48h

tumour as compared to untreated vehicle control group (Figure 6). In addition, significant reduction of final tumor weight was also observed in the compound **13** treated group. Haematoxylin and Eosin staining of tumor tissue section showed densely growing tumor cells with pleomorphic, hyperchromatic nuclei

Journal Name

and low cytoplasmic content in untreated vehicle control tumor section (Figure 7). Tumor tissue section of the compound **13** treated group showed decreased cellular density with vacuolization and elastosis as compared to untreated vehicle control. The histopathological recovery of tumor cellularity was dose dependent. No significant change in terms of body weight was observed in the treated group. Collectively, these *in vivo* results suggest that compound **13** shows potent anti-tumour effect on mammary tumour cells without any apparent cytotoxicity.

Figure 6 Effect of compound 13 on tumor regression in syngenic rat mammary tumor model. (A) Compound 13 was daily administered orally and tumor was measured twice a week. At the end, animals were sacrificed, tumors were excised from animals and the tumor was photographed. (B) Tumor volume was calculated and plotted in response to days of treatment. (C) After end of experiment tumor weight was taken and graph was plotted. (D) Body weight was measured twice a week and graph was plotted.

Figure 7. Histopathology (H & E staining) images of tumor sections of compound 13 tumor tissues shows morphological differences between untreated vehicle control and treated tumor tissues. Magnifications at 20X

In vivo acute oral toxicity

Acute oral toxicity is used to assess the ability of a substance to cause adverse effects within a short period of time following dosing or exposure.²⁸ In acute oral toxicity experiment of compound **13**, there were no observational changes, morbidity and mortality throughout the experimental period in all the groups of experimental animals up to the tested dose levels of 1000 mg/kg. Blood and serum samples upon analysis showed non-significant changes in all the parameters studied like haemoglobin level, RBC count, WBC count, differential leucocytes count, SGPT, ALP, creatinine, triglycerides, cholesterol, albumin, serum protein (Table

2 & Fig. 8). Animals on gross pathological study showed no changes in any of the organs

studied including their absolute and relative weight (Figure 8). Therefore, the experiment showed that compound **13** was well tolerated by the Swiss albino mice up to the dose level of 1000 mg/kg body weight as a single acute oral dose. However, sub-acute and or chronic experiment with the test drug needs to be carried out to look for any adverse effect on repeated exposure to compound **13** in view of significant increase in serum albumin and SGOT level in animals treated with the test drug at 1000 mg/kg.

Parameters	Dose of compound 13 at mg/kg body weight as a single oral dose												
-	Control	5 mg/kg	50 mg/kg	300 mg/kg	1000 mg/kg								
Body wt. 7 th day (g)	22.43±0.34	23.26±0.69	23.44±0.59	23.03±1.03	23.36±0.76								
Haemoglobin (g/dL)	13.72±0.79	15.59±1.27	13.41±1.37	14.01±0.33	14.44±.017								
RBC (10 ⁶ /mm ³)	6.53±0.24	6.76±0.19	6.77±0.17	6.78±0.21	7.13±0.25								
WBC (1000/mm ³)	10.69±0.80	10.09±0.33	9.75±0.22	9.24±0.32	9.42±0.33								
ALP (U/L)	297.01±12.10	301.33±18.29	317.73±15.63	298.05±17.44	307.50±20.63								
SGPT (U/L)	30.34±2.22	30.21±1.82	29.30±2.43	26.68±1.56	29.60±2.15								
SGOT (U/L)	31.17±1.94	27.71±1.33	26.87±1.04	31.93±2.50	27.27±1.32								
Albumin (g/dL)	2.15±0.05	1.97±0.11	2.08±0.05	1.97±0.12	2.13±0.10								
Creatinine (mg/dL)	0.31±0.02	0.43±0.09	0.60±0.06	0.47±0.04	0.63±0.06								
Triglycerides (mg/dL)	268.94±39.6	245.49±40.9	335.96±23.6	211.03±27.7	303.85.1±29.1								
Serum Protein (mg/ml)	3.09±0.23	2.95±0.29	3.01±0.15	2.96±0.33	3.98±0.30								
Cholesterol (mg/dL)	219.02±26.6	191.15±28.92	193.68±25.45	205.02±29.93	203.62±25.86								

Table 2. Effect of compound 13 as a single acute oral dose at 5, 50, 300 and 1000 mg/kg on body weight, haematological and serum biochemical parameters in Swiss albino mice (Mean±SE, n=6)

* P<0.05 compared to control; a P<0.05 compared to control, 5, 50, 300, 1000 mg/kg).

Figure 8. Effect of compound 13 as a single acute oral dose at 5, 50, 300 and 1000 mg/kg on (A) absolute and (B) relative organ weights (C) differential leucocytes counts in Swiss albino mice (n=6, Non significant changes were found compared to control).

Experimental section

General experimental Procedures

The starting substrate 6-methoxytetralone was procured from Sigma Chemicals India. Reagents and other chemicals were purchased from Avra Synthesis India and used without purification. Melting points were determined on E-Z Melt automated melting point apparatus in open glass capillaries and were uncorrected. Reactions were monitored on pre-coated silica gel TLC-GF₂₅₄ aluminium sheets (E. Merck, Germany) and visualization was done under UV light (254nm and 365nm) and further charring with 2% ceric sulphate in 10% sulphuric acid (aqueous). Compounds were purified through Flash chromatography system (CombiFlash R_r200i, Teledyne-ISCO, USA) using glass columns (13cm lengthx2cm i.d.) and silica gel (230-400mesh) using UV detector (254nm & 280nm) and characterised by ¹H and ¹³C NMR, ESI-MS, and ESI-HRMS. The purity of the final compound benzylidene indanone **1** was ascertained by Reversed Phase-HPLC. NMR spectra were obtained on Bruker Avance-DRX300 MHz instrument with tetramethylsilane (TMS) as an internal standard. Chemical shifts are given in δ ppm values. ¹H–¹H coupling constant (J) values are given in Hz. ESI mass spectra were recorded on APC3000 LC-MS-MS (Applied Biosystem)

and High Resolution Mass (HRMS) on Agilent 6520Q-TOF after dissolving the compounds in methanol. FT-IR spectra were recorded on Perkin–Elmer SpectrumBX.

DMEM and FBS were purchased from Gibco, India. RNaseA, Crystal Violet Dye, HEPES, Trypsin-EDTA, Antibiotic-Antimycotic (Ab-Am) Solution, Phosphate Buffer Saline (PBS), Citric Acid and Propidium Iodide (PI) were acquired from Sigma-Aldrich, USA. Sodium bicarbonate (NaHCO₃), Agar, Sodium Citrate and Di-sodium Hydrogen Phosphate were obtained from Himedia Laboratories, India. Solvents including ethanol and isopropanol were procured from Merck, India Ltd. *In-vivo* experiments were conducted on Swiss-albino mice after the approval of Institute's Animal Ethical Committee.

Chemical syntheses

General procedure for the synthesis of benzylidene tetralones (12-22)

6-Methoxytetralone (352mg, 2mmol) was taken in 10mL of 3% potassium hydroxide in methanol (w/v) in an ice-bath (5-10°C). To this stirred reaction mixture aromatic benzaldehyde (**2-11**, 2mmol) was added and stirred for 2-5h. On completion, solvent was evaporated and water (10mL) was added to it and acidified with 5% dil. HCl (10mL). The reaction mixture was extracted with ethyl acetate, washed with water and organic layer was dried over anhydrous sodium sulphate. On evaporated, a residue was obtained which was purified through column chromatography over silica gel. On elution with ethyl acetate-hexane the pure product (**12-22**) was obtained in good yield.

2-Benzylidene-6-methoxy-3,4-dihydronaphthalen-1(2H)-one (12)

yield=83%; m.p.= 86°C; ¹H NMR (CDCl₃, 300MHz): δ 2.89 (bs, 2H, 3-CH₂, J=6.3Hz), 3.11 (bs, 2H, 4-CH₂, J=5.7Hz), 3.86 (s,3H, OCH₃), 6.71 (s, 1H, 5-CH), 6.87 (d, 1H, 7-CH, J=8.7Hz), 7.26-7.38 (m, 5H, 2-benzylidene phenyl ring), 7.84 (s, 1H, 2-benzylidene CH=), 8.18 (d, 1H, 8-CH, J=8.7Hz); ¹³C NMR (CDCl₃, 75MHz): δ 27.63, 29.71, 55.86, 112.70, 113.77, 127.44, 128.30, 129.83, 130.23, 130.55, 131.19, 136.03, 136.44, 146.19, 164.02, 187.26; ESI-MS (MeOH) for C₁₈H₁₆O₂: 265.0 [M+H]⁺, 287.1 [M+Na]⁺, 303.0 [M+K]⁺, 551.2 [2M+Na]⁺.

2-(3´,4´-Dimethoxybenzylidene)-6-methoxy-3,4dihydronaphthalen-1(2*H*)-one (13)

yield=86%; m.p.=112°C; ¹H NMR (CDCl₃, 300MHz): δ 2.91 (bs, 2H, 3-CH₂), 3.21 (bs, 2H, 4-CH₂), 3.85 (s,3H, OCH₃), 3.90 (s,6H, 2xOCH₃), 6.69-8.10 (m, 7H, all aromatic protons and 2- benzylidene CH); ¹³C NMR (CDCl₃, 75MHz): δ 27.70, 29.60, 55.82, 56.33, 112.64, 112.81, 113.65, 123.54, 127.55, 129.25, 131.06, 134.39, 136.53, 145.93, 149.14, 149.86, 163.89, 187.05; ESI-MS (MeOH) for C₂₀H₂₀O₄: 325 [M+H]⁺, 347 [M+Na]⁺. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₀H₂₁O₄ 325.1440, found 325.1430.

2-(3',4',5'-Trimethoxybenzylidene)-6-methoxy-3,4dihydronaphthalen-1(2H)-one (14)

yield=78%; m.p.=108°C; ¹H NMR (CDCl₃, 300MHz): δ 2.90-2.94 (t, 2H, 3-CH₂, J=6.6Hz), 3.09-3.14 (t, 2H, 4-CH₂, J=6.2Hz), 3.85 (s,3H, OCH₃), 3.88 (s,3H, OCH₃), 3.89 (s,3H, OCH₃), 6.66 (bs, 1H, 5-CH), 6.71 (bs, 1H, 7-CH), 6.94 (s, 2H, 2´ & 6´-CH of benzylidene ring, J=8.6Hz), 7.76 (s, 1H, 2-benzylidene CH=), 8.09 (m, 1H, 8-CH); ¹³C NMR (CDCl₃, 75MHz): δ 27.75, 29.74, 55.83, 56.49, 56.61, 61.22, 107.69, 112.68, 127.42, 128.58, 131.10, 131.90, 136.30, 136.59, 138.96, 146.38,

153.48, 164.00, 188.44; ESI-MS (MeOH) for $C_{21}H_{22}O_5$: 355 $[M+H]^+$; Negative mode: 353 $[M-H]^-$.

2-(4´-Trifluoromethylbenzylidene)-6-methoxy-3,4dihydronaphthalen-1(2*H*)-one (15)

yield=70%; m.p.=136°C; ¹H NMR (CDCl₃, 300MHz): δ 2.38 (bs, 2H, 3-CH₂), 2.51 (bs, 2H, 4-CH₂), 3.33 (s,3H, OCH₃), 6.16 (s, 1H, 5-CH), 6.36 (d, 1H, 7-CH, J=8.7Hz), 6.97 (d, 2H, 2´ & 6´-CH of benzylidene ring, J=8.6Hz), 7.11 (d, 2H, 3´ & 5´-CH of benzylidene ring); 7.26 (s, 1H, 2-benzylidene CH=), 7.58 (d, 1H, 8-CH, J=8.7Hz), ¹³C NMR (CDCl₃, 75MHz): δ 27.60, 29.61, 55.87, 112.76, 113.94, 125.71, 125.76, 127.20, 130.24, 131.29, 134.42, 137.96, 146.10, 164.23, 186.71; ESI-MS (MeOH) for C₁₉H₁₅F₃O₂: 333.3 [M+H]⁺, 355.2 [M+Na]⁺, 371.1 [M+K]⁺.

2-(4´-N,N-Dimethylaminobenzylidene)-6-methoxy-3,4dihydronaphthalen-1(2*H*)-one (16)

yield=68%; m.p.=151°C; ¹H NMR (CDCl₃, 300MHz): δ 2.90 (t, 2H, 3-CH₂, J=6.2Hz), 3.01 (s, 6H, N-(CH₃)₂), 3.13 (bs, 2H, 4-CH₂), 3.86 (s, 3H, OCH₃), 6.69 (bs, 3H, 5-CH and 2´ & 6´-CH of 2-benzylidene ring), 6.86 (d, 1H, 7-CH, J=8.7Hz), 7.41 (d, 2H, 3´ & 5´-CH of benzylidene ring, J=8.4Hz), 7.81 (s, 1H, 2-benzylidene CH=), 8.10 (d, 1H, 8-CH, J=8.7Hz); ¹³C NMR (CDCl₃, 75MHz): δ 27.79, 29.62, 30.11, 40.61, 55.81, 112.10, 112.56, 113.44, 124.26, 127.93, 130.93, 131.73, 132.33, 137.57, 145.81, 150.86, 163.62, 187.21; ESI-MS (MeOH)) for C₂₀H₂₁NO₂: 308.2 [M+H]⁺, 330.2 [M+Na]⁺, 346.0 [M+K]⁺.

2-(4´-Fluorobenzylidene)-6-methoxy-3,4-dihydronaphthalen-1(2*H*)-one (17)

yield=82%; m.p.=105°C; ¹H NMR (CDCl₃, 300MHz): δ 2.84 (bs, 2H, 3-CH₂), 2.98 (bs, 2H, 4-CH₂), 3.79 (s,3H, OCH₃), 6.62 (s, 1H, 5-CH), 6.78 (d, 1H, 7-CH, J=8.4Hz), 7.14-7.17 (d, 2H, 2´ & 6´-CH of benzylidene ring, J=8.7Hz), 7.79 (s, 1H, 2-benzylidene CH=), 8.09 (d, 1H, 8-CH, J=8.9Hz), 8.2 (d, 2H, 3´ & 5´-CH of benzylidene ring); ¹³C NMR (CDCl₃, 75MHz): δ 27.55, 29.61, 55.85, 112.70, 113.79, 115.75, 116.04, 127.37, 131.18, 132.00, 132.11, 132.52, 135.22, 135.82, 146.02, 161.28, 164.06, 164.58, 186.97; ESI-MS (MeOH) for C₁₈H₁₅FO₂: 283.3 [M+H]⁺, 305.3 [M+Na]⁺, 565.6 [2M+H]⁺.

2-(3'-Nitrobenzylidene)-6-methoxy-3,4-dihydronaphthalen-1(2*H*)one (18)

yield=73%; m.p.=163°C; ¹H NMR (CDCl₃, 300MHz): δ 2.92 (t, 2H, 3-CH₂, J=6.2Hz), 3.06 (t, 2H, 4-CH₂, J=5.9Hz), 3.85 (s, 3H, OCH₃), 6.69 (s, 1H, 5-CH), 6.85 (d, 1H, 7-CH, J=8.7Hz), 7.57 (t, 1H, CH of 3'-CH of benzylidene ring, J=8.0Hz), 7.68 (d, 1H, 2'-CH benzylidene ring, J=7.5Hz); 7.78 (s, 1H, 2-benzylidene CH=), 8.08 (d, 1H, 8-CH, J=8.7Hz), 8.16 (d, 1H, 4'-CH of benzylidene ring), 8.26 (s, 1H, 6'-CH of benzylidene ring); ¹³C NMR (CDCl₃, 75MHz): δ 27.56, 29.48, 55.90, 112.76, 114.05, 123.29, 124.46, 127.05, 131.32, 133.21, 136.03, 138.12, 138.50, 146.03, 148.72, 164.32, 186.37; ESI-MS (MeOH) for C₁₈H₁₅NO₄: 310 [M+H]⁺, 332 [M+Na]⁺.

2-(4'-Nitrobenzylidene)-6-methoxy-3,4-dihydronaphthalen-1(2*H*)one (19)

yield=71%; m.p.=187°C; ¹H NMR (CDCl₃, 300MHz): δ 2.73 (dt, 2H, 3-CH₂, J=6.3), 2.93, t, 2H, 4-CH₂, J=5.9Hz), 3.87 (s,3H, OCH₃), 6.60 (s, 1H, 5-CH), 6.88 (d, 1H, 7-CH, J=8.4Hz), 7.14-7.17 (d, 2H, 2´ & 6´-CH of benzylidene ring, J=8.7Hz), 7.79 (s, 1H, 2-benzylidene CH=), 8.09 (d, 1H, 8-CH, J=8.9Hz), 8.2 (d, 2H, 3´ & 5´-CH of benzylidene ring); ¹³C NMR (CDCl₃, 75MHz): δ 27.71, 29.49, 55.91, 112.79, 114.07, 124.06, 124.06, 127.01, 130.74, 130.74, 131.34, 133.36, 139.18, 143.14, 146.06, 147.59, 164.36, 186.32; ESI-MS (MeOH) for

ARTICLE

 $C_{18}H_{15}NO_4$: 310.3 $[M+H]^+$, 332.3 $[M+Na]^+$, 348.1 $[M+K]^+$, 619.5 $[2M+H]^+$, 641 $[2M+Na]^+$, 657.4 $[2M+K]^+$.

2-(3',4'-Methylenedioxybenzylidene)-6-methoxy-3,4dihydronaphthalen-1(2*H*)-one (20)

yield=82%; m.p.=173°C; ¹H NMR (CDCl₃, 300MHz): δ 2.92 (t, 2H, 3-CH₂, J=6.3Hz), 3.10 (t, 2H, 4-CH₂, J=5.9Hz), 3.87 (s, 3H, OCH₃), 6.01 (s, 2H, O-CH₂-O), 6.72 (s, 1H, 5-CH), 6.86-6.97 (m, 4H, 4xCH, aromatic), 7.73 (s, 1H, 2-CH of benzylidene); 8.07 (d, 1H, 8-CH, J=8.7Hz); ESI-MS (MeOH) for C₁₉H₁₆O₄: 309.3 [M+H]⁺, 331.3 [M+Na]⁺, 347.1 [M+K]⁺.

2-(2['],3[']-Methylenedioxybenzylidene)-6-methoxy-3,4dihydronaphthalen-1(2*H*)-one (21)

yield=86%; m.p.=101°C; ¹H NMR (CDCl₃, 300MHz): δ 2.47 (bs, 2H, 3-CH₂), 2.54 (bs, 2H, 4-CH₂), 3.41 (s,3H, OCH₃), 5.54 (s, 2H, O-CH₂-O), 6.23 (s, 1H, 5-CH), 6.23-6.41 (bs, 4H, CH, aromatic), 7.26 (s, 1H, CH of benzylidene ring, J=8.6Hz), 7.67 (bs, 1H, CH aromatic); ¹³C NMR (CDCl₃, 75MHz): δ 28.24, 29.71, 55.84, 101.35, 108.96, 112.72, 113.72, 118.84, 121.77, 122.97, 127.40, 129.48, 131.17, 137.64, 146.44, 148.03, 163.99, 186.69; ESI-MS (MeOH) for C₁₉H₁₆O₄: 309 [M+H]⁺.

2-(3´,4´-Dimethoxybenzylidene)-6,7-dimethoxy-3,4dihydronaphthalen-1(2*H*)-one (22)

yield=79%; m.p.=345°C (Blackens); ¹H NMR (CDCl₃, 300MHz): $\delta 2.89$ (t, 2H, 3-CH₂, J=6.3Hz), 3.14 (t, 2H, 4-CH₂, J=5.9Hz), 3.91 (s, 12H, 4xOCH₃), 6.66 (s, 1H, =CH of benzylidene), 6.88 (d, 1H, 3'-CH of benzylidene phenyl, J=8.4Hz), 6.97 (s, 1H, CH, aromatic), 7.04 (d, 1H, 2'-CH of benzylidene phenyl, J=8.4Hz), 7.62 (s, 1H, 5-CH), 7.77 (s, 1H, 8-CH); ¹³C NMR (CDCl₃, 75MHz): $\delta 27.93$, 28.97, 56.35, 56.47, 110.12, 110.28, 111.39, 123.49, 127.14, 129.30, 134.25, 136.50, 138.39, 148.67, 149.18, 149.87, 153.87, 187.03; ESI-MS (MeOH) for C₂₁H₂₂O₅: 354 [M+H]⁺.

Synthesis of 23 and 24

Compound **22** (200mg, 0.56mmol) was taken in dry DCM (10mL). To this stirred solution anhydrous aluminium chloride (200g, 1.5mmol) was added and further stirred for 20 minutes to get products **23** and **24** in 3:1.

2-(3',4'-Dimethoxybenzylidene)-6-hydroxy-7-methoxy-3,4dihydronaphthalen-1(2*H*)-one (23)

Yield=108mg (56%); m.p.= 149°C; ¹H NMR (CDCl₃, 300MHz): δ 2.89 (t, 2H, 3-CH₂), 3.15 (t, 2H, 4-CH₂), 3.91 (s,3H, OCH₃), 3.94 (s, 6H, 2xOCH₃), 3.96 (s, 3H, OCH₃), 6.67 (s, 1H,CH of benzylidene ring), 6.97-6.98 (m, 3H, CH aromatic of benzylidene phenyl ring), 7.63 (s, 1H, 5-CH), 7.78 (s, 1H, 8-CH); ¹³C NMR (CDCl₃, 75MHz): δ 28.24, 29.71, 55.84, 101.35, 108.96, 112.72, 113.72, 118.84, 121.77, 122.97, 127.40, 129.48, 131.17, 137.64, 146.44, 148.03, 163.99, 186.69; ESI-MS (MEOH) for C₁₉H₁₈O₄: 341 [M+H]⁺.

2-(3'-methoxy-4'-hydroxybenzylidene)-6-hydroxy-7-methoxy-3,4dihydronaphthalen-1(2*H***)-one (24): Compound 22 (200mg, 0.56mmol) was taken in dry DCM (10mL). To get compound 24 in higher quantity, aluminium chloride (600mg, 4.5mmol) is added and reaction time is for an hour to get 23:24 in 1:5.**

yield=134mg (73%); m.p.= 167° C; ¹H NMR (CDCl₃, 300MHz): δ 2.88 (bs, 2H, 3-CH₂), 3.14 (bs, 2H, 4-CH₂), 3.91 (s, 3H, OCH₃), 3.95 (s, 3H, OCH₃), 6.78 (s, 1H, =CH of benzylidene), 6.89-6.97 (m, 3H, aromatic), 7.65 (s, 1H, 5-CH), 7.76 (s, 1H, 8-CH); ¹³C NMR (CDCl₃, 75MHz): δ 27.90, 28.71, 56.39, 56.62, 109.99, 113.11, 114.83, 116.17, 124.09, 126.99, 134.08, 136.73, 139.15, 146.30, 146.64,

146.78, 150.96, 188.00; ESI-MS (MeOH) for $C_{19}H_{16}O_5$: 327.3 [M+H]⁺, 349.2 [M+Na]⁺, 365.2 [M+K]⁺.

2-(3',4'-dimethoxybenzyl)-6-methoxy-3,4-dihydronaphthalen-1(2H)-one (25)

Benzylidene tetralone **13** (200mg, 0.62mmol) was taken in dry THF (10mL). To this stirred solution Pd-C (10%, 100mg) was added. Hydrogen gas was supplied through balloon at room temperature. The reaction was stirred for an hour. On completion the reaction mixture was filtered through celite bed, washed with ethyl acetate and evaporated. The residue thus obtained was recrystallised with chloroform-hexane (1:3) to get **25** as amorphous solid.

yield=179mg (89%); m.p.=99°C; ¹H NMR (CDCl₃, 300MHz):): δ 1.43 (bs, 2H, CH₂, benzylic), 2.02 (bs, 1H, 2-CH), 2.90 (bs, 2H, 3-CH₂), 3.14 (bs, 2H, 4-CH₂), 3.94 (bs, 9H, 3xOCH₃), 6.68 (s, 2H, CH₂ of benzylic), 6.77-7.11 (m, 3H, aromatic), 7.77 (s, 1H, 5-CH), 8.09 (s, 1H, 8-CH); ¹³C NMR (CDCl₃, 75MHz): δ 27.70, 29.75, 30.09, 55.80, 56.31x2, 111.33, 112.63, 113.64, 123.55, 127.52, 129.23, 131.06, 134.35, 136.57, 145.93, 149.12, 149.86, 163.89, 187.06; ESI-MS (MeOH) for C₂₀H₂₂O₄: 327 [M+H]⁺.

2-(3',4'-dimethoxybenzyl)-6-methoxy-1,2,3,4tetrahydronaphthalen (26):

To a stirred solution of benzylidene tetralone **13** (200mg, 0.62mmol) in TFA (1mL) at $5-10^{\circ}$ C, sodium borohydride (150mg,4mmol) was added in portions over a period of 20 min. and further stirred for an hour. On completion the reaction mixture was poured to crushed ice and extracted with ethyl acetate (15mLx2), washed with water and dried over anhydrous sodium sulphate. The dried organic layer was evaporated *in vacuo* and crude mass was purified through column chromatography over silica gel (100-200 mesh) to get pure **26**.

yield=102mg (53%); m.p.=74°C; ¹H NMR (CDCl₃, 300MHz): δ 1.49 (bs, 2H, CH₂, benzylic), 2.00 (m, 1H, 2-CH), 2.62 (bs, 2H, 3-CH₂), 2.79 (bs, 2H, 4-CH₂), 3.76 (s, 3H, OCH₃), 3.88 (s, 6H, 2xOCH₃), 6.66-6.96 (m, 6H, CH, aromatic); ¹³C NMR (CDCl₃, 75MHz): δ , 29.50, 29.78, 35.54, 37.00, 42.85, 55.64, 56.25, 56.32, 111.50, 112.27, 112.75, 113.83, 121.43, 129.07, 130.36, 133.85, 138.17, 147.64, 149.16, 157.92; ESI-MS (MeOH) for C₂₀H₂₄O₃: 313 [M+H]⁺, 335 [M+Na]⁺, 351 [M+K]⁺.

Biological assays

Cell cultures

Human breast cancer cell lines MCF-7(ER+ve) and MDA-MB-231 (ER-ve), LA-7 (rat mammary tumour), PC-3 (human prostate cancer), HeLa (human cervical cancer), Ishikawa (human endometrial cancer), HCT116 (human colorectal cancer), H1299 (human small non-small lung cancer) and U935 (human histocytic lymphoma), were originally obtained from American type of cell culture collection (ATCC) and human embryonic kidney cell (HEK-293) were obtained from Institute's cell repository of animal tissue culture facility (CSIR-CDRI, Lucknow). Cells were cultured in DMEM (Dulbecco modified eagle medium, Sigma) supplemented with 10% FBS (GIBCO BRL Laboratories, New York, USA) and 1% antibioticantimycotic solution (Sigma Chemical CO., St Louis, MO, USA) at 37^{0} C with 5% CO₂ in humidified chamber. LA7 cells were cultured in DMEM supplemented with 5%FBS, 5 µg/ml insulin and 50 nM hydrocortisone.

Journal Name

In vitro cell proliferation assay

The anti-cancer activity of tetralone derivatives was determined using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay as described earlier.⁹ Briefly, cells (1×10^4 cells) were seeded in 96-well microculture plates in 200µL DMEM for 24h. Compounds were diluted to desired concentrations in culture medium DMEM without phenol red free DMEM culture medium and incubated for 24h and 48h. In case of inhibitor study, cells were pre-treated with 10mM NAC for 2h followed by compound 13 for 48h. At the end of incubation, 20µL of 5mg/mL was added to each well and the plates were further incubated for 3h. Thereafter, supernatant from each well was carefully removed and formazan crystals were dissolved in 200µL of dimethylsulphoxide (DMSO) using plate shaker (Biosan) and absorbance was recorded in a microplate reader at 570nm wavelength (Microquant; BioTek).

Cell cycle analysis

Cell cycle analysis was carried out to check distribution of the cells in different phases induced by compound **13**, **15** and **19** using propidium iodide (PI) staining method. MDA-MB-231 cells (1×10^{6} cells) were seeded in T-25 culture flask and allowed to grow for 24h. After 24h, cells were treated with compound **13** for 24h and 48h. At end of incuabtion, cells were harvested, fixed in ice cold 70% ethanol and incubated for 1 h at 4^oC. Thereafter, cells were centrifuged and resuspended in 300µL PBS and incubated with 30µg of RNAseA and 15µg of PI for 30 minutes at room temperature in dark. Samples were analyzed by flow cytometry using FACSCalibur instrument (BD biosciences).

Apoptosis analysis

To determine effect of compound **13** on apoptosis in MDA-MB-231 cells, AnnexinV-FITC/PI dual staining was carried out by flow cytometry.²⁴ Cells (1x10⁶ cells) were seeded in six well plates and allowed to grow for 24h. Cells were treated with compound **13** for 24h and 48h. At the end of incubation cells were harvested, washed with PBS and stained with AnnexinV-FITC and PI using apoptosis detection kit (sigma). Samples were acquired by flow cytometer using FACSCalibur instrument (BD biosciences).

ROS generation assay

ROS generation was measured using 2,7-Dichlorodihydrofluorescein diacetate dye by flow cytometer.²⁴ MDA-MB-231 cells (1×10^6) were seeded in 6 well plates for 24h. Cells were treated with compound **13** for 24h and 48h. At the end of incubation, cells were harvested by trypisinization, fixed in cold methanol and incubated with $30\mu g/mL$ of DCFH-DA dye for 30 minutes in dark at room temperature. After the end of incubation, cells were centrifuged, resuspended in $300\mu L$ of PBS. Samples were analyzed by flow cytometry using FACSCalibur instrument (BD biosciences).

Hoechst staining

Nuclear fragmentation was detected by staining nuclei with hoechst33258. MDA-MB-231 cells $(1x10^6)$ were seeded in six well plates for 24h. Thereafter, cells were treated with compound **13** for 24h and 48h. Cells were washed with PBS and fixed with 4% paraformaldehyde and permeabilized with 0.5% tritonX-100. Cells

Tubulin polymerisation assay

Tubulin polymerization experiment was done as per reported method using 'assay kit' from Cytoskeleton, USA.^{5,11} In brief, tubulin protein (3 mg/mL) in tubulin polymerization buffer (80 mM PIPES, pH 6.9, 2mM MgCl₂, 0.5 mM EGTA, 1 mM GTP and 15% glycerol) was placed in pre-warmed 96-well microtiter plates at 37° C in the presence of test compounds with variable concentrations. All samples were mixed well and polymerization was monitored kinetically at 340nm every min for 1h using Spectramax plate reader. paclitaxel (taxol) was used as standard stabilizer of tubulin polymerisation.

In vivo tumor regression

Animal studies were coordinated by prior approval from the Institutional Animal Ethics committee (IAEC), CSIR-CDRI, Lucknow. Adult sprague dawley (SD) RAT were used to develop syngenic mammary tumor model.²⁴ Briefly, LA-7 (6x10⁶) cells were inoculated into mammary fat pad of female SD rats. After one week, when tumor size were measurable, animals were randomly grouped. 5mg/kg and 10mg/kg body weight of compound **13** was orally administred daily. Control group receive vehicle only. During this period, tumors size were measured twice a week and tumor volume was calculated using formula; V=[(length)X(width)²]/2.

Hematoxylin and eosin (H & E) staining

Formalin-fixed tumor tissue was used for histopathological studies. After deparaffinization and dehydration, tissue samples were stained with Harris-hematoxylin and eosin stains. The images were taken under 20X magnification using light microscopy (OlympusBX51, Tokyo, Japan). For each group, sections from at least three rats (n=3) were examined for histopathological analysis.

Acute oral toxicity

In view of potent anti-cancer activity of compound 13, acute oral toxicity of the same was carried out in Swiss albino mice for its further development as a drug candidate. Experiment was conducted in accordance with the Organization for Economic Cooperation and Development (OECD) test guideline No 423 (1987). Briefly, 30 mice (15 male and 15 female) were taken and divided into four groups comprising 3 male and 3 female mice in each group weighing between 20-25 g. The animals were maintained at $22\pm5^{\circ}C$ with humidity control and also on an automatic dark and light cycle of 12 hours. The animals were fed with the standard mice feed and provided ad libitum drinking water. Mice of group 1 (Group I) were kept as control and animals of groups 2, 3, 4 and 5 (Groups II, III, IV & V) were kept as experimental. The animals were acclimatized for 7 days in the experimental environment prior to the actual experimentation. Compound 13 was dissolved in minimum volume of DMSO, diluted with 0.7% CMC (carboxymethylcellulose) and was given at 5, 50, 300 and 1000 mg/kg body weight to animals of groups 2, 3, 4 and 5 (Groups II, III, IV & V) respectively once orally. Control animals received only vehicle. The animals were checked for mortality and any signs of ill health at hourly interval on the day of administration of drug and there after a daily general case side

RSC Advances Accepted Manuscript

ARTICLE

clinical examination was carried out for changes in skin, mucous membrane, eyes, occurrence of secretion and excretion and also responses like lachrymation, pilo-erection respiratory patterns etc. Also changes in gait, posture and response to handling were also recorded.²⁹ In addition to observational study, body weights were recorded and blood and serum samples were collected from all the animals on 7th day of the experiment in acute oral toxicity. The samples were analyzed for total RBC, WBC, differential leucocytes count, haemoglobin percentage and biochemical parameters like ALP, SGPT, SGOT, total cholesterol, triglycerides, creatinine, bilirubin, serum protein and tissue protein activity. The animals were then sacrificed and were necropsed for any gross pathological changes. Weights of vital organs like liver, heart, kidney etc. were recorded.³⁰

Statistical analysis

Data were expressed as means±SEM. The statistical significance between values of treated samples and controls were determined by One-way ANOVA using GraphPad Prism version 3.0.

Conclusions

In conclusion, 2-benzylidene tetralones have been explored as potent anti-breast cancer agents. The representative compounds 13 and 19 exhibited potent anti-breast cancer activity. The most active compound of this series, compound 13 induced stabilization of tubulin polymerization similar to paclitaxel along with cell cycle arrest and apoptosis. However, compound 13 showed G1 arrest unlike other microtubule inhibitors possibly due to mitotic slippage associated secondary apoptosis. Tubulin stabilizers are known to activate ROS and we observed a significant induction of ROS by compound 13. ROS dependent cell death was further confirmed with inhibition of ROS using its scavenger that abrogated compound induced apoptosis. This suggested that interference in tubulin polymerisation by compound 13 is possibly linked with ROS generation and cancer cell death. Most interestingly, compound 13 reduced rat mammary tumour growth in vivo by 74-79% at both 5mg/kg and 10mg/kg. The additional data on acute oral toxicity suggested that compound 13 can be well tolerated by the mice up to 1000mg/kg dose without any adverse effects. Compound 13 could serve as promising lead molecule for targeting breast cancer inhibition through tubulin stabilization and microtubule exit without significance in-vitro and in-vivo toxicity.

Acknowledgements

We are grateful to SERB-DST for funding support. Senior Research Fellowship to the authors (YG) and (H) from Council of Scientific and Industrial Research (CSIR) and Department of Biotechnology respectively is duly acknowledged. We also thank Mr. AL Vishwakarma, SAIF, CSIR-CDRI for flow cytometric analysis.

Supplementary Information

All the ¹H, ¹³C and Mass spectra of potential compounds i.e. **13**, **15** and **19** will be available online.....

Notes

The authors declare no competing financial interest.

References

- 1. WHO Cancer factsheet N° 297. February 2015.
- B. S. Komm, S. Mirkin. J. Steroid Biochemistry & Molecular Biology 2014, 143, 207.
- A. Jordan, J. A. Hadfield, N. J. Lawrence, A. T. McGown. *Med. Res. Rev.* 1998, 18, 259.
- 4. M. A. Jordan, L. Wilson. Nature Reviews Cancer 2004, 4, 253.
- M. L. Shelanski, F. Gaskin, C. R. Cantor. Proc. Natl. Acad. Sci. 1973, 70, 765.
- A. S. Negi, Y. Gautam, S. Alam, D. Chanda, S. Luqman, J. Sarkar, F. Khan, R. Konwar. *Bioorg. Med. Chem.* 2015, 23, 373.
- 7. G. R. Pettit, G. M. Cragg, S. B. Singh. J. Nat. Prod. 1987, 50, 386.
- G. C. Tron, T. Pirali, G. Sorba, F. Pagliai, S. Busacca, A. A. Genazzani. J. Med. Chem. 2006, 49, 3033.
- Hamidullah; R. Kumar, K. S. Saini, A. Kumar, E. Ramakrishna, R. Maurya, R. Konwar, N. Chattopadhyay. *Biochemie* 2015, **119**, 68.
- 10. C. Riccardi, I. Nicoletti. Nature protocols 2006, 1, 1458.
- 11. J. C. Lee, S. N. Timassheff. Biochemistry 1977, 16, 1754.
- 12. D. L. Sacket, R. E. Biochemistry 1991, 30, 3511.
- M. K. Gardener, B. D. Charlebois, I. M. Janosi, J. Howard, A. J. Hunt, D. J. Odde. *Cell* 2011, **146**, 582.
- 14. P. B. Schiff, J. Fant, S. B. Horwitz. Nature 1979, 277, 665.
- B. A. Weaver. Perspective on Cell Biology and Human Health 2014, 25, 2677.
- P. Karna, S. M. Sharp, C. Yates, S. Prakash, R. Aneja. Molecular Cancer 2009, 8, 93.
- 17. M. V. Blagosklonny. Cell cycle 2007, 6, 70.
- 18. K. E. Gascoigne, S. S. Taylor. J. Cell Sci. 2009, 122, 2579.
- P. Giannakakou, R. Robey, T. Fojo, M. V. Blagosklonny. Oncogene 2001, 20, 3806.
- Z. N. Demidenko, S. Kalurupalle, C. Hanko, C. U. Lim, E. Broude, M. V. Blagosklonny. *Oncogene* 2008, 27, 4402.
- 21. L. H. Hartwell, T. A. Weinert. Science 1989, 246, 629.
- 22. C. J. Sherr. Science 1996, 274, 1672.
- S. K. Dwivedi, K. Samanta, M. Yadav, A. K. Jana, A. K. Singh, B. Chakravarti, S. Mondal, R. Konwar, A. K. Trivedi, N. Chattopadhyay, S. Sanyal, G. Panda. *Bioorg. Med. Chem. Lett.* 2013, 23, 6816.
- Hamidullah, K. S. Saini, N. Devender, A. Bhattacharjee, S. Das, S. Dwivedi, M. P. Gupt, H. K. Bora, K. Mitra, R. P. Tripathi, R. Konwar. *Int. J. Biochem. Cell. Biol.* 2015, 65, 275.
- 25. H. U. Simon, A. Haj-Yehia, F. Levi-Schaffer. *Apoptosis* 2000, 5, 415.
- D. Trachootham, J. Alexandre, P. Huang. Nature Reviews Drug Discovery 2009, 8, 579.
- 27. H. Fawcett, J. S. Mader, M. Robichaud, C.Giacomantonio, D. W. Hoskin. Int. J. Oncol. 2005, 27, 1717.
- M. N. Ghosh, In Book, "Fundamentals of Experimental Pharmacology", (1st Edition),1984, pp156, Scientific Book Agency, Kolkata.
- 29. J. J. Allan, A. Damodaran, N. S. Deshmukh, K. S. Goudar, A. Amit. Food and Chemical Toxicology 2007, 45, 1928.
- D. Chanda, K. Shanker, A. Pal, S. Luqman, D. U. Bawankule, D. N. Mani, M. P. Darokar. J. Toxicol. Sci. 2008, 34, 99.

Journal Name

Table 1. Cell inhibiting activity of compounds (IC_{50} ±SEM in $\mu M)$

Comp	omp MCF-7 MDA		MDA-M	MDA-MB-231 LA-7		PC-3 HeLa			Ishikawa		HCT116		H1299		U937		HEK-293			
	24 h	48 h	24 h	48 h	24h	48h	24h	48h	24h	48h	24h	48h	24h	48h	24h	48h	24h	48h	24 h	48 h
12	>50	>50	40	>50	ND*	ND	>50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	>50	>50
			±0.01																	
13	>50	>50	>50	1	>50	7	>50	25	>50	18	>50	34	>50	6.12	>50	7.5	>50	19	>50	>50
				±0.01		±0.03		±0.05		±0.03		±0.01		±0.04		±0.02		±0.01		
14	>50	>50	>50	>50	ND	ND	>50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	>50	>50
15	>50	12.5	>50	3.25	>50	15	>50	29	>50	20	>50	40	>50	9.76	>50	10.2	>50	22	>50	>50
		±0.01		±0.01		±0.02		±0.02		±0.05		±0.02		±0.02		±0.01		±0.03		
18	>50	>50	36.2	>50	ND	ND	>50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	>50	>50
			±0.02																	
19	>50	>50	>50	1.53	>50	18	>50	30	>50	25	>50	42	>50	22.4	>50	15.3	>50	25	>50	>50
				±0.01		±0.01		±0.03		±0.02		±0.02		±0.07		±0.03		±0.05		
20	21.6	>50	>50	>50	ND	ND	>50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	>50	>50
	±0.02																			
21	>50	>50	>50	>50	ND	ND	>50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	>50	>50
22	>50	>50	43.51	>50	ND	ND	>50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	>50	>50
			±0.02																	
25	25.9	12.6	>50	8.91	ND	ND	>50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	>50	35.15
	±0.02	±0.03		±0.01																±0.02
Paclit	1	0.32	3.6	0.41	2.4	1.2	1.7	1.1	1	0.65	5.2	2.9	0.4	0.1	7.5	4	1	1.5	25	18
axel	±0.01	±0.02	±0.01	±0.01	±0.01	±0.02	±0.04	±0.03	±0.01	±0.03	±0.04	±0.02	±0.01	±0.02	±0.03	±0.01	±0.02	±0.01	±0.01	±0.02
Tamo	2.60	1.5	10	6	20	11	>50	>50	40	31	32.2	28.7	45	38	30	25	5.7	8.9	26	30
xifen	±0.01	±0.02	±0.02	±0.01	±0.07	±0.05			±0.04	±0.02	±0.03	±0.01	±0.03	±0.05	±0.01	±0.02	±0.04	±0.03	±0.01	±0.03

* ND= Not Determined

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered

