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Considerable attention has been paid to cerebral protective drugs as a potential therapy for dementia.
Screening of a natural compound library here resulted in identification of five canthinone alkaloids,
viz., picrasidine L (1), picrasidine O (2), eurycomine E (3), 3-ethyl-canthin-5,6-dione (4), and 3-ethyl-4-
methoxy-canthin-5,6-dione (5), as novel cerebral protective agents. The structure–activity relationship
indicated that C-4, C-9, and N-3 substitutions greatly affected their cerebral protective effect. Among
these, compound 2 exhibited a cerebral protective effect through suppressing neuronal hyperexcitability
due to an increase in the excitatory neurotransmitter glutamic acid. Furthermore, compound 2 did not
affect heart rate and mean systolic blood pressure. This investigation suggests that compound 2 has
potential for further development as a cerebral protective drug.

� 2016 Elsevier Ltd. All rights reserved.
Dementia is a clinical syndrome characterized by a cluster of
symptoms and signs manifested by memory difficulties, language
disturbances, psychological and psychiatric changes, and impair-
ment in the activities of daily living. Alzheimer’s disease is the
most common type of dementia, followed by vascular dementia,
and Lewy body dementia.1 Clinical drugs for the treatment of
dementia include acetylcholinesterase inhibitors, such as donepe-
zil, galantamine, rivastigmine, and an N-methyl-D-aspartate
(NMDA) receptor antagonist, memantine.2

Picrasma quassioides and other plants in the Picrasma genus of
the Simaroubaceae family have been used as bitter stomachics
for gastritis, loss of appetite, and indigestion in Chinese and Japa-
nese traditional medicine. From these plants, a number of b-carbo-
line and canthinone type alkaloids have been isolated, which have
been reported to exert a variety of biological activities, including
PTP1B-inhibition, anti-inflammatory activity, 30,50-cyclic adenosine
monophosphate phosphodiesterase inhibition, and cytotoxicity.3

In the present study, we report five canthinone alkaloids (1–5) that
are potential new cerebral protective agents (Fig. 1).

Natural or chemical synthetic canthinone alkaloids (1–16) and
b-carboline alkaloids (17–22) were screened for their cerebral pro-
tective effects at 100 mg/kg (p.o.) in ischemic animal, which pro-
vided a disease model of dementia. Measurement of the latency
time in a step-down passive avoidance test and the density of sur-
viving neurons of these animals were used to assess the cerebral
protective effects. The experimental scheme is summarized in
Figure 2.4

Cerebral ischemia was induced with bilateral carotid ligation in
Mongolian gerbils (Meriones unguiculatus).5 Gerbils were divided
into groups: (1) Normal group, a group of gerbils that underwent
no treatment; (2) Control group, a group of gerbils in which cere-
bral ischemia was induced, but which was given no compound;
(3) Compound groups, groups of gerbils that underwent cerebral
ischemia and were given compounds 1–22, individually; and (4)
the vinpocetine group, a group of gerbils that underwent cerebral
ischemia and were given vinpocetine.6

A step-down passive avoidance test is widely used as a standard
test for evaluation of learning/memory in gerbils. In this test, elec-
trical stimulation was provided when the gerbils stepped downed
from the platform. The step-down latency time, which was defined
as the length of time that gerbils stayed on the platform, was used
as a parameter for accessing learning and memory ability.7

Cerebral ischemia led to selective necrosis of neurons in specific
brain regions. The CA1 subfield of the hippocampus is a brain
region that is particularly sensitive to ischemia.8 Thus, in this
study, the density of surviving neurons in the CA1 subfield of the
hippocampus was measured to examine the cerebral protective
effect.

We identified five canthin-5,6-dione alkaloids, namely, picra-
sidine L (1), picrasidine O (2), eurycomine E (3), 3-ethyl-canthin-
5,6-dione (4), and 3-ethyl-4-methoxy-canthin-5,6-dione (5), which
resulted in a longer step-down latency time and greater density of
surviving neurons than in the control animals (Figs. 3 and 4). Nota-
bly, picrasidine L (1) and picrasidine O (2) treatment resulted in
virtually the same results as the normal group (Figs. 3 and 4). How-
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Figure 1. Five canthinone alkaloids and vinpocetine.

Figure 3. Step-down latency time (s) in ischemic gerbils (n = 10) treated with
vehicle or with either of five canthinone alkaloids or vinpocetine administered
before bilateral carotid ligation. Results are presented as the mean ± standard error
of the mean. Normal: Normal group; Control: Control group; 1, 2, 3, 4, 5: groups
administered compound 1, 2, 3, 4, or 5; Vinpocetine: group administered
vinpocetine. One asterisk (*) indicates a p-value smaller than 0.05 (p <0.05),
compared to the control group, three asterisks (***) indicate a p-value smaller than
0.001 (p <0.001), compared to the control group.
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ever, the other 11 canthinone alkaloids (6–16) and six b-carboline
alkaloids (17–22) showed no cerebral protective effects in either
measurements (Supporting information). Vinpocetine, a struc-
turally related carboline alkaloid, which is currently prescribed
for the treatment of disorders arising from cerebrovascular and
cerebral neurodegenerative diseases that ultimately lead to
dementia in the elderly,6 showed a much weaker effect than com-
pounds 1–5 in this assay model.

In terms of step-down latency time, compounds containing an
N-3-methyl moiety were approximately twice as potent as those
containing an N-3-ethyl moiety (1 vs 4, and 2 vs 5). Compounds
containing a C-9-methoxy moiety showed a remarkably reduced
activity (3 vs 1) (Fig. 3). In terms of the measurement of density
of surviving neurons, a C-4-methoxy moiety decreased the cerebral
protective activity [1 vs 2 (p <0.05), and 4 vs 5] (Fig. 4).

The mechanisms underlying the cerebral protective effects of
compound 2were investigated further. Benzodiazepines have been
reported to have a cerebral protective effect.9 b-carbolines, such as
b-carboline-carboxyl-ethylester and harmane, were reported to
bind to rat brain benzodiazepine receptor.10 Compound 2 had b-
carboline backbone skeleton in the molecular, and the cerebral
protective activity of 2was predicted to show by binding with ben-
zodiazepine receptors. Thus, the ability of compound 2 to bind to
the benzodiazepine receptor was investigated using an in silico
docking study.11 However, compound 2 showed much weaker
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Figure 2. Experimental scheme of measurement of step-down latency time and
neuronal density.

Figure 4. The density (/mm) of surviving neurons in the CA1 subfields of the
hippocampus in ischemic gerbils (n = 10) treated with vehicle or either of five
canthinone alkaloids or vinpocetine, administered before bilateral carotid ligation.
Results are presented as the mean ± standard error of the mean. Normal: Normal
group; Control: Control group; 1, 2, 3, 4, 5: groups administered compound 1, 2, 3, 4,
or 5; Vinpocetine: group administered vinpocetine. One asterisk (*) indicates a p-
value smaller than 0.05 (p <0.05), compared to the control group, three asterisks
(***) indicate a p-value smaller than 0.001 (p <0.001), compared to the control
group.
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binding (�11.90 kcal/mol) than diazepam (binding energy: �
72.64 kcal/mol), suggesting that it exerts its cerebral protective
effect by other mechanisms.

Glutamic acid is the principal excitatory neurotransmitter in the
brain. Endogenous glutamic acid may contribute to acute brain
damage occurring after status epilepticus, cerebral ischemia, or
traumatic brain injury, by activating NMDA, a-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid, or metabotropic glutamate
receptor 1 receptors.12 Canthinone alkaloids might exert a cerebral
protective effect through suppression of neuronal cell death due to
the hyperexcitability caused by a cerebral ischemia-induced eleva-
tion in the glutamic acid concentration. To test this mechanism,
kainic acid was administered peripherally to gerbils to provoke
over-excitement and neuronal cell death, and the gerbils were then
given compound 2 orally.
ett. (2016), http://dx.doi.org/10.1016/j.bmcl.2016.09.006
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Figure 5. The density (/mm) of survival neurons in the CA1 subfields of
hippocampus in ischemic gerbils (n = 10) treated vehicle or compound 2 admin-
istered after neuronal cell death induced by kainic acid injection. Results are
presented as the mean ± standard error of the mean. Normal: Normal group;
Control: Control group; 2: group administered compound 2. Three asterisks (***)
indicate a p-value smaller than 0.001 (p < 0.001), compared to the control group.

Figure 7. The density (/mm) of survival neurons in the CA1 subfields of the
hippocampus in ischemic gerbils (n = 10) treated with vehicle or compound 2
administered after bilateral carotid ligation. Results are presented as the
mean ± standard error of the mean. Normal: Normal group; Control: Control group;
A: Orally administered compound 2 (at 30 mg/kg) 3 h after the cerebral ischemia; B:
Orally administered compound 2 (at 30 mg/kg) 3 h and 6 h after cerebral ischemia.
Three asterisks (***) indicate a p-value smaller than 0.001 (p <0.001), compared to
the control group.
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Kainic acid is a potent agonist of the glutamate receptor. In ger-
bils, injections of kainic acid results in recurrent seizures, behav-
ioral changes, and subsequent degeneration of selective
populations of neurons in the brain.13 Thus, administration of kai-
nic acid14 has been widely used as a model for studying the mech-
anisms underlying neurodegenerative pathways induced by
excitatory neurotransmitters. In this study, kainic acid-induced
neuronal necrosis was significantly improved in the compound
2-treated group compared to the control group (Fig. 5). This sug-
gested that the mechanism underlying the cerebral protective
effect of compound 2 involved the suppression of over-excitation
of neuronal cells, caused by abnormal glutamatergic signaling.

As mentioned above, cerebral ischemia significantly increases
extracellular glutamate levels. Activation of the glutamate receptor
enhances the influx of calcium ions into the cell, resulting in dam-
age to nerve cells.15 Thus, the effects of compound 2 on tissue dam-
age outside the hippocampus were investigated by 45Ca-
autoradiography.16 In the control group, after subjecting the ani-
mals to cerebral ischemia for 15 min, accumulation of 45Ca2+ was
measured in the cerebral cortex, striatum, and optic vesicle, in
addition to the hippocampus. The levels of 45Ca2+ accumulation
were reduced in the group that received compound 2 at 30 mg/
kg orally, suggesting that compound 2 resulted in significant
improvement in extent of brain damage (Fig. 6).
Figure 6. The volume of 45Ca accumulation (mm3) in gerbils (n = 10). Results are
presented as the mean ± standard error of the mean. Control: Control group; 2:
group administered compound 2. One asterisk (*) indicates a p-value smaller than
0.05 (p <0.05), compared to the control group.
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To investigate the administration schedule for using compound
2 as an acute-phase cerebral protection drug candidate, the effect
of compound 2, orally administered at 3 h and/or 6 h after cerebral
ischemia, on the density of surviving neuronal cells was examined.
Neuronal cell death was reduced more when compound 2 (at
30 mg/kg) was administered twice, at 3 h and 6 h after ischemia,
than when only administered once at 3 h (Fig. 7).

The use of antihypertensive drugs in acute ischemic stroke must
be considered carefully, as the drugs decrease cerebral blood flow
and can exacerbate ischemic injuries.18 Effects of compound 2 on
heart rate and mean systolic blood pressure were therefore tested;
neither was affected by compound 2, even at a dose 3-fold higher
than that required for pharmacological effect (30 and 100 mg/kg).
These results indicated that brain damage would not be aggravated
by administration of compound 2. Furthermore, compound 2
showed no effect on body temperature, and showed a weak loco-
motion-reducing effect.

In conclusion, the main effects of compound 2 were (i) improv-
ing learning and memory performance, (ii) inhibiting delayed neu-
ronal cell death induced by cerebral ischemia, (iii) reducing
neuronal cell death induced by the excitatory neurotransmitter,
glutamic acid and the excitotoxin, kainic acid, and (iv) decreasing
the extent of brain tissue damage. Moreover, compound 2 was
shown to have no effect on heart rate or mean blood pressure.

These effects suggest that compound 2 has a cerebral protective
effect, preventing the progression of various intractable neurolog-
ical diseases that are accompanied by neuronal cell death. More
detailed investigations are required for development of picrasidine
O (2) as a cerebral protective drug candidate.
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