

Accepted Article

Title: General and Facile Route to Isomerically Pure Tricyclic Peptides using Templated Tandem CLIPS/CuAAC Cyclizations

Authors: Jan Herman Van Maarseveen, Peter Timmerman, Gaston Richelle, Sumeet Ori, and Henk Hiemstra

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201709127 Angew. Chem. 10.1002/ange.201709127

Link to VoR: http://dx.doi.org/10.1002/anie.201709127 http://dx.doi.org/10.1002/ange.201709127

WILEY-VCH

COMMUNICATION

General and Facile Route to Isomerically Pure Tricyclic Peptides using Templated Tandem CLIPS/CuAAC Cyclizations

Gaston J. J. Richelle, Sumeet Ori, Henk Hiemstra, Jan H. van Maarseveen,* and Peter Timmerman*

Abstract: We report a one-pot ligation-cyclization technology for the rapid and clean conversion of linear peptides into tricyclic peptides using tetravalent scaffolds containing two benzyl bromides and two alkyne functionalities that react via CLIPS/CuAAC reactions with cysteines and azides in the peptide. Flexibility in the scaffolds is key to the formation of isomerically pure products, since flexible T4₁ and T4₂-scaffolds mostly promote formation of single isomeric tricycles, while rigid T4₃ and T4₄-scaffolds resist formation of clean products. There seems no limitation to the number and type of amino acids present, since 18 canonical amino acids were successfully implemented. We also observed that azides at the peptide termini and cysteines in the center gave better results than vice versa.

Cyclic peptides have emerged as a promising class of therapeutics^[1-4] showing a wide therapeutic window that ranges from antifertility^[5] to anticancer^[6-8] and antiviral^[9-11] applications. As the number of cyclic peptides entering clinical trials has drastically increased over the last years,^[6] the search for novel synthetic routes to multicyclic peptides has gained serious interest.^[12-23]

In 2005, our group introduced "CLIPS-technology" (Chemical LInkage of Peptides onto Scaffolds), involving tandem ligation-cyclization of tris(cysteine)-containing linear peptides with $\alpha, \alpha', \alpha''$ -tribromomesitylene (T3) to give the corresponding bicyclic peptides.^[12] Heinis et al. applied this technology in phage display libraries, reaching diversity levels as high as $10^9 - 10^{13}$ different bicycles.^[13] Biological evaluation against various proteins^[13-16] identified potent bicyclic peptides with K_i values in the nM-range. In some cases, the best inhibitors displayed only (sub)µM activities,^[24] suggesting that higher-order structures, like tricycles, may be needed to reach improved activity levels. Vancomycin, a last-resort antibiotic glycopeptide wrapped around an aromatic core provides an illustrative example of such a complex architecture (Figure 1).^[25] Currently, complex syntheses impede the large-scale production of vancomycin-like drugs, and complicates structural diversification processes aimed at optimizing their biological activities.[26]

Examples of synthetic tricyclic peptides have been reported, as both Ruchala^[17] and Wu^[18] used either a T_{h^-} or a D_{2h^-}

[*]	Gaston J. J. Richelle, MSc, Sumeet Ori, MSc, Prof. dr. Henk					
	Hiemstra, Prof. dr. Jan H. van Maarseveen, Prof. dr. Peter					
	Timmerman					
	Bioinspired Organic Synthesis					
	Van 't Hoff Institute for Molecular Sciences (HIMS)					
	Science Park 904, 1098 XH Amsterdam (The Netherlands)					
	E-mail: <u>J.H.vanMaarseveen@uva.nl</u>					
	Prof. dr. Peter Timmerman					
	Pepscan Therapeutics					
	Zuidersluisweg 2, 8243 RC Lelystad (The Netherlands)					
	E-mail: P.Timmerman@pepscan.com					

Supporting information for this article is given via a link at the end of the document

symmetrical scaffold to assemble linear peptides into tricycles, while Suga,^[19] Nuijens^[20] and our group^[21] used various types of backbone cyclization in combination with **T3**-CLIPS. These and

Figure 1. Structure of *vancomycin* and a tricyclic peptide format inspired by its multicyclic structure.

other examples emphasize the interest in multicyclic peptides, despite the fact that formation of multiple isomers, laborious reaction protocols as well as difficulties in generating structural diversity remain a delicate issue. CLIPS-reactions of tetrakis(cysteine)-containing peptides with 1,2,4,5-tetrabromodurene (**T4**) would provide a straightforward route to manufacturing tricycles. However, this reaction yields a mixture of six different regioisomers,^[18] which renders this strategy not suitable for a therapeutic development trajectory (Figure 2a).

Here we describe a novel ligation-cyclization strategy that combines CLIPS with copper-catalyzed azide-alkyne cyclization (CuAAC). We observed that CuAAC-chemistry is fully compatible with both peptide^[27,28] and CLIPS^[22,23] chemistry and does not require protection of any of the amino acid side chains (Figure 2b). Four different T4-scaffolds were synthesized containing two CLIPS- and two CuAAC-functionalities (Figure 2c), whereby for the latter we choose for alkynes at the scaffold (circumvents undesired risk of explosion with multiple azides on low-molecularweight compounds) and azides in the peptides (Fmoc azido amino acids are readily available^[29]). All four **T4**_x-scaffolds display very different numbers of rotatable bonds connecting the alkynes to the core (4/2/1/0 for $T4_{1/2/3/4}$, respectively). This allowed us to evaluate how this "flexibility" governs the outcome of the reactions. Moreover, $T4_1$ and $T4_2$ have a freely rotatable bond (aryl-aryl bond for $T4_1$, aryl-amide bond for $T4_2$), which should prevent formation of regioisomeric products, while such rotation is not possible for the rigid $\textbf{T4}_3$ and $\textbf{T4}_4.$ Synthesis routes for $\textbf{T4}_1$ and T42 are depicted in Scheme 1, for details see SI sections 1 and 2.

COMMUNICATION

Figure 2. a) Reaction of linear peptides containing four cysteines (red circles) with T4 give a mixture of six isomers (o = ortho, m = meta, p = para); b) Schematic representation of the CLIPS/CuAAC ligation-cyclization of linear peptides containing two thiols (red open circles) and two azides (green open circles) that react with either two bromomethyl groups (red hazy circles) and two alkynes (green hazy circles) on a T4_x-scaffold (x = 1-4) to first generate a monocyclic CLIPS-peptide (e.g. [1₅₅₅-T4_x]) and subsequently a tricyclic peptide (e.g. [1₅₅₅-T4_x]) with two thioether linkages (red filled circles) and two triazole linkages (green filled circles); c) Chemical structures of the T4_x-scaffolds, either with free (T4₁ and T4₂) or blocked internal rotation (T4₃ and T4₄).

After optimization of the reaction conditions (SI sections 4 and 5), the linear peptide (1_{333} , Figure 3a; for peptide overview, see Table 1), with 3x3 amino acids separating the two reactive cysteines (**C**)

Scheme 1. a) Synthesis of **T4**₁ scaffold; b) Synthesis of **T4**₂ scaffold; dba = dibenzylidene acetone, DIPEA = N_iN -diisopropylethylamine, DMAP = 4-dimethylaminopyridine, DPEPhos = bis[(2-diphenylphosphine)phenyl] ether, dppf = (diphenylphosphino)ferrocene, PPTS = pyridinium *p*-toluenesulfonate.

and azides (Aha = azidohomoalanine), was reacted with flexible

trigger the CuAAC cyclizations, which led to complete conversion into the expected tricyclic peptides within minutes (Figure 3c). Double triazole formation was confirmed by the fact that TCEP incubation, which reduces azides to amines did not cause any change, while addition of TCEP prior to the CuAAC-reaction showed complete double reduction (MW-52 Da) in ~12 h. UPLCanalysis of the CuAAC reactions showed a slightly better profile for T4₁ as compared to T4₂, as judged from the elevated baseline for T42. This is likely due to increased polymerization of the monoand bicyclic intermediates as a result of restricted flexibility of T42 compared to T41. Purification by RP-HPLC yielded the tricyclic peptides [I₃₃₃-T4₁] (28%) and [I₃₃₃-T4₂] (18%) based on crude linear precursor. CLIPS-reaction of 1_{333} and $T4_3$ resulted in formation of the desired monocycle, however, CuAAC reaction afforded the tricyclic peptide as a mixture of two isomers, along with severe side product formation. This supports our view of flexibility in the linkers being essential for obtaining clean and isomerically pure products. Successful conversion of other 333peptides (2₃₃₃ to 9₃₃₃, Table 1) using both T4₁ and T4₂ proved that the technology does tolerate a wide range of different canonical amino acids the peptides (18 in in total: A/D/E/F/G/H/I/K/L/N/Q/P/R/S/T/V/W/Y, SI 8.7). Changing the order to a CuAAC/CLIPS process was not successful due to

scaffolds T41 and T42, which resulted in complete conversion into

the CLIPS-products within 30 min (Figure 3b). Then, a pre-

incubated mixture of CuSO₄/THPTA/NaAsc in H₂O was added to

Table 1. Overview of all peptides evaluated in this study; for UPLC-MS data of the CLIPS/CuAAC reactions, see SI section 8.7.

Code	Sequence	Code	Sequence	Code	Sequence	Code	Sequence
1 ₃₃₃	CQWG[Aha]KAS[Aha]FSEC	6 333	CHPY[Aha]RQV[Aha]TVDC	11 ₂₂₂	CES[Aha]FA[Aha]KKC	16 444	CQWGA[Aha]KASE[Aha]FSEKC
2 ₃₃₃	CNSN[Aha]SKE[Aha]TWNC	7 333	CDHV[Aha]KFY[Aha]RHDC	12 ₂₂₂	ACGS[Aha]FE[Aha]KNCG	17 ₅₅₅	CQWGAS[Aha]KASEV[Aha]FSEKGC
3 333	CQYR[Aha]KIL[Aha]KGRC	8 333	CNEG[Aha]SHN[Aha]GIKC	13 222	NACEE[Aha]FK[Aha]KSC	18 333	[Aha]QWGCKASCFSE[Aha]
4333	CAIP[Aha]RYR[Aha]NVTC	9 333	CQLQ[Aha]GSY[Aha]RFIC	14 111	CQ[Aha]K[Aha]FC	19 111	[Aha]QCKCF[Aha]
5 333	CTHW[Aha]QEK[Aha]SGNC	10222	CQW[Aha]KA[Aha]FSC	15 111	CE[Aha]F[Aha]KC		

COMMUNICATION

Figure 3. a) UPLC-MS of crude linear peptide 1₃₃₃; CLIPS (b) and CuAAC (c) UPLC reaction analysis of 1₃₃₃ with T4₁, T4₂ and T4₃; MW of T4₃ measured minus Br; • = deletion products present in crude linear peptide; # = excess scaffold; ¤ = mono-CuAAC intermediate; £ = S-S oxidized monocycle; */† = two isomers.

unwanted copper-induced cysteine S-S oxidation during CuAAC.

We then studied 222-peptides, where for peptide 10222 only [X₂₂₂-T4₁] was formed as a single tricycle (Figure 4a), while for $[X_{222}-T4_2]$ a second isomer was observed in an otherwise clean chromatogram (Figure 4b). We believe that the presence of the second isomer originates from restricted rotation caused by the tertiary amide bond in $[X_{222}-T4_2]$, for which the energy barrier is significantly higher than for rotation around the aryl-aryl bond in $[X_{222}\text{-}T4_1]$.^[30,31] With T4₃ reactions, again two isomeric products were observed along with severe side product formation (Figure 4c). For peptides 11_{222} to 13_{222} (SI 8.7), we observed the same pattern, i.e. clean formation of the monocyclic CLIPS-products $[\#_{222}-T4_x]$ with all four scaffolds. While tricycles on $T4_{1/2}$ were formed in a clean manner, severe side products/polymer formation for $T4_3$ and no detectable products for $T4_4$ were observed. This reveals that it is mainly the loop size and choice of scaffold rather than the nature of the amino acids in the loops that governs the outcome of the reactions.

Subsequently, we studied the cyclization of peptide 14_{111} (SI 8.7). Even though the CLIPS-product $[14_{111}-T4_1]$ was cleanly formed, tricycle [XIV₁₁₁-T4₁] now also gave a mixture of two isomers (ratio 2:3), likely due to restricted rotation around the arylaryl bond, which was also the case for scaffold T4₂. It seems that the azides and alkynes in $[14_{111}-T4_{12}]$ cannot easily reach each

other causing additional intermolecular CuAAC reactions to overtake. CuAAC of [15₁₁₁-T4₁] gave slightly better results, but also here two isomers were obtained, illustrating that restricted aryl-aryl bond rotation in [#₁₁₁-T4₁] tricycles seems a general phenomenon. To further investigate this, we studied the cyclization of single azide peptides CE[Aha]FAKC and CEAF[Aha]KC with scaffold T4₁, which showed complete conversion into single isomeric peptides (see SI section 7a), showing the low rotation barrier around the aryl-aryl bond in the bicyclic intermediate becoming more hindered only in the last cyclization step when bis(azido)peptides are cyclized.

We also investigated ligation-cyclization of peptides 16_{444} and 17_{555} . Conversion into isomerically pure tricycles [XVI₄₄₄-T4_x] and [XVII ₅₅₅-T4_x] was successful for both T4₁ and T4₂ (SI 8.7), albeit that several deletion variants present in the linear peptides were also detected in the tricyclic products.

Finally, we studied two sequence variants of peptides 1_{333} and 14_{111} , in which the positions of the Cys- and Aha-residues were interchanged, while the rest of the sequence was kept the same. Reaction of peptide 18_{333} with either scaffold $T4_{1/2}$ cleanly gave both the tricyclic products [XVIII_{333}-T4_{1/2}] as a single isomer (Figure 5a). The product from reaction with the rigid scaffold $T4_3$ showed still the formation of two different isomers as expected. Cyclizations of monocycles like [18_{333} -T4_{1/2}] are apparently far

COMMUNICATION

Figure 5. UPLC CuAAC analysis of peptide 18₃₃₃ (a) and 19₁₁₁ (b) with T4₁ (i), T4₂ (ii) or T4₃ (iii); • = tricycle thioether oxidation; */† = two isomers.

more efficient when the azides are located outside the ring at the flexible termini instead of inside the monocycle. This becomes particularly apparent when reacting peptide 19₁₁₁ with either T4₁ or T42 (Figure 5b) giving fairly clean formation of the corresponding tricyclic peptides [XIX₁₁₁-T4_{1/2}], implying that Cys-Aha interchange provides easy access to small tricyclic peptides that are otherwise difficult to manufacture.

In summary, we developed a widely applicable one-pot technology for the locking of linear peptides into isomerically pure tricycles. No restrictions were observed as to the nature and number of amino acids in the loops (except for additional Cys and Met which were not investigated). The technology is currently under investigation for high-diversity generation to enable screening and identification of therapeutically relevant tricyclic peptides.

Acknowledgements

These investigations were supported by The Netherlands Research Council for Chemical Sciences (CW) with financial aid from NWO Domain Applied and Engineering Sciences (TTW).

Conflict of Interest

The authors declare no conflict of interest.

Keywords: peptide • cyclization • tricycle • CLIPS • CuAAC • single • isomer • one-pot

- A. Glas, D. Bier, G. Hahne, C. Rademacher, C. Ottmann, T. N. [1] Grossmann, Angew. Chem. Int. Ed. 2014, 53, 2489-2493.
- C. J. White, A. K. Yudin, Nat. Chem. 2011, 3, 509–524. [2]
- [3] [4] R. Hili, V. Rai, A. K. Yudin, J. Am. Chem. Soc. 2010, 132, 2889–2891.
- D. J. Craik, D. P. Fairlie, S. Liras, D. Price, Chem. Biol. Drug Des. 2013. 81. 136-14
- E. A. McLaughlin, M. K. Holland, R. J. Aitken, Expert Opin. Biol. Ther. [5] 2003. 3. 829-841
- D. S. Butler, E. M Staite, R. Iles, Oncol. Res. 2003, 14, 93–100. [6]
- L. D. Walensky, A. L. Kung, I. Escher, T. J. Malia, S. Barbuto, R. D. Wright, G. Wagner, G. L. Verdine, S. J. Korsmeyer, *Science* 2004, [7] 305, 1466-1470.
- L. D. Walensky, K. Pitter, J. Morash, K. J. Oh, S. Barbuto, J. Fisher, [8] E. Smith, G. L. Verdine, S. J. Korsmeyer, Mol. Cell 2006, 24, 199-210.
- [9] R. H. Meloen, J. I. Casal, K. Dalsgaard, J. P. M. Langeveld, Vaccine 1995, 13, 885-886.
- R. Sundaram, M. P. Lynch, S. V Rawale, Y. Sun, M. Kazanji, P. T. P. [10] Kaumaya, *J. Biol. Chem.* **2004**, *279*, 24141–24151. M. A. Fischbach, C. T. Walsh, *Science* **2009**, *325*, 1089–1093.
- [11]
- [12] P. Timmerman, J. Beld, W. C. Puijk, R. H. Meloen, ChemBioChem

2005, 6, 821-824.

- [13] C. Heinis, T. Rutherford, S. Freund, G. Winter, Nat. Chem. Biol. 2009, 5, 502-507
- A. Angelini, L. Cendron, S. Chen, J. Touati, G. Winter, G. Zanotti, C. [14] Heinis, ACS Chem. Biol. 2012, 7, 817-821.
- S. Chen, D. Bertoldo, A. Angelini, F. Pojer, C. Heinis, Angew. Chem. [15] Int. Ed. 2014, 53, 1602-1606.
- [16] C. Urech-Varenne, F. Radtke, C. Heinis, ChemMedChem 2015, 10, 1754-1761.
- [17] K. Chua, E. Fung, E. D. Micewicz, T. Ganz, E. Nemeth, P. Ruchala, Bioorg. Med. Chem. Lett. 2015, 25, 4961-4969.
- W. Liu, Y. Zheng, X. Kong, C. Heinis, Y. Zhao, C. Wu, Angew. Chem. Int. Ed. 2017. 56, 4458–4463. [18]
- [19] N. K. Bashiruddin, M. Nagano, H. Suga, Bioorg. Chem. 2015, 61, 45-50.
- [20] M. Schmidt, A. Toplak, P. J. L. M. Quaedflieg, H. Ippel, G. J. J. Richelle, T. M. Hackeng, J. H. Van Maarseveen, T. Nuijens, Adv. Synth. Catal. 2017, 359, 2050-2055.
- [21] P. Timmerman, R. Barderas, J. Desmet, D. Altschuh, S. Shochat, M. J. Hollestelle, J. W. M. Höppener, A. Monasterio, J. I. Casal, R. H. Meloen, *J. Biol. Chem.* **2009**, *284*, 34126–34134.
- [22] L. E. J. Smeenk, N. Dailly, H. Hiemstra, J. H. van Maarseveen, P. Timmerman, Org. Lett. 2012, 14, 1194–1197.
- L. E. J. Smeenk, D. Timmers-Parohi, J. J. Benschop, W. C. Puijk, H. [23] Hiemstra, J. H. van Maarseveen, P. Timmerman, ChemBioChem 2015, 16, 91-99. [24]
 - P. Diderich, C. Heinis, Tetrahedron 2014, 70, 7733-7739.
- [25] G. Chiosis, I. G. Boneca, *Science* **2001**, *293*, 1484–1487. A. Okano, N. A. Isley, D. L. Boger, *Proc. Natl. Acad. Sci.* **2017**, *114*, [26] E5052-E5061.
- [27] V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 14, 2596-2599.
- [28] C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67,
- 3057-3064 [29]
- Y. H. Lau, D. Spring, *Synlett* **2011**, 1917–1919. M. P. Johansson, J. Olsen, *J. Chem. Theory Comput.* **2008**, *4*, 1460– [30] 1471.
- [31] T. Drakenberg, K. I. Dahlqvist, S. Forsen, J. Phys. Chem. 1972, 76, 2178-2183

COMMUNICATION

Entry for the Table of Contents (Please choose one layout)

COMMUNICATION

Accessing single isomeric tricyclic peptides: tetravalent Rotatable scaffolds containing both two bromomethyland two alkyne-functionalities were reported that enable locking of linear peptides containing two Cys- and two Aharesidues via a one-pot ligation-cyclization procedure tricyclic into topologies, with no limitations observed in number and type of amino acids displayed in the loops.

