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The effect of incorporating a,a -diethylglycine and a-aminocyclopentane carboxylic acid at the P2 posi-
tion of inhibitors on l-calpain inhibition was studied. Compound 3 with a,a0-diethylglycine was over
20-fold more potent than 2 with a-aminocyclopentane carboxylic acid. Additionally, 3 was over 35-fold
selective for l-calpain compared to cathepsin B, while 2 was 3-fold selective for cathepsin B compared to
l-calpain. Thus, the conformation induced by the P2 residue influenced the activities of the compounds
versus the closely related cysteine proteases, and suggests an approach to the discovery of selective
l-calpain inhibitors.

� 2008 Elsevier Ltd. All rights reserved.
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Calpain is a papain-like cytosolic cysteine protease that requires
calcium ions for activation.1 Several calpain isoforms have been re-
ported of which l-calpain and m-calpain are the most abundantly
distributed in mammalian cells, and have been termed ubiquitous
calpains.1–3 Calpain is a promiscuous enzyme that catalyzes the
limited proteolysis of a broad range of substrates in vivo.2,3 The
physiological role of the enzyme is evolving, and it has been shown
to participate in signal transduction pathways.4–7 Calpain has at-
tracted considerable interest due in part to implication of the en-
zyme in a variety of pathological conditions including
neurological disorders (e.g., stroke and Alzheimer’s disease), cata-
ract, and cancer.8–13 This has led to the search for selective calpain
inhibitors as potential therapeutic agents and as biochemical
probes. Several compounds are known to inhibit the ubiquitous
calpains. However, most of the inhibitors are not specific for the
calpains because they also inhibit the closely related cysteine
cathepsins (e.g., cathepsin B).14,15 Hence there is a continuing need
for new calpain inhibitors with improved selectivity for the
enzyme.

Incorporation of constrained amino acids such as a,a0-dialkyl-
glycines and a-aminocycloalkane carboxylic acids into a peptide
restricts the conformational freedom of the peptide in the vicinity
of the constrained amino acid.16 This allows one to study the effect
of local conformational constraints on bioactivity because peptides
containing a,a0-dialkylglycine residues generally adopt fully ex-
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tended conformation while those with a-aminocycloalkane car-
boxylic acids prefer a folded conformation.16 We demonstrated in
a previous study that incorporation of 2,3-methanoleucine stereo-
isomers at the P2 position of peptidyl inhibitors influences l-cal-
pain inhibition. Compound 1 with a 2,3-methanoleucine
stereoisomer of E-(2S,3S) configuration at the P2 position (Fig. 1)
was the most potent and selective member of the series albeit
O O
3

Figure 1. Structures of calpain inhibitors with constrained amino acids.
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Table 1
Inhibition of porcine erythrocyte l-calpain and human liver cathepsin B by
compounds 2 and 3

Compound l-Calpain Ki
a (lM) Cathepsin B Ki (lM) SRb

2 1.94 ± 0.81 0.88 ± 0.01 0.45
3 0.08 ± 0.01 2.91 ± 0.62 36.37
ALLNc 0.19 ± 0.02 0.15 ± 0.01 0.79

a Ki values are means of triplicate determinations obtained by Dixon plots with
correlation coefficient of P0.95.

b SR is selectivity ratio, which was determined by dividing the Ki value for
cathepsin B inhibition by that for calpain inhibition.

c ALLN was purchased from Calbiochem.
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modest selectivity for l-calpain versus cathepsin B.17 This study
showed that the S2-subsite of l-calpain is more stereosensitive
than that of cathepsin B, which suggested that compounds that
adopt different conformations would exhibit differential affinities
for l-calpain and cathepsin B. To further probe the active sites of
these closely related cysteine proteases with the goal of generating
selective l-calpain inhibitors we studied the effect of incorporat-
ing a-aminocyclopentane carboxylic acid (as in 2, Fig. 1) and
a,a0-diethylglycine (as in 3) at the P2 position on inhibition of l-
calpain and cathepsin B.

Compounds 2 and 3 were synthesized using general coupling
procedures as outlined in Schemes 1 and 2. 1-Amino-1-cyclopen-
tane carboxylic acid 4 (Scheme 1) or diethylglycine 9 (Scheme 2)
was refluxed in SOCl2 and MeOH for 24 h to give esters 5 and10,
respectively. The esters were coupled with 3-phenyl propionic
acid, using EDC, NMM, and HOBT, to give the dipeptide esters 6
and 11, which were hydrolyzed using 2 N NaOH to give the corre-
sponding dipeptide acids 7 and 12. Compound 7 was coupled with
L-phenylalaninol in the presence of EDC, NMM, and HOBT to give
tripeptide alcohol 8. Compound 12 (Scheme 2) formed the cyclic
intermediate 13 in the presence of EDC. This was coupled with L-
phenylalaninol in the presence of EDC, NMM, and HOBT to give
the tripeptide alcohol 14. The tripeptide alcohols 8 and 14 were
oxidized using Dess–Martin periodinane reagent to afford the tar-
get compounds 2 (Scheme 1) and 3 (Scheme 2), respectively. The
final products were purified by flash column chromatography
and/or recrystallization from hexanes/CH2Cl2 (1:1).18 The com-
pounds were evaluated19 as inhibitors of porcine erythrocyte l-
calpain (Calbiochem) and human liver cathepsin B (Calbiochem)
using ALLN as positive control. Table 1 shows the results of the
study. The nature of the P2 residue influenced the inhibitory activ-
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Scheme 2. Reagents: (a) SOCl2, MeOH; (b) 3-phenylpropionic acid, EDC, NMM, HOBT; (c
Martin reagent.
ity of the compounds. Compound 3 with a,a0-diethylglycine at the
P2 position inhibited l-calpain with Ki of 0.08 lM. It was over 20-
fold better inhibitor of l-calpain compared to 2 with a-aminocycl-
opentane carboxylic acid as the P2 residue. Furthermore, 3 was
over 35-fold selective for l-calpain versus cathepsin B. Compound
2 on the contrary inhibited cathepsin B 3-fold better than 3.
Clearly, our data suggest that compounds that adopt extended con-
formation are better inhibitors of l-calpain compared to those
with folded conformation. This is consistent with recent X-ray
crystallographic studies of the complexes of l-calpain with bound
inhibitors, which showed that the inhibitors occupy the active site
pocket of the enzyme in extended conformation.20–22 Thus, unlike
l-calpain, cathepsin B did not display significant preference for
any of the two compounds suggesting that the enzyme is not very
sensitive to the conformational differences induced by the con-
strained amino acids at the P2 position of the inhibitors. This is
consistent with our previous finding using compounds with 2,3-
methanoleucine stereoisomers as the P2 residue, which suggested
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that the S2-subsite of cathepsin B is not as stereosensitive as that of
l-calpain.17

In summary, we have demonstrated using constrained amino
acids as the P2 residue that peptidomimetic compounds that adopt
extended conformation are potentially potent and selective inhib-
itors of l-calpain versus cathepsin B compared to related ana-
logues that adopt folded conformation.
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