

Asymmetric Synthesis of Optically Active 2,3-Diarylsuccinic Acids by Oxidative Homocoupling of Chiral 3-(Arylacetyl)-2-oxazolidones

Naoki Kise,* Kimikage Kumada, Yuichi Terao and Nasuo Ueda

Department of Biotechnology, Faculty of Engineering, Tottori University, Tottori 680, Japan

Received 17 December 1997; accepted 12 January 1998

Abstract Oxidative homocoupling of chiral 3-(arylacetyl)-2-oxazolidones 1 was achieved by treatment with DABCO-TiCl4 or DMAP-TiCl4 and afforded the corresponding dimers stereospecifically. The reaction of (4S)- and (4R)-substituted 1 gave (S,S)- and (R,R)-dimers respectively. The obtained dimers were easily transformed to the corresponding 2,3-diaryl succinic acids. This reaction therefore provides a useful method for the synthesis of optically pure 2,3-diaryl succinic acids. The oxidative coupling was not inhibited by para substitution of an electron donating group on the aryl group. A para-substituted electron withdrawing group and an ortho-substituent, however, hindered the coupling. @ 1998 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

Oxidative homocoupling of enolate anions of esters is a useful reaction for the synthesis of 2,3disubstituted succinic acids.¹ Diastereoselectivity in the homocoupling reactions has been studied and improved with Et3N-TiCl4 as oxidizing agent (dl-selectivity 99%)² or by using carboxylic acid dianions^{3a} or thioamide α -anions^{3b} instead of ester enolate anions (dl-selectivity ~92%). Optically active 2,3-disubstituted succinic acids are useful intermediates in the synthesis of chiral compounds as exemplified by the recent use of optically active 2.3-diphenylsuccinic acid as a chiral source for the preparation of optically active crown ethers^{4a} and diphosphine ligands.^{4b} In these cases, optically pure 2,3-diphenylsuccinic acid was obtained by optical resolution.⁵ Recently, we and others have reported stereoselective oxidative coupling of chiral carboxylic acid derivatives. Intermolecular coupling of chiral oxazolidine^{6a} and imidazolidone^{6b} derivatives of aliphatic carboxylic acids and intramolecular coupling of chiral imidazolidone^{6b} and imidazolidinone^{6c} derivatives of aliphatic dicarboxylic acids with LDA-I2 or LDA-Cu^{II} have been reported. We have also reported that oxidative homocoupling of chiral 3-(phenylacetyl)-2-oxazolidones took place stereospecifically by treatment with amine-TiCla.⁷ Among them, only our method affords optically active 2,3-diphenylsuccinic acid. We wish to report herein that the oxidative homocoupling of chiral 3-(arylacetyl)-2-oxazolidones 1 with amine-TiCl4 is a useful method for the synthesis of a variety of enantiomerically pure 2,3-diarylsuccinic acids (eq 1). We also studied the scope and limitation of this reaction.

RESULTS AND DISCUSSION

In our preliminary report,⁷ we have found that a combination of amine-TiCl4 was most effective for stereospecific dimerization of (S)-4-isopropyl-3-(phenylacetyl)-2-oxazolidones **1a** and, in particular, DABCO or DMAP (4-dimethylaminopyridine) was the choice of amine. Therefore, we attempted the oxidative coupling of several (S)-3-(arylacetyl)-4-isopropyl-2-oxazolidones **1b-g** using DABCO or DMAP as an amine. The reactions were carried out with 2.5 equiv of TiCl4 and 2 equiv of an amine in dichloromethane at room temperature. The results are summarized in Table 1. In all cases, the dimers **2** were formed stereospecifically⁸ and assigned to be (S,S) by conversion to dimethyl esters **3** (*vide infra*). A para-substituted electron-donating group (OMe, Cl) did not inhibit the coupling (runs 3-6), whereas a para-substituted electron-withdrawing group (CF3) disturbed it completely (runs 7 and 8). Steric hindrance caused by ortho-substitution of chloro group also inhibited the homocoupling (runs 9 and 10). In these cases, α -chlorinated and α -hydroxylated products were obtained as by-products. The resulted in good yields (runs 13 and 14). The oxidative coupling of (S)-3-(3,4-dimethoxyphenylacetyl)-4-isopropyl-2-oxazolidone **1h** gave the dimer **2h** in good yields after methylation, since the dimer was partially demethylated (runs 15 and 16) (eq 2).

	Ar			xox	
	-		2	.0.	
run	1	Ar	amine	%yie	eld of 2 ^a
1	1a	Ph	DABCO	2a	69
2	1a		DMAP	2a	76
3	1b	<i>p</i> -MeOC ₆ H₄	DABCO	2b	86
4	1b		DMAP	2b	88
5	1c	<i>p</i> -CIC ₆ H ₄	DABCO	2c	72
6	1c		DMAP	2c	67
7	1d	p-CF ₃ C ₆ H ₄	DABCO	2d	0 ^b
8	1d	~	DMAP	2đ	0 ^b
9	1e	o-CIC ₆ H₄	DABCO	2e	39 ^c
10	1e		DMAP	2e	17 ^c
11	1f	1-Naphthyl	DABCO	2f	29 ^d
12	1f		DMAP	2f	25 ^d
13	1g	2-Naphthyl	DABCO	2g	85
14	1g		DMAP	2g	63
15	1h	MeO	DABCO	2h	72 ^e
16	1h	Meo	DMAP	2h	84 ⁹

Table 1. Oxidative Coupling of (S)-3-(Arylacetyl)-4-isopropyl-2-oxazolidones

a) Isolated yields of (S,S)-2. In all cases, small amounts of 1 (<10%) were recovered. b) Complex mixture was obtained. c) α-Chlorinated and α-hydroxylated products were yielded as by-products. d) Complex mixture was obtained as major product. e) Partially demethylated. See text.

Next, we tried the reaction of several optically active 3-(phenylacetyl)-2-oxazolidones 1i-l with substituents other than 4S-isopropyl (1a). As shown in Table 2, all the dimers were obtained stereospecifically. While (4S)-substituted 2-oxazolidones gave (S,S)-dimers (runs 1-4), (4R)-substituted and (4R,5S)-disubstituted ones yielded (R,R)-dimers (runs 5 and 6). The yields of the dimers depended on the used amine. The high stereoselectivity in this oxidative coupling obviously resulted from the substituent of the oxazolidone ring, since the reaction of 3-(phenylacetyl)-2-oxazolidone 4 gave a diastereometric mixture (dl:meso = 65:35) of the corresponding dimer 5 (eq 3).

Oxidative coupling with the combination of amine-TiCl₄ was limited to 3-(arylacetyl)-2-oxazolidones 1. In fact, (S)-3-butyryl-4-isopropyl-2-oxazolidone and (S)-4-isopropyl-3-(2-phenylpropionyl)-2-oxazolidone were recovered under the same conditions.

Table 2. Oxidative Coupling of Optically Active 3-(Phenylacetyl)-2-oxazolidones

a) Isolated yields. In all cases, small amounts of 1 (<5%) were recovered.

b) (*S*,*S*)-form. c) (*R*,*R*)-form.

Reaction Mechanism of Oxidative Coupling. The stereoselectivities observed in the oxidative coupling of 1 can be reasonably explained with a radical mechanism as shown in Scheme 1 for 1a. It has been reported that treatment of 3-acyl-2-oxazolidone with amine-TiCl4 affords Ti-chelated Z-enolate.⁹ In the reaction of 1a with amine-TiCl4, the Ti-chelated Z-enolate 6 is formed initially and then oxidized with Ti(IV) to generate a radical intermediate 7. A para-substitution of an electron withdrawing group on the aromatic ring inhibits this electron transfer process. The radicals 7 then couple at the less hindered side (Si face), as depicted in transition state A, to give (S,S)-2a stereospecifically. An ortho-substitution on the aromatic ring inhibits this radical

coupling process. As shown in Scheme 2 for 1e, the radical intermediate 8 is further oxidized to a cation 9 and reacts with chlorine anion to give α -chlorinated product 10. α -Hydroxylated product 11 was formed from 10 by work-up with water. The reaction of 3-(2-phenylpropionyl)-2-oxazolidone 12 with DABCO-TiCl4 afforded α , β -unsaturated product 14, α -chlorinated product 15, and α -hydroxylated product 16, and no coupling product was detected (eq 4). This result also suggests the formation of a cationic intermediate 13.

Scheme 1.

Scheme 2.

Synthesis of Optically Active 2,3-Diarylsuccinic Acids. The conversion of dimers 2 to 2,3diarylsuccinic acids was easily achieved in good yields by the reported method.¹⁰ In order to facilitate the purification, the acids were isolated as dimethyl esters 3 (Table 3). The absolute stereoconfiguration and ee (>98%) of dimethyl (2S,3S)- and (2R,3R)-2,3-diphenylsuccinates (3a) were determined by measurement of their optical rotations^{5a} and ¹H NMR analyses with Eu(hfc)3. Chloro substituted 2,3-diphenylsuccinates 3c and 3e were converted by catalytic hydrogenolysis to 3a, and hence their configurations were assigned to be (2S,3S) (eq 5). Although the stereoconfigurations of 3b and 3f-h could not be confirmed, they were assumed to be (2S,3S) from the data of 3a, 3c, and 3e. These results show that the present oxidative coupling provides a useful synthetic methodology from arylacetic acids to enantiomerically pure 2,3-diarylsuccinic acids. As an example of preparative scale synthesis, 10 g of 1a was converted to 2.3 g of (2S,3S)-diphenylsuccinic acid in 48% total yield using recrystallization for isolation method.

CONCLUSION

Asymmetric synthesis of a variety of optically pure 2,3-diarylsuccinic acids was achieved by stereospecific dimerization of chiral 3-(arylacetyl)-2-oxazolidones 1 with amine-TiCl4 and following hydrolysis of the resulting dimers. However, the oxidative dimerization was considerably hindered by an electron withdrawing group on the aromatic ring of 1. Steric hindrance by an ortho-substituent also inhibited the dimerization.

The amine-TiCl4 combination was not effective for dimerization of 3-alkanoyl-2-oxazolidones other than 1. Investigations for the stereoselective dimerization of other chiral alkanoic acid derivatives are in progress.

An COX		1) LIOOH	Ar CO ₂ Me	
A	r ^{u, C} OX	2) HCI/MeOH	Ar" CO ₂ Me	
2			3	
run	2	Ar	% yield of 3 ª	
1	2a	Ph	(<i>S,S</i>)- 3a 81	
2	2i	Ph	(<i>S,S</i>)- 3a 70	
3	2j	Ph	(<i>S,S</i>)- 3a 67	
4	2k	Ph	(<i>R,R</i>)- 3a 82	
5	21	Ph	(<i>R,R</i>)- 3a 78	
6	2b	p-MeOC ₆ H₄	(<i>S,S</i>)- 3b 89	
7	2c	p-CIC ₆ H ₄	(<i>S,S</i>)- 3c 89	
8	2e	o-CIC ₆ H ₄	(<i>S,S</i>)- 3e 51	
9	2f	1-Naphthyl	(<i>S,S</i>)-3f 60	
10	2g	2-Naphthyl	(<i>S,S</i>)- 3g 81	
11	2h	Meo	(<i>S,S</i>) -3h 64	

Table 3. Hydrolysis of Dimers 2 to 3

a) Isolated yields.

EXPERIMENTAL SECTION

General: IR spectra were recorded with a Shimadzu FTIR-8100 infrared spectrometer. ¹H and ¹³C NMR spectra were measured with a JEOL GX-270 spectrometer with tetramethylsilane (TMS) as an internal standard. Optical rotations were recorded with a Jasco DIP-360 digital polarimeter. Column chromatography was performed on silica gel 60 (Merck). Dichloromethane was distilled from P2O5, then CaH2, and dried over molecular sieves 4A.

Starting Materials: Optically active 3-acyl-2-oxazolidones were prepared by treatment of optically active 2-oxazolidones with n-BuLi and acyl chlorides successively in THF at -70 °C.^{11,12} The products were purified by column chromatography on silica gel or recrystallization from hexane-ethyl acetate.

(\tilde{S})-4-Isopropyl-3-(phenylacetyl)-2-oxazolidone (1a): $R_f 0.18$ (hexane-ethyl acetate, 5:1); $[\alpha]^{20}D +77.6$ (c 2.05, CHCl₃); IR (neat) 1765, 1690 cm⁻¹; ¹H NMR (CDCl₃) $\delta 0.78$ (d, 3 H, J = 6.9 Hz), 0.87 (d, 3 H, J = 7.0 Hz), 2.23-2.37 (m, 1 H), 4.11-4.38 (m, 5 H), 7.20-7.38 (m, 5 H); ¹³C NMR (CDCl₃) $\delta 14.22$ (q), 17.60 (q), 28.00 (d), 41.33 (t), 58.36 (d), 63.14 (t), 127.20 (d), 128.57 (d), 129.72 (d), 133.81 (s), 154.13 (s), 171.35 (s). Anal. Calcd for C1₄H₁7NO₃: C, 68.00; H, 6.93.; N, 5.66. Found: C, 67.91; H, 7.03; N, 5.49.

(S)-4-Isopropyl-3-(4-methoxyphenylacetyl)-2-oxazolidone (1b): Rf 0.50 (hexane-ethyl acetate, 2:1); mp 91-92 °C; $[\alpha]^{20}D$ +69.8 (c 1.30, CHCl3); IR (KBr) 1762, 1708 cm⁻¹; ¹H NMR (CDCl3) δ 0.79 (d, 3 H, J = 6.8 Hz), 0.88 (d, 3 H, J = 6.8 Hz), 2.27-2.41 (m, 1 H), 3.79 (s, 3 H), 4.11-4.34 (m, 4 H), 4.39-4.46 (m, 1 H), 6.82-6.89 (m, 2 H), 7.20-7.27 (m, 2 H); ¹³C NMR (CDCl3) δ 14.48 (q), 17.81 (q), 28.19 (d), 40.57 (t), 55.16 (d),

58.44 (q), 63.19 (t), 113.87 (d), 125.72 (s), 130.61 (d), 153.92 (s), 158.67 (s), 171.45 (s). Anal. Calcd for C15H19NO4: C, 64.97; H, 6.91; N, 5.05. Found: C, 64.95; H, 6.97; N, 4.88.

3-(4-Chlorophenylacetyl)-(S)-4-isopropyl-2-oxazolidone (1c): Rf 0.55 (hexane-ethyl acetate, 2:1); mp 86-87 °C ; $[\alpha]^{20}D$ +65.4 (c 1.34, CHCl3); IR (KBr) 1785, 1766, 1694 cm⁻¹; ¹H NMR (CDCl3) δ 0.80 (d, 3 H, J = 7.0 Hz), 2.26-2.47 (m, 1 H), 4.14-4.39 (m, 4 H), 4.39-4.52 (m, 1 H), 7.21-7.41 (m, 4 H); ¹³C NMR (CDCl3) δ 14.51 (q), 17.85 (q), 28.28 (d), 40.83 (t), 58.51 (d), 63.35 (t), 128.60 (d), 131.02 (d), 132.17 (s), 133.04 (s), 153.89 (s), 170.65 (s). Anal. Calcd for C14H16NO3Cl: C, 59.68; H, 5.72; N, 4.97; Cl, 12.58. Found: C, 59.74; H, 5.78; N, 4.88; Cl, 12.37.

(S)-4-Isopropyl-3-(4-trifluoromethylphenylacetyl)-2-oxazolidone (1d): Rf 0.60 (hexane-ethyl acetate, 2:1); mp 94-95 °C (recryst. from hexane-ethyl acetate, 2:1); $[\alpha]^{20}D$ +67.8 (c 1.13, CHCl3); IR (KBr) 1787, 1772 cm⁻¹; ¹H NMR (CDCl3) δ 0.81 (d, 3 H, J = 6.8 Hz), 0.89 (d, 3 H, J = 6.8 Hz), 2.23-2.51 (m, 1 H), 4.13-4.79 (m, 5 H), 7.38-7.50 (m, 2 H), 7.50-7.72 (m, 2 H); ¹³C NMR (CDCl3) δ 14.43 (q), 17.71 (q), 28.23 (d), 41.26 (t), 58.49 (d), 63.34 (t), 125.33 (d), 130.03 (d), 137.71 (s), 153.92 (s), 170.18 (s). Anal. Calcd for C15H16NO3F3: C, 57.14; H, 5.12; N, 4.44; F, 18.08. Found: C, 57.32; H, 5.27; N, 4.29; F, 17.83.

3-(2-Chlorophenylacetyl)-(S)-4-isopropyl-2-oxazolidone (1e): Rf 0.50 (hexane-ethyl acetate, 2:1); $[\alpha]^{20}$ D +71.5 (c 1.20, CHCl3); IR (neat) 1774, 1703 cm⁻¹; ¹H NMR (CDCl3) δ 0.91 (d, 3 H, J = 7.3 Hz), 0.92 (d, 3 H, J = 7.0 Hz), 2.30-2.57 (m, 1 H), 4.15-4.43 (m, 3 H), 4.43-4.71 (m, 2 H), 7.05-7.33 (m, 3 H), 7.33-7.61 (m, 1 H); ¹³C NMR (CDCl3) δ 14.57 (q), 17.66 (q), 28.19 (d), 40.38 (t), 58.44 (d), 63.49 (t), 126.75 (d), 128.61 (d), 129.24 (d), 131.64 (d), 132.33 (s), 134.53 (s), 154.07 (s), 169.69 (s). Anal. Calcd for C14H16NO3Cl: C, 59.68; H, 5.72; N, 4.97; Cl, 12.58. Found: C, 59.80; H, 5.85; N, 4.94; Cl, 12.34.

(S)-4-Isopropyl-3-(1-naphthylacetyl)-2-oxazolidone (1f): Rf 0.40 (hexane-ethyl acetate, 2:1); $[\alpha]^{20}_{D}$ +75.1 (c 1.26, CHCl3); IR (neat) 1769, 1700 cm⁻¹; ¹H NMR (CDCl3) $\delta 0.86$ (d, 3 H, J = 7.0 Hz), 0.87 (d, 3 H, J = 7.0 Hz), 2.21-2.45 (m, 1 H), 4.23 (dd, 1 H, J = 3.5, 8.5 Hz), 4.31 (t, 1 H, J = 8.5 Hz), 4.56 (dt, 1 H, J = 3.5, 8.5 Hz), 4.66 (d, 1 H, J = 16.9 Hz), 4.84 (d, 1 H, J = 16.9 Hz), 7.31-7.67 (m, 4 H), 7.67-8.21 (m, 3 H); ¹³C NMR (CDCl3) $\delta 14.52$ (q), 17.76 (q), 28.19 (d), 39.10 (t), 58.54 (d), 63.34 (t), 123.71 (d), 125.33 (d), 125.62 (d), 126.16 (d), 128.02 (d), 128.70 (d), 130.42 (s), 132.23 (s), 133.75 (s), 154.21 (s), 170.86 (s). Anal. Calcd for C18H19NO3: C, 72.71; H, 6.44.; N, 4.71. Found: C, 72.58; H, 6.55; N, 4.46.

(S)-4-Isopropyl-3-(2-naphthylacetyl)-2-oxazolidone (1g): Rf 0.55 (hexane-ethyl acetate, 2:1); mp 82-83 °C; [α]²⁰D +74.7 (c 1.08, CHCl₃); IR (KBr) 1758, 1694 cm⁻¹; ¹H NMR (CDCl₃) δ 0.79 (d, 3 H, J = 7.3 Hz), 0.87 (d, 3 H, J = 6.8 Hz), 2.26-2.49 (m, 1 H), 4.08-4.33 (m, 2 H), 4.33-4.77 (m, 3 H), 7.26-7.63 (m, 3 H), 7.63-8.42 (m, 4 H); ¹³C NMR (CDCl₃) δ 14.45 (q), 17.74 (q), 28.16 (d), 41.64 (t), 58.46 (d), 63.18 (t), 125.67 (d), 125.95 (d), 127.51 (d), 127.62 (d), 127.97 (d), 128.32 (d), 131.20 (s), 132.41 (s), 133.33 (s), 153.89 (s), 170.99 (s). Anal. Calcd for C1₈H₁₉NO₃: C, 72.71; H, 6.44; N, 4.71. Found: C, 72.76; H, 6.45; N, 4.62.

(S)-3-(3,4-dimethoxyphenylacetyl)-4-Isopropyl-2-oxazolidone (1h): Rf 0.3 (hexane-ethyl acetate, 2:1); [α]²⁰_D +69.9 (c 1.14, CHCl3); IR (neat) 1770, 1690 cm⁻¹; ¹H NMR (CDCl3) δ 0.79 (d, 3 H, J = 6.8 Hz), 0.88 (d, 3 H, J = 7.3 Hz), 2.37-2.42 (m, 1 H), 3.86 (s, 3 H), 3.87 (s, 3 H), 4.10-4.39 (m, 4 H), 4.39-4.50 (m, 1 H), 6.75-6.98 (m, 3 H); ¹³C NMR (CDCl3) δ 14.28 (q), 17.51 (q), 27.99 (d), 40.62 (t), 55.51 (q), 58.15 (d), 63.00 (t), 110.93 (d), 112.60 (d), 121.56 (d), 125.96 (s), 147.85 (s), 148.53 (s), 153.68 (s), 171.01 (s). Anal. Calcd for C16H21NO5: C, 62.53; H, 6.89.; N, 4.56. Found: C, 62.43; H, 6.96; N, 4.48.

(S)-4-Isobutyl-3-(phenylacetyl)-2-oxazolidone (1i): Rf 0.35 (hexane-ethyl acetate, 5:1); $[\alpha]^{20}D +96.2$ (c 1.81, CHCl3); IR (neat) 1765, 1685 cm⁻¹; ¹H NMR (CDCl3) $\delta 0.94$ (d, 6 H, J = 5.9 Hz), 1.34-1.67 (m, 2 H), 1.67-1.89 (m, 1 H), 4.11 (dd, 1 H, J = 2.4, 8.6 Hz), 4.26 (s, 2 H), 4.37 (t, 1 H, J = 8.6 Hz), 4.43-4.55 (m, 1 H), 7.11-7.60 (m, 5 H); ¹3C NMR (CDCl3) $\delta 21.28$ (q), 23.19 (q), 24.51 (d), 41.01 (t), 41.31 (t), 52.96 (d), 67.35 (t), 126.84 (d), 128.26 (d), 129.44 (d), 133.50 (s), 153.38 (s), 170.67 (s). Anal. Calcd for C15H19NO3: C, 68.94; H, 7.33.; N, 5.36. Found: C, 68.70; H, 7.19; N, 5.08.

(S)-4-Benzyl-3-(phenylacetyl)-2-oxazolidone (1j): Rf 0.60 (hexane-ethyl acetate, 2:1); mp 71 °C; $[\alpha]^{20}D$ +75.7 (c 1.31, CHCl3); IR (KBr) 1772, 1688 cm⁻¹; ¹H NMR (CDCl3) δ 2.76 (dd, 1 H, J = 9.5, 13.2 Hz), 3.27 (dd, 1 H, J = 3.2, 13.2 Hz), 4.12-4.25 (m, 2 H), 4.26 (d, 1 H, J = 15.4 Hz), 4.35 (d, 1 H, J = 15.4 Hz), 4.62-4.77 (m, 1 H), 7.09-7.19 (m, 2 H), 7.23-7.44(m, 8 H); ¹³C NMR (CDCl3) δ 37.55 (t), 41.41 (t), 55.17 (d), 66.00 (t), 127.11 (d), 128.43 (d), 128.78 (d), 129.30 (d), 129.70 (d), 133.44 (s), 135.00 (s), 153.25 (s), 171.05 (s). Anal. Calcd for C18H17NO3: C, 73.20; H, 5.80; N, 4.74. Found: C, 73.22; H, 5.69; N, 4.70.

(*R*)-4-Phenyl-3-(phenylacetyl)-2-oxazolidone (1k): $R_f 0.53$ (hexane-ethyl acetate, 2:1); mp 67-69 °C; $[\alpha]^{20}D$ -83 (c 1.1, CHCl₃); IR (KBr) 1765, 1715 cm⁻¹; ¹H NMR (CDCl₃) δ 4.22-4.33 (m, 3 H), 4.69 (t, 1 H, J = 8.8

Hz), 5.43 (dd, 1 H, J = 3.9, 8.8 Hz), 7.18-7.38 (m, 10 H); ¹³C NMR (CDCl₃) δ 41.26 (t), 57.31 (d), 69.56 (t), 125.60 (d), 126.83 (d), 128.15 (d), 128.72 (d), 129.41 (d), 133.12 (s), 138.66 (s), 153.40 (s), 170.18 (s). Anal. Calcd for C₁₇H₁₅NO₃: C, 72.58; H, 5.37; N, 4.98. Found: C, 72.64; H, 5.37; N, 4.90.

(*R*)-4-methyl-(*S*)-5-phenyl-3-(phenylacetyl)-2-oxazolidone (11): *Rf* 0.45 (hexane-ethyl acetate, 5:1); mp 99-101 °C; $[\alpha]^{20}$ D+16.3 (c 1.40, CHCl3); IR (KBr) 1768, 1695 cm⁻¹; ¹H NMR (CDCl3) δ 0.89 (d, 3 H, *J* = 7.0 Hz), 4.28 (d, 1 H, *J* = 15.4 Hz), 4.34 (d, 1 H, *J* = 15.4 Hz), 4.76 (dq, 1 H, *J* = 7.0, 7.3 Hz), 5.66 (d, 1 H, *J* = 7.0 Hz), 7.08-7.72 (m, 10 H); ¹³C NMR (CDCl3) δ 14.40 (q), 41.64 (t), 54.88 (d), 78.90 (d), 125.61 (d), 127.11 (d), 128.49 (d), 128.60 (d), 128.72 (d), 129.58 (d), 133.21 (s), 133.56 (s), 152.91 (s), 170.82 (s). Anal. Calcd for C18H17NO3: C, 73.20; H, 5.80; N, 4.74. Found: C, 73.30; H, 5.86; N, 4.61.

3-(Phenylacetyl)-2-oxazolidone (4): *Rf* 0.40 (hexane-ethyl acetate, 2:1); mp 66-67 °C; IR (KBr) 1767, 1692 cm⁻¹; ¹H NMR (CDCl₃) δ 3.95 (t, 2 H, *J* = 8.0 Hz), 4.23-4.40 (m, 4 H), 7.22-7.38 (m, 5 H); ¹³C NMR (CDCl₃) δ 40.93 (t), 42.53 (t), 61.86 (t), 127.05 (d), 128.39 (d), 129.59 (d), 133.45 (s), 153.40 (s), 171.09 (s). Anal. Calcd for C₁₁H₁₁NO₃: C, 64.38; H, 5.40; N, 6.83. Found: C, 64.36; H, 5.41; N, 6.77.

(S)-4-Isopropyl-3-(2-phenylpropionyl)-2-oxazolidone (12) (diastereomer A): Rf 0.30 (hexane-ethyl acetate, 5:1); ¹H NMR (CDCl₃) $\delta 0.91$ (d, 3 H, J = 7.0 Hz), 0.92 (d, 3 H, J = 6.8 Hz), 1.52 (d, 3 H, J = 7.3 Hz), 2.29-2.66 (m, 1 H), 3.97-4.25 (m, 2 H), 4.25-4.47 (m, 1 H), 5.15 (q, 1 H, J = 7.0 Hz), 7.04-7.71 (m, 5 H).

12 (diastereomer B): Rf 0.35 (hexane-ethyl acetate, 5:1); $[\alpha]^{20}D - 19.0$ (c 1.15, CHCl₃); IR (neat) 1764, 1686 cm⁻¹; ¹H NMR (CDCl₃) $\delta 0.45$ (d, 3 H, J = 6.8 Hz), 0.80 (d, 3 H, J = 7.0 Hz), 1.47 (d, 3 H, J = 7.0 Hz), 2.07-2.28 (m, 1 H), 4.10 (dd, 1 H, J = 3.6, 8.6 Hz), 4.24 (t, 1 H, J = 8.6 Hz), 4.49(dt, 1 H, J = 3.6, 8.6 Hz), 5.14 (q, 1 H, J = 7.0 Hz), 7.01-7.64 (m, 5 H); ¹³C NMR (CDCl₃) $\delta 13.89$ (q), 17.56 (q), 18.49 (q), 27.74 (d), 43.17 (d), 57.86 (t), 62.70 (t), 126.94 (d), 127.87 (d), 128.36 (d), 140.31 (s), 153.28 (s), 174.24 (s). Anal. Calcd for C₁₅H₁₉NO₃: C, 68.94; H, 7.33.; N, 5.36. Found: C, 68.72; H, 7.40; N, 5.19.

Oxidative coupling of 1 with amine-TiCl4. To an ice-cooled solution of 1 (1.0 mmol) in dry dichloromethane (5 mL) was added TiCl4 (0.28 mL, 2.5 mmol) and an amine (2.0 mmol) successively under N₂. The dark blue solution was stirred at 25 °C for 24-48 h until almost all of 1 was consumed (checked by TLC). The mixture was diluted with 1 M HCl (20 mL) and extracted with CH₂Cl₂ (3 X 10 mL). In the reaction of 1h, the crude product was refluxed with CH₃I (0.25 mL, 4.0 mmol) and K₂CO₃ (0.55g, 4.0 mmol) in acetone (10 mL) for 6 h and then filtered. The product was isolated by column chromatography on silica gel (hexane-ethyl acetate). The isolated dimer 2 seemed to be practically a single stereoisomer (>98%) on the basis of ¹H NMR analysis and could be further purified by recrystallization from hexane-ethyl acetate.

(*S*,*S*)-2a: $R_f 0.56$ (hexane-ethyl acetate, 5:1); mp 208-209 °C; $[\alpha]^{20}D +338$ (*c* 1.03, CHCl3); IR (KBr) 1782, 1692 cm⁻¹; ¹H NMR (CDCl3) δ 0.91 (d, 6 H, J = 7.1 Hz), 0.98 (d, 6 H, J = 7.0 Hz), 2.30-2.50 (m, 2 H), 4.02-4.19 (m, 4 H), 4.30-4.40 (m, 2 H), 5.68 (s, 2 H), 7.04-7.16 (m, 10 H); ¹³C NMR (CDCl3) δ 14.07 (q), 17.60 (q), 27.72 (d), 53.80 (d), 58.72 (d), 62.58 (t), 127.48 (d), 128.17 (d), 129.40 (d), 134.83 (s), 153.10 (s), 173.66 (s). Anal. Calcd for C28H32N2O6: C, 68.28; H, 6.55; N, 5.69. Found: C, 68.42; H, 6.59; N, 5.66.

(*S*,*S*)-**2b**: *Rf* 0.30 (hexane-ethyl acetate, 2:1); mp 254-255 °C; $[\alpha]^{20}D$ +398 (c 1.25, CHCl3); IR (KBr) 1772, 1685 cm⁻¹; ¹H NMR (CDCl3) δ 0.91 (d, 6 H, *J* = 7.0 Hz), 0.96 (d, 6 H, *J* = 6.8 Hz), 2.27-2.41 (m, 2 H), 3.71 (s, 6 H), 4.03-4.18 (m, 4 H), 4.26-4.36 (m, 2 H), 5.59 (s, 2 H), 6.54-6.78 (m, 4 H), 6.90-7.11 (m, 4 H); ¹³C NMR (CDCl3) δ 14.28 (q), 17.76 (q), 27.94 (d), 53.01 (d), 54.97 (q), 58.79 (d), 62.65 (t), 113.48 (d), 126.84 (s), 130.32 (d), 152.89 (s), 158.72 (s), 173.75 (s). Anal. Calcd for C30H36N2O8: C, 65.20; H, 6.57; N, 5.07. Found: C, 65.28; H, 6.60; N, 5.01

(S,S)-2c: Rf 0.55 (hexane-ethyl acetate, 2:1); mp 217-218 °C; $[\alpha]^{20}$ D +418 (c 1.06, CHCl3); IR (KBr) 1773, 1689 cm⁻¹; ¹H NMR (CDCl3) δ 0.92 (d, 6 H, J = 7.0 Hz), 0.96 (d, 6 H, J = 7.0 Hz), 2.30-2.45 (m, 2 H), 4.05-4.25 (m, 4 H), 4.24-4.40 (m, 2 H), 5.62 (s, 2 H), 6.97-7.08 (m, 4 H), 7.08-7.23 (m, 4 H); ¹³C NMR (CDCl3) δ 14.23 (q), 17.71 (q), 27.94 (d), 53.16 (d), 58.79 (d), 62.80 (t), 128.41 (d), 130.57 (d), 133.01 (s), 133.45 (s), 152.89 (s), 172.77 (s). Anal. Calcd for C28H30N2O6Cl2: C, 59.90; H, 5.39; N, 4.99; Cl, 12.63. Found: C, 59.97; H, 5.41; N, 4.87; Cl, 12.49.

(S,S)-2e: Rf 0.40 (hexane-ethyl acetate, 2:1); mp 284-285 °C; $[\alpha]^{20}$ D +438 (c 1.05, CHCl₃); IR , (KBr) 1767, 1685 cm⁻¹; ¹H NMR (CDCl₃) δ 0.94 (d, 6 H, J = 7.3 Hz), 1.00 (d, 6 H, J = 6.8 Hz), 2.33-2.50 (m, 2 H), 4.07-4.20 (m, 4 H), 4.35-4.44 (m, 2 H), 6.02 (s, 2 H), 7.08-7.16 (m, 8 H), 7.36-7.47 (m, 2 H); ¹³C NMR (CDCl₃) δ 14.38 (q), 17.81 (q), 27.99 (d), 50.61 (d), 58.98 (d), 62.95 (t), 126.40 (d), 128.75 (d), 129.73 (d), 130.52 (d), 131.69 (s), 136.05 (s), 152.65 (s), 172.72 (s). Anal. Calcd for C₂₈H₃₀N₂O₆Cl₂: C, 59.90; H, 5.39; N, 4.99; Cl, 12.63. Found: C, 59.95; H, 5.32; N, 4.93; Cl, 12.55.

10 (50:50 mixture of two diastereomers): Rf 0.55 (hexane-ethyl acetate, 2:1); IR, (KBr) 1775, 1708 cm⁻¹; ¹H NMR (CDCl₃) $\delta 0.81$ (d, 1.5 H, J = 7.0 Hz), 0.92 (d, 1.5 H, J = 7.5 Hz), 0.95 (d, 1.5 H, J = 7.0 Hz), 0.96 (d, 1.5 H, J = 7.0 Hz), 2.36-2.54 (m, 1 H), 4.22-4.41 (m, 2 H), 4.46-4.56 (m, 1 H), 7.15 (s, 0.5 H), 7.18 (s, 0.5 H), 7.30-7.46 (m, 3 H), 7.58-7.65 (m, 0.5 H), 7.68-7.73 (m, 0.5 H); ¹³C NMR (CDCl₃) $\delta 14.43$ (q), 14.62 (q), 17.71 (q), 17.81 (q), 28.04 (d), 28.14 (d), 54.04 (d), 54.58 (d), 58.74 (d), 58.98 (d), 63.49 (t), 63.63 (t), 127.19 (d), 129.39 (d), 129.68 (d), 129.88 (d), 130.22 (d), 132.82 (s), 133.21 (s), 133.50 (s), 152.89 (s), 166.85 (s), 166.99 (s). Anal. Calcd for C14H15NO3Cl₂: C, 53.18; H, 4.78; N, 4.43; Cl, 22.43. Found: C, 53.06; H, 4.80; N, 4.29; Cl, 22.26.

11 (could not be separated from 1e): Rf 0.50 (hexane-ethyl acetate, 2:1); ¹H NMR (CDCl₃) δ 0.94 (d, 3 H, J = 7.0 Hz), 0.95 (d, 3 H, J = 7.3 Hz), 2.30-2.57 (m, 1 H), 4.26-4.43 (m, 2 H), 4.45-4.54 (m, 1 H), 6.26 (br s, 1 H), 7.23-7.35 (m, 2 H), 7.37-7.49 (m, 2 H).

(*S*,*S*)-**2f**: *R*f 0.40 (hexane-ethyl acetate, 2:1); mp 298-299 °C; $[\alpha]^{20}$ D +496 (c 1.00, CHCl3); IR (KBr) 1770, 1685 cm⁻¹; ¹H NMR (CDCl3) δ 0.98 (d, 6 H, *J* = 6.8 Hz), 1.06 (d, 6 H, *J* = 6.5 Hz), 2.40-2.66 (m, 2 H), 3.99-4.20 (m, 4 H), 4.37-4.55 (m, 2 H), 6.50 (s, 2 H), 6.70-6.86 (m, 2 H), 6.86-7.03 (m, 2 H), 7.20-7.38 (m, 6 H), 7.38-7.50 (m, 2 H), 7.66-7.79 (m, 2 H); ¹³C NMR (CDCl3) δ 14.52 (q), 17.90 (q), 28.19 (d), 50.02 (d), 59.08 (d), 62.85 (t), 123.47 (d), 124.40 (d), 124.69 (d), 126.99 (d), 128.22 (d), 132.08 (s), 133.06 (s), 152.99 (s), 174.09 (s). Anal. Calcd for C3₆H₃₆N₂O₆: C, 72.95; H, 6.12; N, 4.73. Found: C, 72.98; H, 6.13; N, 4.68.

(*S*,*S*)-2g: *Rf* 0.55 (hexane-ethyl acetate, 2:1); mp 228-230 °C; $[\alpha]^{20}D + 569$ (c 1.00, CDCl₃); IR (KBr) 1765, 1680 cm⁻¹; ¹H NMR (CDCl₃) δ 0.94 (d, 6 H, *J* = 6.8 Hz), 1.02 (d, 6 H, *J* = 6.8 Hz), 2.32-2.63 (m, 2 H), 3.76-4.25 (m, 4 H), 4.25-4.65 (m, 2 H), 6.02 (s, 2 H), 6.86-8.11 (m, 14 H); ¹³C NMR (CDCl₃) δ 14.34 (q), 17.79 (q), 27.99 (d), 53.96 (d), 58.86 (d), 62.66 (t), 125.72 (d), 127.34 (d), 127.68 (d), 127.80 (d), 128.09 (d), 132.35 (s), 132.52 (s), 132.98 (s), 152.97 (s), 173.53 (s). Anal. Calcd for C36H36N2O6: C, 72.95; H, 6.12; N, 4.73. Found: C, 72.86; H, 6.20; N, 4.61.

(*S*,*S*)-**2h**: *Rf* 0.40 (hexane-ethyl acetate, 1:1); mp 235-236 °C; $[\alpha]^{20}D$ +400 (c 1.00, CDCl₃); IR (KBr) 1769, 1680 cm⁻¹; ¹H NMR (CDCl₃) δ 0.92 (d, 6 H, *J* = 6.8 Hz), 0.97 (d, 6 H, *J* = 7.3 Hz), 2.25-2.54 (m, 2 H), 3.71 (s, 6 H), 3.79 (s, 6 H), 4.06-4.22 (m, 4 H), 4.28-4.42 (m, 2 H), 5.60 (s, 2 H), 6.44-6.85 (m, 6 H); ¹³C NMR (CDCl₃) δ 14.40 (q), 17.85 (q), 28.05 (d), 53.39 (d), 55.69 (q), 58.92 (d), 62.77 (t), 110.69 (d), 112.36 (d), 121.64 (d), 127.39 (s), 148.47 (s), 153.02 (s), 173.76 (s). Anal. Calcd for C₃₂H₄₀N₂O₁₀: C, 62.73; H, 6.58; N, 4.57. Found: C, 62.75; H, 6.59; N, 4.50.

(S,S)-2i: Rf 0.20 (hexane-ethyl acetate, 5:1); mp 178-180 °C; $[\alpha]^{20}D$ +348 (c 1.02, CHCl3); IR (KBr) 1768, 1680 cm⁻¹; ¹H NMR (CDCl3) δ 0.97 (d, 6 H, J = 6.5 Hz), 1.01 (d, 6 H, J = 6.5 Hz), 1.54-1.72 (m, 4 H), 1.72-1.85 (m, 2 H), 4.04 (dd, 2 H, J = 2.3, 8.3 Hz), 4.18 (t, 2 H, J = 8.3 Hz), 4.35-4.48 (m, 2 H), 5.54 (s, 2 H), 6.98-7.07 (m, 4 H), 7.07-7.17 (m, 4 H), 7.26 (s, 2 H); ¹³C NMR (CDCl3) δ 21.42 (q), 23.55 (q), 24.59 (d), 40.83 (t), 53.21 (d), 53.96 (d), 66.98 (t), 127.22 (d), 127.97 (d), 129.18 (d), 134.82 (s), 152.39 (s), 172.95 (s). Anal. Calcd for C₃₀H₃₆N₂O₆: C, 69.21; H, 6.97; N, 5.38. Found: C, 69.30; H, 7.05; N, 5.19.

(*S*,*S*)-2j: *Rf* 0.50 (hexane-ethyl acetate, 2:1); mp 103-105 °C; $[\alpha]^{20}D$ +337.0 (c 1.46, CHCl₃); IR (KBr) 1770, 1678 cm⁻¹; ¹H NMR (CDCl₃) δ 2.92 (dd, 2 H, *J* = 8.9, 13.5 Hz), 3.24 (dd, 2 H, *J* = 3.2, 13.5 Hz), 3.90-4.23 (m, 4 H), 4.55-4.72 (m, 2 H), 5.70 (s, 2 H), 6.90-7.20 (m, 10 H), 7.20-7.90 (m, 10H); ¹³C NMR (CDCl₃) δ 37.20 (t), 53.96 (d), 55.23 (d), 65.31 (t), 127.05 (d), 127.34 (d), 128.03 (d), 128.72 (d), 129.18 (d), 129.35 (d), 134.65 (s), 134.94 (s), 152.22 (s), 173.47 (s). Anal. Calcd for C_{36H32N2O6}: C, 73.45; H, 5.48; N, 4.76. Found: C, 73.62; H, 5.58; N, 4.64.

(R,R)-2k: $R_f 0.44$ (hexane-ethyl acetate, 2:1); mp 94-96 °C; $[\alpha]^{20}D$ -488 (c 1.00, CHCl₃); IR (KBr) 1784, 1698 cm⁻¹; ¹H NMR (CDCl₃) δ 3.99 (dd, 2 H, J = 2.4, 8.4 Hz), 4.42 (t, 2 H, J = 8.4 Hz), 5.33 (dd, 2 H, J = 2.4, 8.4 Hz), 5.68 (s, 2 H), 6.94-7.19 (m, 20 H); ¹³C NMR (CDCl₃) δ 53.87 (d), 57.46 (d), 70.08 (t), 124.42 (d), 127.70 (d), 128.32 (d), 129.09 (d), 129.42 (d), 135.05 (s), 138.41 (s), 152.86 (s), 172.73 (s). Anal. Calcd for C_{34H28N2}O₆: C, 72.85; H, 5.03; N, 5.00. Found: C, 72.62; H, 4.69; N, 4.89.

(*R,R*)-21: *Rf* 0.30 (hexane-ethyl acetate, 5:1); mp 130-132 °C; $[\alpha]^{20}D$ -197 (c 1.46, CHCl3); IR (KBr) 1772, 1684 cm⁻¹; ¹H NMR (CDCl3) δ 0.88 (d, 6 H, *J* = 6.5 Hz), 4.55-4.81 (m, 2 H), 5.48 (d, 2 H, *J* = 7.0 Hz), 5.69 (s, 2 H), 6.97-7.86 (m, 20 H); ¹³C NMR (CDCl3) δ 14.04 (q), 54.14 (d), 55.07 (d), 78.47 (d), 125.62 (d), 127.48 (d), 128.26 (d), 128.61 (d), 129.29 (d), 133.21 (s), 134.87 (s), 151.96 (s), 173.41 (s). Anal. Calcd for C36H32N2O6; C, 73.45; H, 5.48; N, 4.76. Found: C, 73.67; H, 5.54; N, 4.58.

5 (*dl:meso* = 65:35 mixture): *Rf* 0.15 (hexane-ethyl acetate, 1:1); ¹H NMR (CDCl₃) δ 3.57-4.45 (m, 8 H), 5.61 (s, 1.3 H), 6.19 (s, 0.7 H), 7.02-7.16 (m, 6.5 H), 7.23-7.37 (m, 2.1 H), 7.59-7.65 (m, 1.4 H). Recrystallization

of the mixture from ethyl acetate gave pure dl-5: mp 250-251 °C; IR (KBr) 1778, 1696, 1684 cm⁻¹; ¹H NMR (CDCl₃) δ 3.82-4.45 (m, 8 H), 5.61 (s, 2 H), 7.02-7.16 (m, 10 H); ¹³C NMR (CDCl₃) δ 42.57 (t), 53.38 (d), 61.70 (d), 127.41 (d), 128.10 (d), 129.26 (d), 129.48 (d), 134.61 (s), 152.49 (s), 173.48 (s). Anal. Calcd for C₂₂H₂₀N₂O₆: C, 64.70; H, 4.94; N, 6.86. Found: C, 64.74; H, 4.97; N, 6.73.

14: Rf 0.50 (hexane-ethyl acetate, 2:1); IR (neat) 1792, 1770, 1732, 1672 cm⁻¹; ¹H NMR (CDCl₃) δ 0.92 (d, 3 H, J = 7.0 Hz), 0.98 (d, 3 H, J = 7.3 Hz), 2.46-2.61 (m, 1 H), 4.16-4.33 (m, 2 H), 4.51-4.60 (m, 1 H), 5.50 (s, 1 H), 5.77 (s, 1 H), 7.27-7.45 (m, 5 H); ¹³C NMR (CDCl₃) δ 14.62 (q), 17.90 (q), 28.23 (d), 58.20 (d), 63.19 (t), 117.10 (t), 126.06 (d), 128.36 (d), 128.46 (d), 135.61 (s), 144.42 (s), 152.50 (s), 169.29 (s); MS (EI) *m/z* 259 (M⁺). Anal. Calcd for C15H17NO3: C, 69.48; H, 6.61; N, 5.40. Found: C, 69.50; H, 6.66; N, 5.32.

15 (50:50 mixture of two diastereomers): Rf 0.85 (hexane-ethyl acetate, 2:1); IR (neat) 1800, 1720 cm⁻¹; ¹H NMR (CDCl₃) δ 0.82 (d, 1.5 H, J = 6.5 Hz), 0.87 (d, 1.5 H, J = 6.5 Hz), 1.01 (d, 1.5 H, J = 6.5 Hz), 1.02 (d, 1.5 H, J = 6.5 Hz), 1.94 (s, 3 H), 2.20-2.37 (m, 1 H), 3.77-3.96 (m, 2 H), 4.12-4.25 (m, 1 H), 7.30-7.60 (m, 5 H); ¹³C NMR (CDCl₃) δ 19.81 (q), 25.00 (q), 25.20 (q), 28.92 (d), 41.85 (t), 60.94 (d), 61.38 (d), 85.03 (s), 85.28 (s), 124.59 (d), 128.85 (d), 129.05 (d), 136.39 (s), 154.31 (s), 174.53 (s), 174.63 (s). Anal. Calcd for C15H18NO3Cl: C, 60.91; H, 6.13; N, 4.74; Cl, 11.99; MS (EI) *m/z* 295 (M⁺). Found: C, 60.97; H, 6.19; N, 4.65; Cl, 11.70.

16 (77:23 mixture of two diastereomers): *Rf* 0.45 (hexane-ethyl acetate, 2:1), IR (KBr) 3580, 1800, 1715 cm⁻¹; ¹H NMR (CDCl₃) δ 0.79 (d, 0.7 H, *J* = 7.3 Hz), 0.82 (d, 2.3 H, *J* = 6.8 Hz), 1.01 (d, 0.7 H, *J* = 6.8 Hz), 1.02 (d, 2.3 H, *J* = 7.0 Hz), 1.93 (s, 3 H), 2.25-2.58 (m, 2 H), 3.69-3.95 (m, 2 H), 4.00-4.15 (m, 1 H), 7.32-7.48 (m, 3 H), 7.48-7.65 (m, 2 H); ¹³C NMR (CDCl₃) δ 19.57 (q), 25.00 (q), 26.52 (d), 26.67 (q), 60.65 (t), 60.79 (t), 61.53 (d), 61.77 (d), 85.13 (s), 124.44 (d), 128.80 (d), 129.05 (d), 136.34 (s), 155.19 (s), 175.32 (s); MS (EI) *m/z* 277 (M⁺). Anal. Calcd for C15H19NO4: C, 64.97; H, 6.91; N, 5.05. Found: C, 65.03; H, 6.95; N, 4.90.

Hydrogenolysis of 2c and 2e. A suspension of 2c or 2e (0.5 mmol) with Ra-Ni (ca. 0.5 g) in EtOH (10 mL) was stirred under H₂ (1 atm) at 25 °C for 12 h. After filtration and evaporation of the mixture, the product was isolated by column chromatography on silica gel and assigned to be (S.S)-2a.

Hydrolysis of 2. To an ice cooled solution of 2 (1 mmol) in THF (4 mL) and H₂O (1 mL) was added LiOH•H₂O (4 mmol) and 30% H₂O₂ (1 mL) successively. The mixture was stirred for 24 h at room temperature and then quenched with 1.5 M Na₂SO₃ (4 mL) at 0 °C. After addition of 1 M HCl (10 mL), the mixture was extracted with CH₂Cl₂. The crude diacid was dissolved in sat. HCl-MeOH and the solution was stirred for 12 h at room temperature. After removal of the solvent, dimethyl ester 3 and starting optically active 2-oxazolidone (60-80 % recovery) were isolated by column chromatography on silica gel.

(*S*,*S*)-**3a**: $R_f 0.45$ (hexane-ethyl acetate, 5:1); mp 165-166 °C (lit.^{5a} 165-166 °C); $[\alpha]^{20}D + 342$ (c 1.25, acetone) (lit.^{5a} +341.9); ¹H NMR (CDCl₃) δ 3.69 (s, 6 H), 4.25 (s, 2 H), 6.98-7.08 (m, 4 H), 7.10-7.18 (m, 6 H); ¹³C NMR (CDCl₃) δ 52.25 (q), 54.54 (d), 127.55 (d), 128.42 (d), 128.57 (d), 135.87 (s), 173.89 (s).

(R,R)-3a: mp 164-165 °C (lit.^{5a} 165-166 °C); $[\alpha]^{20}$ D -340 (c 1.15, acetone) (lit.^{5a} -342.1).

(S,S)-3b: Rf 0.50 (hexane-ethyl acetate, 2:1); $[\alpha]^{20}D$ +377 (c 1.00, CHCl₃); IR (neat) 1726 cm⁻¹; ¹H NMR (CDCl₃) δ 3.54-3.90 (m, 12 H), 4.16 (s, 2 H), 6.54-6.77 (m, 4 H), 6.81-7.03 (m, 4 H); ¹³C NMR (CDCl₃) δ 52.18 (q), 53.79 (d), 54.97 (q), 113.97 (d), 127.68 (s), 129.29 (d), 158.72 (s), 173.85 (s). Anal. Calcd for C₂₀H₂₂O₆: C, 67.03; H, 6.19. Found: C, 67.01; H, 6.20.

(S,S)-3c: Rf 0.35 (hexane-ethyl acetate, 5:1); mp 119-120 °C; $[\alpha]^{20}D$ +391 (c 1.10, CHCl₃); IR (KBr) 1720 cm⁻¹; ¹H NMR (CDCl₃) δ 3.69 (s, 6 H), 4.20 (s, 2 H), 6.85-7.05 (m, 4 H), 7.05-7.21 (m, 4 H); ¹³C NMR (CDCl₃) δ 52.57 (q), 53.84 (d), 128.85 (d), 129.59 (d), 133.60 (s), 133.80 (s), 172.97 (s). Anal. Calcd for C₁₈H₁₆O₄Cl₂: C, 58.87; H, 4.39; Cl, 19.31. Found: C, 58.86; H, 4.42; Cl, 19.25.

(S,S)-3e: Rf 0.45 (hexane-ethyl acetate, 5:1); mp 152-153 °C; $[\alpha]^{20}D$ +305 (c 0.76, CHCl₃); IR (KBr) 1725 cm⁻¹; ¹H NMR (CDCl₃) δ 3.71 (s, 6 H), 5.08 (s, 2 H), 6.95-7.21 (m, 6 H), 7.31-7.48 (m, 2 H); ¹³C NMR (CDCl₃) δ 49.10 (d), 52.61 (q), 126.73 (d), 128.78 (d), 129.55 (d, 2c), 133.04 (s), 134.42 (s), 172.89 (s). Anal. Calcd for C₁₈H₁₆O₄Cl₂: C, 58.87; H, 4.39; Cl, 19.31. Found: C, 58.90; H, 4.41; Cl, 19.17.

(S,S)-3f: Rf 0.30 (hexane-ethyl acetate, 5:1); mp 211-212 °C; $[\alpha]^{20}D$ +259 (c 0.75, CHCl3); IR (KBr) 1728 cm⁻¹; ¹H NMR (CDCl3) δ 3.69 (s, 6 H), 5.49 (br s, 2 H), 6.96-7.81 (m, 12 H), 7.87-8.29 (m, 2 H); ¹³C NMR (CDCl3) δ 46.0-49.0 (br d), 52.49 (q), 123.12 (d), 124.84 (d), 125.28 (d), 125.96 (d), 128.02 (d), 128.51 (d), 131.64 (s), 133.65 (s), 174.24 (s). Anal. Calcd for C₂₆H₂₂O₄: C, 78.37; H, 5.57. Found: C, 78.35; H, 5.59.

(S,S)-**3g**: *Rf* 0.60 (hexane-ethyl acetate, 2:1); mp 148-150 °C; $[\alpha]^{20}D$ +480 (c 1.01, CHCl₃); IR (KBr) 1733 cm⁻¹; ¹H NMR (CDCl₃) δ 3.70 (s, 6 H), 4.59 (s, 2 H), 7.12-7.26 (m, 2 H), 7.28-7.42 (m, 4 H), 7.52-7.72 (m, 8

H); 13 C NMR (CDCl₃) δ 52.41 (q), 54.60 (d), 125.84 (d), 125.95 (d), 127.39 (d), 127.57 (d), 127.68 (d), 128.20 (d), 132.52 (s), 132.92 (s), 133.10 (s), 173.58 (s). Anal. Calcd for C₂₆H₂₂O₄: C, 78.37; H, 5.57. Found: C, 78.32; H, 5.60.

(*S*,*S*)-**3h**: *Rf* 0.20 (hexane-ethyl acetate, 2:1); $[\alpha]^{20}D + 291$ (c 2.40, CHCl₃); IR (KBr) 1725 cm⁻¹; ¹H NMR (CDCl₃) δ 3.71 (s, 6 H), 3.73 (s, 6 H), 3.79 (s, 6 H), 4.14 (s, 2 H), 6.62- (d, 2 H, *J* = 2.4 Hz), 6.55 (dd, 2 H, *J* = 2.4, 7.8 Hz), 6.64 (d, 2 H, *J* = 7.8 Hz); ¹³C NMR (CDCl₃) δ 52.27 (q), 54.28 (d), 55.70 (q), 110.93 (d), 111.13 (d), 120.72 (d), 128.02 (s), 148.24 (s), 148.68 (s), 173.75 (s). Anal. Calcd for C₂₂H₂₆O₄: C, 74.55; H, 7.39. Found: C, 74.28; H, 7.41.

Preparative scale synthesis of (2S,3S)-diphenylsuccinic acid. To an ice-cooled solution of **1a** (10 g, 40 mmol) in dry dichloromethane (100 mL) was added TiCl4 (11 mL, 100 mmol) and an DMAP (9.8 g, 80 mmol) successively under N₂. The dark blue solution was stirred at 25 °C for 36 h. The mixture was diluted with 1 M HCl (200 mL) and extracted with CH₂Cl₂ (2 X 100 mL). The crude product was recrystallized from hexaneethyl acetate (2:1) to give 5.8 g of **2a**. To an ice cooled solution of the obtained **2a** (5.8 g, 12 mmol) in THF (40 mL) and H₂O (10 mL) was added LiOH•H₂O (2.1 g, 50 mmol) and 30% H₂O₂ (10 mL) successively. The mixture was stirred for 24 h at room temperature and then quenched with 1.5 M Na₂SO₃ (60 mL) at 0 °C. The mixture was extracted with CH₂Cl₂ (3 X 50 mL) in order to remove (4S)-isopropyl-2-oxazolidone. The water layer was acidfied (pH = <2) by 6 M HCl and then extracted with CH₂Cl₂ (3 X 50 mL). After removal of the solvent, the residual white solid was recrystallized from water to give 2.3 g of (2S,3S)-diphenylsuccinic acid (48% yield from **1a**): mp 179 °C (lit.^{5a} 179-180 °C), [α]¹⁵D +369 (c 1.40, EtOH) (lit.^{5a} +369.5).

REFERENCES AND NOTES

- (a) Kofron, W. G.; Hauser, C. R. J. Org. Chem. 1970, 35, 2085. (b) Rathke, M. W.; Lindert, A. J. Am. Chem. Soc. 1971, 93, 4605. (c) Brocksom, T. J.; Petragnani, N.; Rodrigues, R.; LaScala Teixeira, H. Synthesis 1975, 396. (d) Tokuda, M.; Shigei, T.; Itoh, M. Chem. Lett. 1975, 621. (e) Inaba, S.; Ojima, I. Tetrahedron Lett. 1977, 2009. (f) Chung, S. K.; Dunn, L. B., Jr. J. Org. Chem. 1983, 48, 1125. (g) Ojima, I.; Brandstadter, S. M.; Donovan, R. J. Chem. Lett. 1992, 1591.
- 2. Matsumura, Y.; Nishimura, M.; Hiu, H.; Watanabe, M.; Kise, N. J. Org. Chem. 1996, 61, 2809.
- 3. (a) Belletire, J. L.; Spletzer, E. G.; Pinhas, A. R. Tetrahedron Lett. 1984, 25, 5969. (b) Tamaru, Y.;
- (a) Naemura, K.; Komatsu, M.; Adachi, K.; Chikamatsu, H. J. Chem. Soc., Chem. Commun. 1986, 1675.
 (b) Krause, H.; Sailer, C. J. Organomet. Chem. 1992, 423, 271.
- (a) Wren, H.; Still, C. J. J. Chem. Soc. 1915, 444, 1449. (b) Krause, H. W.; Meinicke, C. J. Prakt. Chem. 1985, 6, 1023.
- (a) Porter, N. A.; Su, Q.; Harp, J. J.; Rosenstein, I. J.; McPhail, A. T. *Tetrahedron Lett.* 1993, 34, 4457.
 (b) Langer, T.; Illich, M.; Helmchen.; *Tetrahedron Lett.* 1995, 36, 4409. (c) Studer, A.; Hintermann, T.; Seebach, D. *Helv. Chim. Acta* 1995, 78, 1185.
- 7. Kise, N.; Tokioka, K.; Aoyama, Y.; Matsumura, Y. J. Org. Chem., 1995, 60, 1100.
- 8. The crude product of **2a** was confirmed to be practically a single stereoisomer of (S,S)-**2a** (>98%) by ¹H NMR and HPLC analyses using the authentic diastereomers (R,S)-**2a** and (R,R)-**2a**.⁷
- (a) Evans, D. A.; Clark, J. S.; Metternich, R.; Novack, V. J.; Sheppard, G. S. J. Am. Chem. Soc. 1990, 112, 866.
 (b) Evans, D. A.; Urpí, F.; Sommers, T. C.; Clark, J. S.; Bilodeau, M. T. J. Am. Chem. Soc. 1990, 112, 8215.
 (c) Evans, D. A.; Rieger, D. L.; Bilodeau, M. T.; Urpí, F. J. Am. Chem. Soc. 1991, 113, 1047.
- 10. Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett. 1987, 28, 6141.
- 11. (a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127. (b) Gage, J. G.; Evans D. A. Organic Synthesis; Wiley: New York, 1993; Vol. VIII, p 339.
- 12. Recently, an alternative method for N-acylation of 2-oxazolidones with triethylamine and catalytic amount of DMAP has been reported: Ager, D. J.; Allen, D. R.; Schaad, D. R. Synthesis 1996, 1283.