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A highly selective, visible-light-excited and OFF—ON fluorescent chemodosimeter 1 employed conjugate
addition/cyclization sequence mechanism, was designed and synthesized to discriminatively detect
cysteine (Cys) and homocysteine (Hcy). The addition of Cys and Hcy resulted in the color of the solution
of 1 changing from colorless to green under the simulation of physiological condition, and 1 could serve
as a “naked-eye” indicator. Our chemodosimeter can detect Cys and Hcy quantitatively by fluorescence

spectrometry method with a detection limit of 0.5 pM (for Cys) and 0.8 uM (for Hcy). To the best of our
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knowledge, 1 is the first visual and visible-light-excited fluorescent indicator for discriminative and
simultaneous detection of Cys and Hcy. Furthermore, the mechanism of the reaction between 1 and Cys
was confirmed using ESI-MS and fluorescence spectra.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Amino acids are of significant importance to the physiological
processes [1]. Among them, the thiol-containing amino acids, such
as cysteine (Cys) and homocysteine (Hcy), play crucial roles in
maintaining the biological redox homeostasis for their participa-
tion in the process of reversible redox reactions, and their levels
have been directly linked to some diseases and cancers [2—6]. For
example, a depressed level of Cys is associated with slowed growth,
hair depigmentation, edema, lethargy, liver damage, muscle and fat
loss, skin lesions, and weakness [7—9], and an elevated level of Hcy
is a risk factor for Alzheimer’s and cardiovascular diseases [10—12].
Thus, the selective and quantitative detection of Cys and Hcy is very
important.

Among the various reported analytical techniques for the
detection of Cys and Hcy, fluorescent chemodosimeters are widely
developed due to operational simplicity and high sensitivity
[13—23]. However, up to now, few reports on the highly selective
fluorescent chemodosimeters for Cys and/or Hcy have been pub-
lished [24—27]. Very recently, based on the kinetic differences in
the intramolecular cyclization reactions, Yang and Strongin
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reported the first conjugate addition/cyclization sequence chemo-
dosimeter for the selective and simultaneous quantitative detec-
tion of Cys and Hcy [11]. The use of the long excitation and emission
wavelength may eliminate or decrease background interference
from biological samples and its damage to living cells. In addition,
colorimetric chemodosimeters are widely developed because they
have the capability to detect analytes by naked-eye, without the aid
of any advanced instruments [28—34]. Therefore, colorimetric and
long wavelength fluorescent chemodosimeters for the selective and
simultaneous determination of Cys and Hcy become our target.
Herein, we present the design, synthesis and properties of
a highly selective colorimetric and visible-light-excited fluorescent
chemodosimeter for simultaneous determination of Cys and Hcy.
Chemodosimeter 1 is composed of a latent fluorescein fluorophore
and a receptor of acrylate (Scheme 1), and it becomes highly fluo-
rescent upon the spirolactone-opening reaction by Cys and Hcy,
accompanied with the color changing from colorless to green.

2. Material and methods
2.1. General

All the chemicals used in this paper were commercial products
of analytic grade. '"H NMR and '3C NMR spectra were taken on
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Chemodosimeter 1

Scheme 1. Synthesis of chemodosimeter 1.

a Bruker AMX400 spectrometer. Chemical shifts (6) were reported
in ppm relative to a Me4Si standard in CDCls. Electrospray ioniza-
tion (ESI) mass spectra were measured with an LC-MS 2010A
(Shimadzu) instrument. Absorption spectra were recorded on UV-
3101PC spectrophotometer. Fluorescence emission spectra were
measured on Perkin—Elmer Model LS-55. All pH measurements
were made with a Sartorius basic pH-meter PB-10.

2.2. Synthesis of chemodosimeter 1

To a solution of fluorescein (332.3 mg, 1 mmol) and triethyl-
amine (303.5 mg, 3 mmol) in anhydrous CH3Cl; (20 mL), acryloyl
chloride (200.2 mg, 2.2 mmol) mixed with 3 mL anhydrous CH;Cl,
were added dropwise at —10 °C. And then, the resulting mixture
was allowed to stir at room temperature for 8 h. After removal of
solvent, the residues were purified by silica gel column chroma-
tography using dichloromethane as eluent to afford pure product.
'H NMR (400 MHz, CDCl3) 6 (*10°°): 6.06(d, ] = 10.4 Hz, 2H),
6.28—6.35(m, 2H), 6.63(d, ] = 17.2 Hz, 2H), 6.86(t, ] = 9.8 Hz, 4H),
7.15(s, 2H), 7.21(d, J = 7.6 Hz, 1H), 7.63—7.72(m, 2H), 8.04(d,
J = 7.6 Hz, TH). 13C NMR (100 MHz, CDCl3) 6 (*10~°): 81.66, 110.38,
116.55, 117.72, 124.08, 125.24, 126.13, 127.50, 128.97, 130.07, 133.31,
133.37,135.30, 151.60, 152.00, 152.93, 163.88, 163.91, 169.11, 169.14.
ESI-MS calcd for CogH1707 [M + H|* 441.1, found 441.1.

3. Results and discussion
3.1. Characteristic spectrum

In this paper, the spectral responses of chemodosimeter 1
(2 uM) toward Cys and Hcy were investigated in a mixture of
ethanol and water (2:3, v/v) solution buffered at pH 7.4 (phosphate
buffer, 20 mM).

As shown in Fig. 1, the obvious absorption and fluorescence band
of the solution of free 1 were not observed. Addition of Cys (16 uM)
and Hcy (20 uM) to the solution of 1 resulted in a new absorption
band centered at around 495 nm, accompanied with the color of
the solution of 1 changing from colorless to green (Fig. 1a). Addi-
tionally, in the fluorescence spectra (Fig. 1b), a remarkable fluo-
rescent enhancement at around 520 nm was observed in the
presence of Cys or Hcy. The results imply that spirolactone-opening
reaction was generated by Cys and Hcy (Scheme 2).

3.2. Effects of reaction time on sensing Cys and Hcy

Reaction time is an important factor for chemodosimeters and
the time required for reaction of 1 with Cys and Hcy at 25 °C were
investigated. As shown in Fig. 2, the fluorescence intensity
increases with reaction time and then almost levels off at reaction
time greater than about 50 min and 400 min for Cys and Hcy,
respectively. So, assay time of 60 min and 420 min were selected for
the quantification of Cys and Hcy. Furthermore, we have investi-
gated the kinetics of fluorescence enhancement for Cys and Hcy at
different concentrations (5, 10, 15, 20, 25 uM). The result showed

the second-order rate constant for Cys is 25-fold faster than that for
Hcy. The results are in good agreement with the conclusion
reported by Yang and Strongin [11], and these allowed the
discrimination of Cys and Hcy based on their different relative rates
of intramolecular cyclization.

3.3. Quantification of Cys and Hcy

The subsequent addition of Cys to the solution of 1 elicited
a progressive increase of fluorescence band centered at around
520 nm. Moreover, there was a good linearity between the
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Fig. 1. Absorbance (a) and fluorescence (b) spectra of 1 (2 uM) upon reaction with Cys
(16 pM) and Hcy (20 pM) in a mixture of ethanol and water (2:3, v/v) solution buffered
at pH 7.4 (phosphate buffer, 20 mM). Inset photos are the photographs of the solution
of 1 in the absence (left) and presence (right) of Cys. For Cys, its spectra were acquired
60 min after Cys addition at 25 °C. For Hcy, its spectra were acquired 420 min after Hcy
addition at 25 °C.
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Scheme 2. A proposed reaction mechanism of chemodosimeter 1 with Cys and Hcy.

a
180

time 180
e ~
=y £ 120 |
w2 -
z 124 § 60 |
= -1
[T=1
@ 0
% 0 20 40 60
% 60 Time (min)
g
=

0

470 520 570 620 670

Wavelength (un)

b
= time £ 1s0
& 2
g 150 - o 190
.§ \;‘: 20
g " 0
= 100 | 0 150 300 450
é Time (min)
=
2 50
=
&=

0

470 520 570 620 670

Wavelength (nm)

Fig. 2. The fluorescence spectra of 1 (2 uM) after the addition of Cys (25 uM) (a) and
Hcy (25 pM) (b) during different time in a mixture of ethanol and water (2:3, v/v)
solution buffered at pH 7.4 (phosphate buffer, 20 mM), Aex = 450 nm.

fluorescence intensity and the concentrations of Cys in the range of
2—25 uM with a detection limit of 0.5 pM (Fig. 3a). Similarly, the
observed fluorescence intensity is proportion to the concentrations
of Hcy in the range of 0—20 uM with a detection limit of 0.8 pM
(Fig. 3b). These results implied that chemodosimeter 1 might
detect Cys and Hcy qualitatively and quantitatively by the fluores-
cence spectrometry method.

To discriminate Cys and Hcy, the fluorescence spectra were
determined after the addition of Cys and Hcy for 60 min and
420 min, respectively. The results show that chemodosimeter 1
could allow the discrimination and quantification of Cys and Hcy
(Fig. 3c).

3.4. Selectivity to Cys and Hcy

The effects of some relative amino acids, such as Cys, Hcy,
glutathione (GSH), glycine (Gly), leucine (Leu), alanine (Ala),
glutamine (Glu), lysine (Lys), threonine (Thr), valine (Val), and
praline (Pro), on fluorescence spectra of 1 were investigated.
Remarkable changes were observed for Cys and Hcy (Fig. 4). Also,
the effects of interference of other relative amino acids on moni-
toring Cys and Hcy were studied (Fig. 4). GSH obviously disturb the
detection of Cys and Hcy for its addition reaction with
carbon—carbon double bond of chemodosimeter 1. Further, the
effects of GSH on monitoring Cys and Hcy in the presence of excess
chemodosimeter 1 were investigated. The primary experimental
results showed that the interference of GSH may be ignored.
Therefore, chemodosimeter 1 possesses high selectivity toward Cys
and Hcy in the presence of other amino acids.

3.5. Mechanism of 1 in sensing Cys and Hcy

To confirm the reaction of 1 with Cys and Hcy by conjugate
addition/cyclization sequence, a mixture of N-ethylmaleimide
(NEM, a known thiol-blocking agent) and Cys was added to the
solution of 1, no obvious change in the fluorescence spectra was
observed (Fig. 5), implying the addition reaction of 1 with thiol of
Cys. Next, to demonstrate the reaction of 1 with Cys by the
subsequent cyclization reaction, addition of thioglycolic acid (TA)
did not elicit a remarkable fluorescence change. However, addition
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Fig. 3. (a) The fluorescence responses of 1 (2 uM) toward different concentrations of
Cys (final concentration: 2, 4, 6, 8, 10, 14, 20, 25 uM) in a mixture of ethanol and water
(2:3, v/v) solution buffered at pH 7.4 (phosphate buffer, 20 mM), Aex = 450 nm. Inset is
the plot of fluorescence intensity at 520 nm vs concentration of Cys. Each spectrum was
acquired 60 min after Cys addition at 25 °C. (b) The fluorescence responses of 1 (2 pM)
toward different concentrations of Hcy (final concentration: 0, 2, 6, 8, 10, 12, 14, 18,
20 uM) in a mixture of ethanol and water (2:3, v/v) solution buffered at pH 7.4
(phosphate buffer, 20 mM), Aex = 450 nm. Inset is the plot of fluorescence intensity at
520 nm vs concentration of Hcy. Each spectrum was acquired 420 min after Hcy
addition at 25 °C. (c) The fluorescence responses of 1 (40 uM) in the presence of 25 pM
Cys toward different concentrations of Hcy (final concentration: 2, 4, 8, 10, 12 uM) in
a mixture of ethanol and water (2:3, v/v) solution buffered at pH 7.4 (phosphate buffer,
20 mM), Zex = 450 nm. The plot of the changes of fluorescence intensity at 520 nm
from 60 min to 420 min vs concentration of Hcy.
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Fig. 4. The fluorescence responses of 1 (2 M) toward Cys (a) and Hcy (25 uM) (b) in
the absence and presence of other amino acids (final concentration: 25 pM, GSH: 5 pM)
in a mixture of ethanol and water (2:3, v/v) solution buffered at pH 7.4 (phosphate
buffer, 20 mM), Aex = 450 nm.

of 2-aminoethanethiol (TEA), as expected, resulted in a clear fluo-
rescence enhancement. Furthermore, the reaction products of 1
with Cys were subjected to electrospray ionization mass spectral
analyses. The peak at m/z 331 corresponding to the fluorescein was
observed. Therefore, a proposed mechanism was proposed as
shown in Scheme 2.
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Fig. 5. The fluorescence spectra of 1 (2 uM) in the absence and presence of Cys (25 uM)
thioglycolic acid (TA) (25 pM), 2-aminoethanethiol (TEA) (25 pM), and a pretreated
solution of Cys (25 uM) with NEM (1 mM) in a mixture of ethanol and water (2:3, v/v)
solution buffered at pH 7.4 (phosphate buffer, 20 mM), Aex = 450 nm.
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4. Conclusions

In summary, we have presented the synthesis and properties of
a highly selective visible-light-excited fluorescent chemodosimeter
1 for discrimination and simultaneous quantification of Cys and
Hcy. The color of the solution of 1 changing from colorless to green
and remarkably enhanced fluorescence upon reaction of Cys and
Hcy were observed, and 1 could serve as a “naked-eye” indicator for
Cys and Hcy. Furthermore, 1 can detect Cys and Hcy quantitatively
in the range of 2—25 pM (for Cys) and in the range of 0—20 pM (for
Hcy). Finally, the mechanism of 1 on sensing Cys and Hcy was
confirmed using ESI-MS and fluorescence spectra.
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