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A virtual screening strategy, through molecular docking, for the elaboration of an electronic library of
Pontin inhibitors has resulted in the identification of two original scaffolds. The chemical synthesis of
four candidates allowed extensive biological evaluations for their anticancer activity. Two compounds
displayed an effect on Pontin ATPase activity, and one of them also exhibited a noticeable effect on cell
growth. Further biological studies revealed that the most active compound induced apoptotic cell death
together with necrosis, this latter effect being likely related to the cellular balance of ATP regulation.

� 2014 Elsevier Ltd. All rights reserved.
Pontin and Reptin are ATPases that belong to the AAA+ (ATPases Recently, several reports have hinted at a link between Pontin

associated with diverse cellular activities) family.1 As such, these
proteins are implicated in multiple and very different cellular func-
tions,2 as reflected by the variety of names they are called, such as
RuvBL1 (RuvB-like),3 Rvb1,4 TAP54a (TIP60 associated protein)5 or
TIP49 (TATA-box binding protein)6–8 for Pontin, and RuvBL2, Rvb2,
TAP54b or TIP489 for Reptin.10 They contain characteristic Walker
A and B domains, essential respectively for the binding and the
hydrolysis of ATP and structural studies have highlighted their
ability to form ring-shaped oligomeric complexes.1,11,12 The crys-
tallographic structure of Pontin alone was resolved as an hexamer
in 2006,13 and in 2011, a dodecameric assembly composed of two
heterohexamers of alternating units of Pontin and Reptin has been
published by the same team.14 The structures display bound ADP
for Pontin alone, or a mixture of bound ATP and ADP for the dode-
camer of Pontin and Reptin. A similar heterododecameric structure
has been reported by another group using cryo-electron micros-
copy.15 The ATP/ADP binding site, which is located at the interface
of two subunits, seems to involve residues from both chains.13,14
and Reptin and various types of cancer.16 We notably found that
both proteins were overexpressed in human hepatocellular carci-
noma where they are required for cell viability and prolifera-
tion.17,18 They also interact with oncogenic transcription factors
such as beta-catenin or c-Myc.19,9 Finally, they are also required
for the assembly and function of telomerase20 and for the stability
and function of mTOR.21,22 As suggested by the use of mutants
devoid of ATPase activity, most functions of these proteins require
an ATPase activity, including those implied in cancer,9,20–25 indicat-
ing that the inhibition of the ATPase activity of Pontin and/or
Reptin could be of special interest for cancer therapy. In a previous
Letter,26 we have disclosed the discovery of the first four small
molecules able to inhibit the ATPase activity of Pontin. This was
achieved through the combination of molecular docking of com-
pounds from commercially available libraries into the ATP binding
site and in vitro ATPase assays. Further testing showed that one of
these four molecules was competitive with ATP. Encouraged by
these promising results we decided to look for Pontin inhibitors
among original molecules from our laboratories. At this time,
4-hydroxy-2-pyridone and 4-hydroxy-2-quinolone moieties were
of special interest to us because of their apparent similitude with
quinones and napthoquinones. Starting from these scaffolds,
simple chemical transformations were envisioned to introduce
chemical diversity in an easy manner and prepare a set of innovative
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Figure 1. Selected structures from in silico studies to be prepared by chemical synthesis.
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small compounds. Parallel to the organic chemistry effort, an in-
house virtual chemical database based on the chosen scaffolds
was simultaneously prepared, then extended along with the syn-
theses progress. This database contains all the compounds believed
to be accessible through synthetic chemistry.

The already published26 procedure was repeated in this study.
Briefly, the crystal structure of the hexamer of Pontin alone with
bound ADP was obtained from the Protein Data Bank, code
2C9O.13 Two adjacent subunits, forming a complete ATP/ADP bind-
ing site, were extracted from the ring-shaped hexamer. The result-
ing homodimer was used as the receptor for docking. It was formed
of one subunit as the main docking area, while the second sub-unit
was positioned on top of the cavity, as if to forbid access to the
exterior, as observed in the published crystal structure. Two miss-
ing loops in the crystal structure (residues 142–155 and 248–276)
were not completed since they were far enough from the nucleo-
tide binding site and did not impact the docking results. Water
molecules were removed from the receptor, then missing hydro-
gen atoms were added while applying Charmm Forcefield in Dis-
covery Studio 3.1 (Accelrys). The structure with bound ADP was
minimized while the backbone was fixed, using a Steepest Descent
algorithm (2000 step, gradient 0.01).

The virtual chemical database was prepared with Discovery
Studio 3.1. Two original moieties of special interest within
our group were chosen: pyridone27 and quinolone.28 Several
modifications and implementations were proposed and introduced
on the original scaffolds. The changes were oriented either by the
experience of the organic chemists in the synthesis of this family
of compounds, or by the potential activity increase brought by
some functional groups, as suggested by previous virtual screen-
ing. If the envisioned chemical modifications were not judged fea-
sible, they were not incorporated. The final database contained
more than 800 original molecules designed for their easy access.
All docking calculations were conducted using Autodock Vina
1.0.2.29 The docking grid was a box with the following dimensions:
20 � 22 � 20 Å, in order to incorporate all residues of the cavity
with a margin of 3 Å in all directions. As already stated, 74 amino
acids from the first sub-unit, plus 6 from the second sub-unit were
included, at least partially, in the docking box. The whole receptor
was kept rigid during the docking, while all the ligands were fully
flexible. The poses obtained were rescored with DrugScore30,31 and
XScore32 then consensus scoring determined the most probable
ligands as already published.26 A short list of 15 compounds was
proposed to the chemists and 4 were immediately chosen to be
prepared, because of their synthetic accessibility.

Molecular docking of molecules from the virtual database led us
to the selection of several compounds, among which molecules
1–4, depicted in Figure 1, were the most easily accessible for the
campaign of chemical synthesis.

We recently described the preparation of 3-aryl-2,4-oxypyri-
dines and 3-aryl-2,4-oxyquinolines through a practical Pd/C-
catalyzed Suzuki–Miyaura reaction.33 Thereby, with the aid of this
efficient methodology, we prepared the 4-hydroxy-2-pyridone
(Pyr) and 4-hydroxy-2-quinolone (Qui) cores of our targets 1–4.
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Figure 2. Growth inhibition in human cancer cell lines.
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Figure 3. Apoptosis in HL60 cells treated with compound 1 (percentage of cells).

Table 1
Activation of caspase 3 in HL60 cells by compound 1

Caspase 3 activity

24 h 48 h

HL60 100 ± 7 100 ± 16
Doxo 1 lM 178 ± 6 1251 ± 18
1 5 lM 116 ± 5 119 ± 6
1 10 lM 111 ± 7 131 ± 12
1 20 lM 134 ± 15 247 ± 87
1 50 lM 306 ± 22 169 ± 29

The cleavage of DEVD was measured and expressed as a percentage of activity in
control cells.
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For instance, compounds 1–2 were synthesized from the nitro-
derivatives 5a–b following the sequence depicted in Scheme 1.
Iron-mediated reduction of the nitro function led to the corre-
sponding anilines 6a–b in 73% and 79% yields respectively. Then,
ligation of the latter, with N-Boc-L-tryptophan followed by protect-
ing groups cleavage furnished the targeted compounds 1–2 with
good overall yields.34
On the other hand, the preparation of compounds 3–4 started
from the 3-(4-methylbenzoate)-2,4-benzyloxyquinoline 8
(Scheme 2). Conversion of the ester function into aldehyde was
realized through an efficient two step sequence giving a quantita-
tive yield of the expected compound 9. The reductive amination of
9 with D-tryptophan benzyl ester and L-phenylalanine benzyl ester
provided 10a and 10b in correct yields. Last, a Pd/C-catalyzed
hydrogenolysis of the benzyl protecting groups furnished the
expected targets 3 and 4.

As mentioned, our previous study revealed that 4 commercial
compounds were able to inhibit the ATPase activity of His-tagged
purified Pontin in the micromolar range concentration. Three
among these also inhibited cell tumor growth in vitro, indicating
that the enzymatic assay could be helpful for the identification of
novel inhibitors. The Malachite Green assays were conducted fol-
lowing the already published protocol.26 The ATPase activity of
the four synthesized molecules 1–4 were measured at a 100 lM
concentration. From this study, we noticed that compounds 1
and 2 reduced the inorganic phosphate (Pi) release in a dose
dependent manner. ATPase inhibitors 1 and 2 displayed an IC50

at 9 and 18 lM, respectively, and reduced the enzymatic activity
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Figure 4. Total LDH and LDH release in the culture medium after treatment of HL60 cells with compound 1.

Table 2
FACS analysis of HL60 cells treated with compound 1 for 24 h

SubG1 G0/G1 S phase G2/M

HL60 24 h 1.2 47.6 48.7 2.5
Doxo 50 nM 1.8 14.5 34.4 49.3
1 5 lM 2.7 48.3 44.7 4.3
1 20 lM 10.9 46.8 34.4 8.0
1 50 lM 69.5 14.7 14.6 1.3

DNA was tagged with propidium iodide and results expressed as the percentage of
cells in the different phases of cell cycle.
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by competing with ATP, in agreement with the in silico experi-
ments and chemical design work.

By contrast, compounds 3 and 4 did not show significant inhibi-
tion, while being structurally related. From these very informative
results, we tentatively established a preliminary structure–activity
relationship. The calculated Ki of 4.5 and 9 lM for compounds 1
and 2, respectively, suggested that the 3-hydroxy-5-phenyl-2-pyri-
done moiety was more suited for the inhibitory activity than the 3-
hydroxy-2-quinolone core. Moreover, the absence of inhibition
observed for compounds 3 and 4 in the enzymatic assay high-
lighted the crucial role of the a-aminoamide function (R1–NH–
CO–CH(NH2)–R2), characteristic of compounds 1 and 2, for the
interaction with the catalytic center.

Cell culture, cell proliferation assay, cell cycle analysis, flow
cytometric detection of apoptosis, caspase activity assay and
necrosis assay were performed as previously detailed.35 Only com-
pound 1 demonstrated an antiproliferative activity in cancer cell
lines at 10�5 M (Fig. 2). IC50 of 9 and 15 lM were measured respec-
tively for KB and HL60 cells after 72 h of exposure. The other syn-
thesized molecules displayed no cytotoxic activity, including
compound 2 despite its ability to partially inhibit Pontin ATPase
activity in vitro. Compound 1 also reduced cell numbers with an
IC50 of 25 lM in the non-dividing EPC cells, suggesting a cytotoxic
effect.

The mode of action of compound 1 in HL60 cells was then inves-
tigated in more detail. First, apoptosis was evaluated with annexin
and 7-AAD labeling using FACS analysis. A dose-dependent cell
apoptosis was evidenced in HL60, demonstrating an early cell
death after 24 h of exposure at a concentration of 20 lM, increas-
ing at 48 h. At 50 lM, compound 1 induced 95% of cell death at
24 h (Fig. 3).

As it is generally assumed that caspase 3 is the terminal effector
in the apoptotic cascade pathway, the activation of caspase 3 after
treatment of HL60 cells with compound 1 was measured, using
doxorubicin as positive control (Table 1).

After 24 h, caspase 3 activity was dose-dependently activated
by treatment with compound 1, with a 3-fold increase at 50 lM.
Thus compound 1 is able to stimulate apoptosis through the acti-
vation of caspase 3.

However the moderate activation of the caspase 3 cannot
account for the whole cytotoxic effect of compound 1. Therefore,
the release of cytosolic LDH into the culture medium as a marker
for cell necrosis was also measured (Fig. 4).

After 24 h, the total LDH activity was not noticeably modified
indicating that the cell number was unaffected at that time.
However, compound 1 induced a clear release of LDH into the
culture medium at concentrations above 20 lM indicating that
cells entered the necrotic process. After 48 h, a dose-dependent
decrease of total LDH paralleled the cytotoxic effect of com-
pound 1 while the release of LDH remained observable. In the
same conditions, 1 lM doxorubicin elicited a reduction in the
total LDH content without any discernible leakage of the cyto-
solic LDH. Therefore we can conclude that necrosis is involved
in the cell death mode of compound 1. Finally, a possible effect
of compound 1 on cell division was investigated. As shown in
Table 2, doxorubicin promoted an early blockade of the cell cycle
in phase G2/M. Compound 1 did not block the cell cycle but pro-
moted a direct and dose-dependent accumulation of dead cells
(SubG1 phase). This is in line with the cytotoxic effect of com-
pound 1 in the non-dividing cell line EPC demonstrating that
compound 1 could promote cell death irrespective of the cell
cycle.

Guided by the information obtained from the initial virtual
screening, a series of original molecules was synthesized and eval-
uated for their effect on Pontin and potential anti-cancer activity.
Among the four selected candidates from the docking process, only
compounds 1 and 2 displayed a comparable effect on Pontin ATP-
ase activity. However, only compound 1 displayed a cytotoxic
effect, while compound 2 had no noticeable effect on cell growth.
This lack of activity of compound 2 could result from cell perme-
ability constraint, or instability. Further measures of the biological
activity of compound 1 emphasized the induction of apoptotic cell
death together with necrosis. This latter effect could be directly
related to the cellular balance of ATP regulation. With this new
lead in hand, we are working on the establishment of a structure
activity-relationship in order to find agents with lower IC50. Paral-
lel to this study, is the search for a deeper understanding of the
mechanism of action on the biological target.
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106.6, 54.3, 27.7; IR (ZnSe) m 2967, 2902, 1706, 1614, 1575, 1471, 1410, 1401,
1375, 1336, 1211, 1057, 751, 701; HRMS (ESI): m/z calcd for
[(M+H)+] = 465.1927, found = 465.1920.
(S)-1-(4-(4-Hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)phenylamino)-3-(1H-indol-
3-yl)-1-oxopropan-2-aminium chloride 2: Following the procedure described for
the synthesis of 1, the compound was obtained from 7b in 57% yield as an
amorphous solid after purification by octadecyl-functionalized silica gel
column chromatography (100% H2O to 100% MeOH). 1H NMR (300 MHz,
CD3OD) d 7.69 (1H, d, J = 7.5 Hz), 7.57 (1H, d, J = 8.4 Hz), 7.51–7.30 (7H, m),
7.29–7.00 (3H, m), 4.26 (1H, t, J = 6.9 Hz), 3.50 (1H, dd, J = 6.6, 14.7 Hz), 3.37
(1H, dd, J = 7.5, 14.4 Hz); 13C NMR (75 MHz, CD3OD) d 167.2, 162.5, 159.5,
137.0, 136.9, 134.1, 132.9, 131.4, 129.1, 128.8, 128.1, 127.3, 126.9, 124.3, 121.5,
120.4, 118.9, 117.8, 116.6, 111.3, 111.2, 106.5, 54.3, 27.5; IR (ZnSe) m 3250,
3028, 2966, 2921, 1674, 1634, 1600, 1517, 1378, 1202, 1142, 1045, 834, 758,
675 cm�1; HRMS (ESI): m/z calcd for [(M+H)+]: 439.1765, found: 439.1801.

35. Eloy, L.; Jarrousse, A. S.; Teyssot, M. L.; Gautier, A.; Morel, L.; Jolivalt, C.;
Cresteil, T.; Roland, S. ChemMedChem 2012, 7, 805.
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