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The addition of 4 eq of chloral to osmundalactone (4S,5R)-4 gave quantitative formation of the hemi-
acetal derivative (4S,5R)-8, which was treated with methane sulfonic acid to afford the intramolecular Mi-
cheal addition product (+)-(3S,4S,5R)-9 possessing a 3,4-cis-dihydroxy-δ-lactone in 78% overall yield from 
(4S,5R)-4. The obtained (+)-(3S,4S,5R)-9 was subsequently converted to methyl D-digitoxoside (pyranoside) 
(12) in 13% overall yield and methyl D-digitoxoside (furanoside) (12) in 20% overall yield. The reaction of 
benzyl-osmundalactone (4R,5S)-3 and MeOH in the presence of Amberlyst A-26 as a basic catalyst gave 
3,4-trans-δ-lactone (−)-(3S,4R,5S)-20 in 28% yield and 3,4-cis-δ-lactone (−)-(3R,4R,5S)-21 in 45% yield. 
Dibal-H reduction of (−)-(3S,4R,5S)-20 followed by catalytic hydrogenation gave L-oleandrose (6) in 86% 
overall yield, while Dibal-H reduction of (−)-(3R,4R,5S)-21 followed by catalytic hydrogenation provided L-
cymarose (7) in 85% overall yield.
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We previously reported the syntheses of (4S,5R)- and 
(4R,5S)-4-benzyloxy-5-hydroxyhexen-2(E)-oates (2) based on 
a chemoenzymatic method from methyl sorbate (1).1) Hy-
drolysis of (4S,5R)- and (4R,5S)-2 gave the corresponding 
δ-hydroxy-trans-α,β-unsaturated carboxylic acids, which were 
converted to osmundalactones (4S,5R)- and (4R,5S)-4 via the 
formation of δ-lactones (4S,5R)- and (4R,5S)-3 accompanied 
by trans–cis isomerization, respectively.2)

Introduction of an oxygen functional group at C-3 position 
of (4S,5R)- and (4R,5S)-4 may enable the synthesis of D-gigi-
toxose (5) and L-oleandrose (6), L-cymarose (7), respectively, 

possessing three contiguous chiral centers as shown in Chart 
1. D-Digitoxose (5) is an important structural component of 
cardiac glycoside, digoxin,3–5) while L-oleandrose (6) is a com-
ponent of several antibiotics such as oleandomycin6–8) and the 
avermectin series.9–11) L-Cymarose (7) is a glycosidic compo-
nent of a number of cardiac glycosides. Several syntheses of 
methyl D-digitoxoside (12) (Chart 2) and L-oleandrose (6) have 
been reported,12) but the synthesis of L-cymrose (7) has scarce-
ly been reported. Herein we report the asymmetric syntheses 
of methyl D-digitoxoside (12), L-oleandrose (6) and L-cymarose 
(7) from methyl sorbate, an achiral precursor.

Note
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Synthesis of Methyl D-Digitoxoside (12)  For the synthe-
sis methyl D-digitoxoside (12), the construction of a 3,4-cis-
dihydroxy-δ-lactone moiety is required from (4S,5R)-4. The 
oxymercuration–demercuration reaction of a trichloroacetalde-
hyde hemiacetal derivative derived from an unsaturated cyclic 
alcohol possessing an allylic alcohol moiety for a neighboring 
carbon–carbon double bond was reported to give an acetal 
possessing a 1,2-cis-dihydroxy-structure.13) Owing to its high 
tendency for formation of hemiacetal, trichloroacetaldehyde 
(chloral) was selected for this study. The addition of 4 eq of 
chloral to (4S,5R)-4 resulted in quantitative formation of the 
hemiacetal derivative (4S,5R)-8 as shown in Chart 2. Hemiac-
etal formation was easily monitored by observing the appear-
ance of the characteristic singlet (δ 5.53 ppm) of the methine 
hydrogen attached to the trichloromethyl-bearing carbone in 
nuclear magnetic resonance (NMR) spectrum. To promote 
the Micheal addition of the hemiacetal hydroxyl group to 
the neighboring α,β-unsaturated double bond, methane sul-
fonic acid (MsOH) was added and the intramolecular Micheal 
addition product (+)-(3S,4S,5R)-9 possessing the 3,4-cis-
dihydroxy-structure was obtained in 78% overall yield from 
(4S,5R)-4. The structure of (+)-(3S,4S,5R)-9 was confirmed 
by nuclear Overhauser effect (NOE) spectroscopy as shown 
in Fig. 1.

Treatment of (+ )-(3S,4S,5R)-9 with tributyltin hydride 
(Bu3SnH) in the presence of azoisobutyronitrile (AIBN) 
gave an acetal (+)-(3S,4S,5R)-10 in 78% yield. Treatment of 
(+)-(3S,4S,5R)-10 with diisobutylaluminum hydride (Dibal-
H) gave a 1.0 : 1.6 mixture of α- and β-epimers of lactol 
(3S,4R,5R)-11 in 81% yield. Acid treatment of this mixture 
with Dowex 50W (H+) in MeOH followed by addition of 
camphor sulfonic acid (CSA) in MeOH afforded a 1.0 : 1.67 
mixture of α- and β-epimers of methyl D-digitoxoside (py-
ranoside)-12 (20% yield) and a 1.0 : 1.27 mixture of α- and 
β-epimers of methyl D-digitoxoside (furanoside)-12 (31% 
yield). 1H-NMR data of both epimers of (pyranoside)-12 and 
both epimers of (furanoside)-12 were identical with those of 
the reported compounds.14) The [α]D value of the 1.0 : 1.67 mix-
ture of α- and β-epimers (pyranoside)-12 {[α]D

20 +35.4 (c=0.85, 
CHCl3)} were consistent with the calculated value {[α]D +41.7 
(CHCl3)}. The calculated value was obtained based on the 

reported pure α-epimer (pyranoside)-12 {[α]D
20 +174 (c=1.0, 

CHCl3)}14) and β-epimer (pyranoside)-12 {[α]D
20 −36 (c=1.0, 

CHCl3)}14) using the following equation.

 
Dcalculated value ([ ] )

174 0.37 ( 36) 0.63 41.7=+ × + × =+
α  

The [α]D value of the 1.0 : 1.27 mixture of α- and β-epimers 
(furanoside)-12 {[α]D

25 +1.4 (c=0.44, CHCl3)} was consistent 
with the calculated one {[α]D +2.24 (CHCl3)}. The calculated 
value was obtained based on the reported pure α-isomer (fu-
ranoside)-12 {[α]D

20 +140 (c=1.0, CHCl3)}14) and β-isomer (fu-
ranoside)-12 {[α]D

20 −106 (c=1.0, CHCl3)}14) as follows.

 
Dcalculated value ([ ] )

140 0.44 ( 106) 0.56 2.24=+ × + × =+
α  

Thus the structure of the synthetic methyl D-digitoxoside (12) 
was unequivocally confirmed.

Synthesis of L-Oleandrose (6) and L-Cymarose (7)  For 
the synthesis of L-oleandrose (6) and L-cymarose (7), the 
construction of a 3,4-trans-dihydroxy-δ-lactone moiety is re-
quired from (4R,5S)-4. The reaction of (±)-4 and mercury(II) 
trifluoroacetate [Hg(OCOCF3)2] followed by addition of an 
oxygen nucleophile such as water or methanol could give 
compound (±)-14, which could be reduced with sodium bo-
rohydride (NaBH4) to afford compound (±)-15 possessing the 
3,4-trans-dihydroxy-δ-lactone moiety as shown in Chart 3. In 
this case, the structure of intermediary (±)-13 could be either 
2,3-cis- and 3,4-cis because of the chelation between hydroxyl 
group and mercury ion.

Chart 2

Fig. 1. NOE Correlation of (+)-(3S,4S,5R)-9
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In order to examine this working hypothesis, the reaction 
of (±)-4 and Hg(OCOCF3)2 in the presence of 70% HClO4 
solution followed by the reduction with alkaline NaBH4 was 
carried out to afford compound (±)-16 in 26% overall yield 
as shown in Chart 4. In this case, no other products were ob-
tained.

The synthetic (±)-16 was identical with the authentic (±)-
16, which was obtained by treatment of previously mentioned 
(±)-10 (Chart 2) with aqueous 1 M H2SO4 in 83% overall yield. 
The reaction of (±)-4, Hg(OCOCF3)2 and MeOH in the pres-
ence of 70% HClO4 solution followed by the reduction with 
alkaline NaBH4 was carried out to give compound (±)-18 in 
32% overall yield (Chart 4). In this case, no other products 
were obtained. AlCl3-assisted demethylation of (±)-18 in 
ethane thiol (EtSH) afforded (±)-16 (13%) and a mixture of 
α- and β-isomers of (±)-19a, b (31%). Consequently, the struc-
ture of (±)-18 was confirmed. From these fact, the structure 
of intermediary (±)-13 could be either 2,3-cis- and 3,4-trans 
because stereic repulsion of between hydroxyl group and mer-
cury ion could be larger than the above mentioned chelation 
effect. Consequently, water could attack at C(3)-position from 
β-side to give 3,4-cis (±)-17, which could be immediately con-
verted to (±)-16.

Due to the low yield of (±)-16 and (±)-18, the introduc-
tion of methoxyl group at the 3-position of the benzyl ether 
(4R,5S)-3 via the Michael addition was examined. The reaction 
of (4R,5S)-3 and MeOH in the presence of Amberlyst A-26 as 
a basic catalyst gave 3,4-trans-δ-lactone (−)-(3S,4R,5S)-20 
{[α]D

22 −112 (c=1.73, CHCl3)} in 28% yield and 3,4-cis-δ-
lactone (−)-(3R,4R,5S)-21 {[α]D

24 −72 (c=1.5, CHCl3)} in 45% 
yield. The structures of both products were confirmed by the 
fact that (−)-(3S,4R,5S)-20 and (−)-(3R,4R,5S)-21 were con-
verted to natural products L-oleandrose (6) and L-cymarose 
(7), respectively, as shown in Chart 5.

Dibal-H reduction of (−)-(3S,4R,5S)-20 provided a 1.8 : 1.0 
mixture of α- and β-epimers (3S,4R,5S)-22 {[α]D

23 −73 (c=0.55, 
CHCl3)} in 91% yield, which was subjected to catalytic hydro-
genation to give a 1.7 : 1.0 mixture of α- and β-L-oleandroses 
(6) in 95% yield. The specific rotation of the synthetic L-ole-
androse (6) {[α]D

23 +10 (c=0.51, H2O)} was consistent with the 
reported data {[α]D

23 +11.2 (c=1.0, H2O)}.9) 1H-NMR data and 
13C-NMR data of the synthetic L-oleandrose (6) were identical 
with those of the reported data.15)

Dibal-H reduction of (−)-(3R,4R,5S)-21 provided a 3.1 : 1.0 
mixture of α- and β-epimers (3R,4R,5S)-23 {[α]D

24 −87.7 
(c=1.46, CHCl3)} in 98% yield, which was subjected to cata-
lytic hydrogenation to give a 3 : 2 mixture of L-cymarose (py-
ranose) (7) and L-cymarose (furanose) (7) in 87% yield and 
(3R,4R,5S)-24 in 8% yield. The specific rotation of the syn-
thetic mixture L-cymarose (7) {[α]D

24 −52 (c=0.42, H2O)} was 
consistent with the reported data {[α]D

23 −50 (c=1.0, H2O)}.16) 
1H-NMR data and 13C-NMR data of the synthetic L-cymarose 
(7) were identical with those of the reported data.16)

The reaction of the 3.1 : 1.0 mixture of α- and β-epimers 
(3R,4R,5S)-23 and MeOH in the presence of Amberlyst A-26 
gave a 1.8 : 1.0 mixture of α- and β-epimers (3S,4R,5S)-22 in 
55% yield and the recovery of (3R,4R,5S)-23 in 21% yield. It 
was found that an equilibrium relationship was established 
between (3R,4R,5S)-23 and (3S,4R,5S)-22 via the aldehyde 
intermediate (25). This process could be explained in the 
following manner. Acid-promoted trans double bond and 

aldehyde group formations based on MeOH elimination could 
afford α,β-unsaturated aldehyde 25, which could be accompa-
nied by Micheal addition of MeOH and hemiaetal formation 
to afford (3S,4R,5S)-22 possessing more stable all equatorial 
configurations.

Conclusion
The addition of 4 eq of chloral to osmundalactone (4S,5R)-

4 gave quantitative formation of the hemiacetal derivative 
(4S,5R)-8, which was treated with methane sulfonic acid 
(MsOH) to afford the intramolecular Micheal addition 
product (+ )-(3S,4S,5R)-9 possessing a 3,4-cis-dihydroxy-δ-
lactone moiety in 78% overall yield from (4S,5R)-4. Thus 
obtained (+ )-(3S,4S,5R)-9 was converted to actal-δ-lactone (+ 
)-(3S,4S,5R)-10, which was reduced with Dibal-H to provide 
lactol (3S,4R,5R)-11 in 81% yield. Deprotection of the acetal in 
(3S,4R,5R)-11 followed by acid treatment in MeOH gave meth-
yl D-digitoxoside (pyranoside) (12) in 20% yield and methyl 
D-digitoxoside (furanoside) (12) in 31% yield.

The reaction of benzyl-osmundalactone (4R,5S)-3 and 
MeOH in the presence of Amberlyst A-26 as a basic catalyst 
gave 3,4-trans-δ-lactone (−)-(3S,4R,5S)-20 in 28% yield and 
3,4-cis-δ-lactone (−)-(3R,4R,5S)-21 in 45% yield. Dibal-H re-
duction of (−)-(3S,4R,5S)-20 followed by catalytic hydrogena-
tion gave L-oleandrose (6) in 86% overall yield, while Dibal-H 
reduction of (−)-(3R,4R,5S)-21 followed by catalytic hydroge-
nation provided L-cymarose (7) in 85% overall yield.

Experimental
1H- and 13C-NMR spectra were recorded on JEOL AL 400 

spectrometer in CDCl3. Carbon substitution degrees were 
established by distortionless enhancement by polarization 
transfer (DEPT) pulse sequence. The fast atom bombardment-
mass spectra (FAB-MS) were obtained with a JEOL JMS 
600H spectrometer. IR spectra were recorded with a JASCO 
FT/IR-300 spectrometer. Optical rotations were measured with 
a JASCO DIP-370 digital polarimeter. All evaporations were 
performed under reduced pressure. For column chromatogra-
phy, silica gel (Kieselgel 60) was employed.

Synthesis of Methyl D-Digitoxoside (11)  i) A mixture of 
(4S,5R)-4 (0.601 g, 4.7 mmol) and CCl3CHO (3.46 g 23.5 mmol) 
was stood for 24 h at rt and a solution of MsOH (1.36 g, 
14.1 mmol) in CH2Cl2 (10 mL) was added to the above reac-
tion mixture. All reaction mixture was stirred for 8 h at rt. 
The reaction mixture was diluted with Et2O and the organic 
layer was washed with brine. The organic layer was dried 
over MgSO4 and evaporated to give a crude oil, which was 
chromatographed on silica gel (35 g, n-hexane–AcOEt= 1 : 3) 
to give (+ )-(3S,4S,5R)-9 (1.010 g, 78%) as a colorless oil. 
(+)-(3S,4S,5R)-9: IR (CHCl3): 1755 cm−1; [α]D

30 +58.7 (c=0.34, 
CHCl3), 1H-NMR δ: 1.51 (3H, d, J=6 Hz), 2.81 (1H, dd, J=16, 
6 Hz), 3.02 (1H, dd, J=16, 6 Hz), 4.42 (1H, qd, J=6, 6 Hz), 4.52 
(1H, dd, J=6, 6 Hz), 5.07 (1H, ddd, J=6, 6, 6 Hz), 5.55 (1H, s). 
Anal. Calcd for C8H9O4Cl3: C, 34.88; H, 3.27. Found: C, 34.59; 
H, 3.26. MS (FAB) m/z: 276 (M++1).

ii) To a solution of (+ )-(3S,4S,5R)-9 (0.453 g, 1.64 mmol) 
and AIBN (70 mg, 0.43 mmol) in benzene (40 mL) under ar-
gon atmosphere were added n-Bu3SnH (2.16 g, 7.42 mmol) 
and the reaction mixture was stirred for 2.5 h at 90°C. The 
reaction mixture was evaporated to give a residue, which was 
chromatographed on silica gel (55 g, n-hexane–AcOEt= 1 : 3) 
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to give (+ )-(3S,4S,5R)-10 (0.222 g, 78%) as a colorless oil. 
(+)-(3S,4S,5R)-10: IR (neat): 1756 cm−1; [α]D

26 +105.9 (c=0.43, 
CHCl3), 1H-NMR δ: 1.34 (3H, d, J=5 Hz), 1.47 (3H, d, 
J=6 Hz), 2.72 (1H, dd, J=16, 8 Hz), 2.93 (1H, dd, J=16, 6 Hz), 
4.08 (1H, dd, J=8.4, 8 Hz), 4.33 (1H, qd, J=8.4, 6 Hz), 4.59 
(1H, ddd, J=8.4, 8, 6 Hz), 5.30 (1H, q, J=5 Hz). Anal. Calcd 
for C8H12O4·0.25H2O: C, 54.37; H, 7.08. Found: C, 54.49; H, 
7.25. MS (FAB) m/z: 173 (M++1).

iii) To a solution of (+ )-(3S,4S,5R)-10 (0.173 g, 1.0 mmol) 
in toluene (15 mL) was added 1 M Dibal-H toluene solution 
(2.7 mL, 2.7 mmol) under argon atmosphere at −20°C and 
the reaction mixture was stirred for 1 h at −20°C. The reac-
tion mixture was diluted with 2 M HCl solution and extracted 
with Et2O. The organic layer was washed with brine and 
dried over MgSO4. Evaporation of the organic solvent gave 
a crude oil, which was chromatographed on silica gel (10 g, 
n-hexane–AcOEt= 5 : 1) to give a 1 : 1.6 mixture of α- and 
β-epimers of (+ )-(3S,4R,5R)-11 (0.141 g, 81%) as a colorless 
oil. (+ )-(3S,4R,5R)-11: IR (neat): 3432 cm−1; [α]D

24 +82.03 
(c=0.79, CHCl3), Anal. Calcd for C8H14O4·0.25H2O: C, 53.75; 
H, 8.12. Found: C, 53.76; H, 8.19. MS (FAB) m/z: 175 (M++1). 
1H-NMR of each epimer was analyzed based on NOE and 
proton–proton decoupling (homo decoupling) analysis tech-
nique. α-Epimer δ: 1.26 (3H, d, J=6 Hz), 1.32 (3H, d, J=6 Hz), 
1.80 (1H, ddd, J=14, 9, 4 Hz), 2.32 (1H, ddd, J=14, 4, 3 Hz), 
3.15 (1H, d, J=5.8 Hz), 3.53 (1H, qd, J=9, 6 Hz), 3.78 (1H, dd, 
J=10, 4 Hz), 4.25–4.35 (1H, m), 5.03 (1H, ddd, J=9, 5.8, 2 Hz), 
5.38 (1H, q, J=5.2 Hz). β-epimer δ: 1.26 (3H, d, J=6 Hz), 1.32 
(3H, d, J=6 Hz), 2.06–2.20 (2H, m), 3.75 (1H, dd, J=10, 5 Hz), 
3.97 (1H, qd, J=9, 6 Hz), 4.25–4.35 (1H, m), 5.15 (1H, ddd, 
J=8, 4, 4 Hz), 5.42 (1H, q, J=5.2 Hz).

iv) To a solution of a 1 : 1.6 mixture of α- and β-epimers 
of (+ )-(3S,4R,5R)-11 (0.107 g, 0.61 mmol) in MeOH (0.5 mL) 
was added H2O (3.6 mL) and Dowex 50W(H+ ) (0.4 g), and the 
reaction mixture was stirred for 1.5 h at 70°C. The reaction 
mixture was filtered and the filtrate was evaporated to give 
a crude oil. To a solution of the above oil in MeOH (2 mL) 
was added CSA (0.12 g, 0.52 mmol) and the reaction mixture 
was stood for 1 h at rt. The reaction mixture was condensed 
to give a crude oil, which was chromatographed on silica gel 
(10 g, n-hexane–AcOEt= 1 : 1) to give a 1 : 1.67 mixture of α- 
and β-epimers of (+ )-methyl D-digitoxoside (12) (pyranoside, 
0.020 g, 20%) as a colorless oil and a 1 : 1.27 mixture of α- 
and β-epimers of (+ )-methyl D-digitoxoside (12) (furanoside, 
0.031 g, 31%) as a colorless oil in elution order: D-digitoxoside 
(12) (pyranoside): IR (neat): 3445 cm−1; [α]D

24 +35.4 (c=0.85, 
CHCl3), Anal. Calcd for C7H14O4·0.25H2O: C, 50.44; H, 8.77. 
Found: C, 50.65; H, 8.84. MS (FAB) m/z: 163 (M++1). 1H- and 
13C-NMR of each epimer were assigned by comparison of the 
reported data. α-Epimer, 1H-NMR δ: 1.31 (3H, d, J=6 Hz), 
1.89 (1H, ddd, J=14.5, 3.4, 3.4 Hz), 2.15 (1H, ddd, J=14.5, 
5.3, 1 Hz), 3.12 (1H, d, J=7 Hz), 3.35 (3H, s), 3.69 (1H, qd, 
J=10, 6 Hz), 3.92 (1H, br s), 4.75 (1H, d, J=3.4 Hz). 13C-NMR 
δ: 98.21 (d), 72.51 (d), 67.54 (d), 64.29 (d), 55.20 (s), 35.20 (t), 
17.90 (s). β-Epimer δ: 1.29 (3H, d, J=6 Hz), 1.68 (1H, ddd, 
J=14, 10, 3 Hz), 2.08 (1H, ddd, J=14, 4, 2 Hz), 3.28 (1H, d, 
J=9 Hz), 3.45 (3H, s), 3.71 (1H, qd, J=9, 6 Hz), 4.08 (1H, dd, 
J=5, 3 Hz), 4.69 (1H, dd, J=10, 2 Hz). 13C-NMR δ: 98.71 (d), 
73.00 (d), 69.52 (d), 68.00 (d), 56.49 (s), 37.70 (t), 18.22 (s). 
D-digitoxoside (12) (furanoside): IR (neat): 3445 cm−1; [α]D

24 
+1.37 (c= 0.44, CHCl3), MS (FAB) m/z: 163 (M++1). 1H-NMR 

and 13C-NMR of each epimer were assigned by comparison of 
the reported data. α-Epimer, 1H-NMR δ: 1.22 (3H, d, J=6 Hz), 
1.96 (1H, dd, J=14, 2 Hz), 2.07 (1H, ddd, J=14, 7, 2 Hz), 
3.35 (3H, s), 3.80–3.90 (2H, m), 4.22 (1H, br s), 5.06 (1H, d, 
J=4 Hz). 13C-NMR δ: 105.20 (d), 90.80 (d), 71.16 (d), 67.64 (d), 
54.80 (s), 42.05 (t), 18.72 (s). β-Epimer δ: 1.21 (3H, d, J=6 Hz), 
2.04–2.14 (1H, m), 2.24 (1H, ddd, J=14, 7, 2 Hz), 3.34 (3H, s), 
3.75–3.85 (2H, m), 4.56 (1H, br s), 5.04 (1H, d, J=6 Hz). 13C-
NMR δ: 105.40 (d), 91.00 (d), 70.97 (d), 68.58 (d), 55.40 (s), 
42.74 (t), 18.98 (s).

(±)-(3S′,4R′,5R′)-3,5-Dihydroxyhexano-4-lactone (16)  
To a solution of (±)-4 (0.069 g, 0.54 mmol) in tetrahydro-
furan (THF) (3 mL) at 0°C were added Hg(OCOCF3)2 (0.69 g, 
1.62 mmol) and 70% HClO4 solution (0.15 mL, 0.97 mmol), 
and the reaction mixture was stirred for 2 h at 0°C. To the 
reaction mixture were added 7% NaHCO3 solution (7 mL) and 
NaBH4 (0.06 g, 1.59 mmol) at 0°C, and the reaction mixture 
was stirred for 1 h. The reaction mixture was filtered and the 
filtrate was acidified with AcOH. The reaction mixture was 
condensed to afford a residue, which was chromatographed on 
silica gel (25 g, n-hexane–AcOEt= 1 : 1) to give (±)-16 (0.020 g, 
26%) as a colorless oil. (±)-16: IR (neat): 1732, 3444 cm−1; 1H-
NMR (CD3OD) δ: 1.22 (3H, d, J=6 Hz), 2.34 (1H, dd, J=18, 
2 Hz), 2.89 (1H, dd, J=18, 8 Hz), 3.89 (1H, qd, J=6, 4 Hz), 4.18 
(1H, dd, J=4, 2 Hz), 4.50 (1H, dt, J=8, 2, 2 Hz). 13C-NMR 
(CD3OD) δ: 178.33 (s), 93.27 (d), 67.89 (d), 67.63 (d), 39.27 (t), 
19.02 (q). Anal. Calcd for C6H10O4·0.25H2O: C, 47.84; H, 7.03. 
Found: C, 47.56; H, 7.08. MS (FAB) m/z: 147 (M++1).

Conversion of (±)-(3S′,4R′,5R′)-10 to (±)-(3S′,4R′,5R′)-16  
To a solution of (±)-10 (0.166 g, 0.96 mmol) in THF (4 mL) was 
added 1 M H2SO4 solution (2.5 mL) and the reaction mixture 
was stirred for 2 h at 80°C. The reaction mixture was diluted 
with 7% NaHCO3 solution (7 mL) and extracted with AcOEt. 
The organic layer was dried over Na2SO4 and evaporated to 
afford a residue which was chromatographed on silica gel 
(20 g, n-hexane–AcOEt= 1 : 2) to give (±)-16 (0.117 g, 83%) as 
a colorless oil. 1H- and 13C-NMR data of (±)-12 were identical 
with those of the previous (±)-16.

(±)-(3S′,4R′,5R′)-5-Hydroxy-3-methoxyhexano-4-lactone 
(18)  To a solution of (±)-4 (0.081 g, 0.63 mmol) in MeOH 
(5 mL) was added Hg(OCOCF3)2 (0.82 g, 1.92 mmol) and 
the reaction mixture was stirred for 2 h at rt. To the reac-
tion mixture were added 7% NaHCO3 solution (7 mL) and 
NaBH4 (0.07 g, 1.85 mmol) at 0°C, and the reaction mixture 
was stirred for 1 h. The reaction mixture was worked up in 
the same way of (±)-12 to give (±)-18 (0.033 g, 32%) as a 
colorless oil. (±)-18: IR (neat): 1775, 3448 cm−1; 1H-NMR δ: 
1.24 (3H, d, J=6 Hz), 2.50 (1H, dd, J=18, 2 Hz), 2.82 (1H, dd, 
J=18, 7 Hz), 3.30 (3H, s), 4.04 (1H, qd, J=6, 4 Hz), 4.12 (1H, 
dt, J=7, 3 Hz), 4.26 (1H, dd, J=4, 3 Hz). 13C-NMR δ: 175.85 
(s), 88.56 (d), 75.76 (d), 66.74 (d), 56.51 (q), 35.40 (t), 18.34 (q). 
Anal. Calcd for C7H12O4: C, 52.49; H, 7.55. Found: C, 52.51; 
H, 7.29. MS (FAB) m/z: 161 (M++1).

Conversion of (±)-(3S′,4R′,5R′)-18 to (±)-(3S′,4R′,5R′)-16  
To a mixture of AlCl3 (0.120 g, 0.9 mmol) in EtSH (2 mL, 
0.03 mmol) was added a solution of (±)-18 (0.047 g, 
0.29 mmol) in EtSH (1 mL) at 0°C and the reaction mixture 
was stirred for 4 h at rt. The reaction mixture was diluted with 
H2O and extracted with Et2O. The organic layer was dried 
over Na2SO4 and evaporated to afford a residue which was 
chromatographed on silica gel (10 g) to give a 3 : 2 mixture 
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of (±)-19a, b (0.017 g, 31%) as a colorless oil from n-hexane–
AcOEt= 2 : 1 elution, recovery of (±)-18 (0.020 g, 42%) from 
n-hexane–AcOEt= 1 : 1 elution and (±)-16 (0.006 g, 13%) from 
n-hexane–AcOEt= 1 : 3 elution. 1H- and 13C-NMR data of (±)-
16 were identical with those of the previous (±)-16. (±)-19a, b: 
IR (neat): 1732, 3414 cm−1; Anal. Calcd for C8H14O3S: C, 
50.50; H, 7.42. Found: C, 50.26; H, 7.35. MS (FAB) m/z: 191 
(M++1). 1H-NMR of each isomer was analyzed based on the 
proton–proton decoupling (homo decoupling) analysis tech-
nique. 19a, 1H-NMR (CD3OD) δ: 1.21 (3H, d, J=6 Hz), 1.28 
(3H, d, J=7 Hz), 2.44 (1H, dd, J=18, 4 Hz), 2.50–2.74 (2H, m), 
3.09–3.19 (1H, m), 3.68 (1H, ddd, J=9, 4, 4 Hz), 3.94 (1H, qd, 
J=6, 4 Hz), 4.22 (1H, dd, J=7, 3 Hz). 19b, 1H-NMR (CD3OD) 
δ: 1.25 (3H, d, J=7 Hz), 1.40 (3H, d, J=6 Hz), 2.50–2.74 (2H, 
m), 3.05–3.18 (3H, m), 3.35 (1H, dd, J=9, 7 Hz), 4.19 (1H, qd, 
J=6, 5 Hz).

Synthesis of L-Oleandrose (6)  i) To a mixture of (4R,5S)-
3 (0.866 g, 3.97 mmol) and molecular sieve (MS) 3A (1.0 g) in 
MeOH (20 mL) was added Amberlyst A-26 (hydroxide form) 
(0.6 g) and the reaction mixture was stirred for 3 h at rt. The 
reaction mixture was filtered and the filtrate was condensed to 
give a crude oil. To a solution of the above oil in THF (20 mL) 
was added aqueous 2 M NaOH (6 mL) and the reaction mixture 
was stirred for 1 h at rt. The reaction mixture was acidified 
with aqueous 2 M HCl and condensed to give a crude product, 
which was diluted with AcOEt. The AcOEt layer was filtered 
and the filtrate was condensed to give a crude oil, which was 
chromatographed on silica gel (30 g) to give (−)-(3S,4R,5S)-20 
(0.284 g, 28%) as a colorless oil from n-hexane–AcOEt= 5 : 1 
eluent and (−)-(3R,4R,5S)-21 (0.453 g, 45%) as a colorless oil 
from n-hexane–AcOEt= 2 : 1 eluent. (−)-(3S,4R,5S)-20: [α]D

22 
−111.5 (c=1.73, CHCl3), IR (neat): 1758 cm−1; 1H-NMR δ: 1.41 
(3H, d, J=6 Hz), 2.74 (1H, ddd, J=16, 4, 1 Hz), 2.79 (1H, dd, 
J=16, 5 Hz), 3.36 (3H, s), 3.39 (1H, ddd, J=8, 3, 1 Hz), 3.74 
(1H, dd, J=8, 4 Hz), 4.19 (1H, qd, J=6, 4 Hz), 4.58, 4.72 (each 
1H, d, J=12 Hz), 7.28–7.38 (5H, m). Anal. Calcd for C14H18O4: 
C, 67.18; H, 7.25. Found: C, 66.98; H, 7.41. MS (FAB) m/z: 
251 (M++1). (−)-(3R,4R,5S)-21: [α]D

24 −71.9 (c=1.5, CHCl3), IR 
(neat): 1733 cm−1; 1H-NMR δ: 1.37 (3H, d, J=6 Hz), 2.58 (1H, 
dd, J=18, 4 Hz), 2.90 (1H, dd, J=18, 5.6 Hz), 3.41 (3H, s), 3.46 
(1H, dd, J=7, 2 Hz), 3.75 (1H, ddd, J=5.8, 4, 2 Hz), 4.70 (1H, 
qd, J=7, 6 Hz), 4.61, 4.72 (each 1H, d, J=12 Hz), 7.26–7.38 
(5H, m). Anal. Calcd for C14H18O4: C, 67.18; H, 7.25. Found: C, 
66.89; H, 7.31. MS (FAB) m/z: 251 (M++1).

ii) To a solution of (−)-(3S,4R,5S)-20 (0.246 g, 0.98 mmol) 
in toluene (12 mL) was added 1 M Dibal-H toluene solution 
(2 mL, 2 mmol) under argon atmosphere at −20°C and the 
reaction mixture was stirred for 1 h at −20°C. The reaction 
mixture was diluted with 2 M HCl solution (2 mL) and ex-
tracted with Et2O. The organic layer was washed with brine 
and dried over MgSO4. Evaporation of the organic solvent 
gave a crude oil, which was chromatographed on silica gel 
(10 g, n-hexane–AcOEt= 2 : 1) to give a 1.8 : 1 mixture of α- 
and β-epimers of (−)-(3S,4R,5S)-22 (0.226 g, 91%) as a color-
less oil. (−)-(3S,4R,5S)-22: IR (neat): 3440 cm−1; [α]D

23 −72.5 
(c=0.55, CHCl3), Anal. Calcd for C14H20O4: C, 66.65; H, 7.99. 
Found: C, 66.57; H, 8.25. MS (FAB) m/z: 253 (M++1). 1H-
NMR of each epimer was analyzed based on NOE and pro-
ton–proton decoupling (homo decoupling) analysis technique. 
α-Epimer: 1H-NMR δ: 1.25 (3H, d, J=6 Hz), 1.54 (1H, ddd, 
J=14, 14, 3 Hz), 2.27 (1H, ddd, J=14, 5, 2 Hz), 3.02 (1H, dd, 

J=10, 9 Hz), 3.44 (3H, s), 3.72 (1H, ddd, J=14, 9, 5 Hz), 3.94 
(1H, qd, J=10, 6 Hz), 4.63, 4.89 (each 1H, d, J=11 Hz), 5.31 
(1H, br s), 7.23–7.40 (5H, m). β-Epimer: 1H-NMR δ: 1.30 (3H, 
d, J=6 Hz), 1.43 (1H, ddd, J=12, 12, 10 Hz), 2.40 (1H, ddd, 
J=12, 5, 2 Hz), 3.00 (1H, dd, J=6, 3 Hz), 3.33–3.43 (2H, m), 
3.42 (3H, s), 4.62, 4.88 (each 1H, d, J=11 Hz), 5.05 (1H, br s), 
7.23–7.40 (5H, m).

iii) A mixture of (−)-(3S,4R,5S)-22 (1.8 : 1 mixture of α- and 
β-epimers) (0.207 g, 0.82 mmol) and 20% Pd(OH)2–C (0.16 g) 
in AcOEt (20 mL) was subjected to a catalytic hydrogenation 
under ordinary pressure for 12 h at rt. The reaction mixture 
was filtered and the filtrate was condensed to give a crude 
oil, which was chromatographed on silica gel (10 g, n-hexane–
AcOEt= 1 : 2) to give a 1.7 : 1 mixture of α- and β-L-oleandrose 
(6) (0.153 g, 95%) as a colorless oil. L-Oleandrose (6): IR 
(neat): 3443 cm−1; [α]D

23 +10.0 (c=0.51, H2O), Anal. Calcd for 
C7H14O4: C, 51.84; H, 8.70. Found: C, 51.58; H, 8.98. MS 
(FAB) m/z: 145 (M++1−H2O). 1H-NMR of each epimer was 
analyzed based on NOE and proton–proton decoupling (homo 
decoupling) analysis technique. α-Pyranose (6): 1H-NMR δ: 
1.26 (3H, d, J=6 Hz), 1.47 (1H, ddd, J=14, 12, 4 Hz), 2.28 (1H, 
ddd, J=14, 4.4, 1.6 Hz), 3.13 (1H, dd, J=9, 9 Hz), 3.37 (3H, s), 
3.55 (1H, ddd, J=14, 9, 5 Hz), 3.91 (1H, qd, J=9, 6 Hz), 5.32 
(1H, br s, J=3 Hz). 13C-NMR δ: 91.89 (d), 77.85 (d), 76.10 (d), 
67.65 (d), 56.45 (q), 34.15 (t), 18.00 (q). β-Pyranose (6): 1H-
NMR δ: 1.32 (3H, d, J=6 Hz), 1.35–1.37 (1H, m), 2.39 (1H, 
ddd, J=12, 4, 2 Hz), 3.08–3.44 (3H, m), 3.35 (3H, s), 4.79 (1H, 
dd, J=10, 2 Hz). 13C-NMR δ: 93.90 (d), 80.50 (d), 75.15 (d), 
71.75 (d), 56.38 (q), 36.50 (t), 17.95 (q).

Synthesis of L-Cymarose (7)  i) To a solution of 
(−)-(3R,4R,5S)-21 (0.313 g, 1.25 mmol) in toluene (13 mL) was 
added 1 M Dibal-H toluene solution (2.5 mL, 2.5 mmol) under 
argon atmosphere at −20°C and the reaction mixture was 
stirred for 1 h at −20°C. The reaction mixture was diluted 
with 2 M HCl solution (2.5 mL) and extracted with Et2O. The 
organic layer was washed with brine and dried over MgSO4. 
Evaporation of the organic solvent gave a crude oil, which was 
chromatographed on silica gel (15 g, n-hexane–AcOEt= 2 : 1) to 
give a 3.1 : 1 mixture of α- and β-epimers of (−)-(3R,4R,5S)-23 
(0.308 g, 98%) as a colorless oil. (−)-(3R,4R,5S)-23: IR (neat): 
3420 cm−1; [α]D

24 −87.7 (c=1.46, CHCl3), Anal. Calcd for 
C14H20O4·0.25H2O: C, 65.42; H, 7.98. Found: C, 65.22; H, 
7.94. MS (FAB) m/z: 253 (M++1). 1H-NMR of each epimer 
was analyzed based on NOE and proton–proton decoupling 
(homo decoupling) analysis technique. α-Epimer: 1H-NMR δ: 
1.29 (3H, d, J=6 Hz), 1.70 (1H, ddd, J=14, 6, 2 Hz), 2.19 (1H, 
ddd, J=14, 4, 1.8 Hz), 3.10 (1H, dd, J=10, 3 Hz), 3.52 (3H, s), 
3.83 (1H, br s), 4.21 (1H, qd, J=10, 6 Hz), 4.55, 4.65 (each 1H, 
d, J=12 Hz), 5.17 (1H, br s), 7.24–7.40 (5H, m). β-Epimer: 1H-
NMR δ: 1.26 (3H, d, J=6 Hz), 1.42 (1H, ddd, J=14, 10, 2 Hz), 
2.27 (1H, ddd, J=14, 4, 2 Hz), 3.10 (1H, dd, J=10, 3 Hz), 3.42 
(3H, s), 3.72 (1H, br s), 3.96 (1H, qd, J=10, 6 Hz), 4.51, 4.63 
(each 1H, d, J=12 Hz), 5.05 (1H, br s), 7.24–7.40 (5H, m).

ii) A mixture of (−)-(3R,4R,5S)-23 (3.1 : 1 mixture of α- and 
β-epimers) (0.142 g, 0.56 mmol) and 20% Pd(OH)2-C (0.16 g) 
in AcOEt (20 mL) was subjected to a catalytic hydrogenation 
under ordinary pressure for 12 h at rt. The reaction mixture 
was filtered and the filtrate was condensed to give a crude 
oil, which was chromatographed on silica gel (10 g) to give 
(3R,4R,5S)-24 (0.007 g, 8%) as a colorless oil from n-hexane–
AcOEt= 1 : 1 eluent and a 3 : 2 mixture of pyranose type and 
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furanose type of L-cymarose (7) (0.079 g, 87%) as a color-
less oil from n-hexane–AcOEt= 1 : 2 eluent. (3R,4R,5S)-24: 
IR (neat): 3450 cm−1; Anal. Calcd for C7H14O3: C, 57.51; H, 
9.65. Found: C, 57.23; H, 9.73. MS (FAB) m/z: 147 (M++1). 
1H-NMR δ: 1.18 (3H, d, J=6 Hz), 1.80–1.97 (2H, m), 2.22 (1H, 
br s), 3.29 (3H, s), 3.58 (1H, dd, J=4, 4 Hz), 3.78–3.98 (3H, m). 
13C-NMR δ: 88.09 (d), 80.85 (d), 67.50 (d), 67.35 (t), 56.80 (q), 
32.65 (t), 18.60 (q). L-Cymarose (7) IR (neat): 3418 cm−1; [α]D

23 
−51.6 (c=0.42, H2O), Anal. Calcd for C7H14O4: C, 51.84; H, 
8.70. Found: C, 51.54; H, 8.87. MS (FAB) m/z: 145 (M++1−
H2O). 1H-NMR of each epimer was analyzed based on NOE 
and proton–proton decoupling (homo decoupling) analysis 
technique. α-Pyranose (7): 1H-NMR δ: 1.17 (3H, d, J=6 Hz), 
1.73 (1H, ddd, J=15, 4, 3 Hz), 2.02–2.17 (1H, m), 3.32 (3H, s), 
3.33–3.43 (1H, m), 3.57–3.66 (1H, m), 3.89–3.90 (1H, m), 5.06 
(1H, br s). β-Pyranose (7): 1H-NMR δ: 1.25 (3H, d, J=6 Hz), 
1.49 (1H, ddd, J=14, 10, 3 Hz), 2.26 (1H, ddd, J=14, 4, 2 Hz), 
3.19 (1H, ddd, J=10, 10, 3 Hz), 3.39 (3H, s), 3.57–3.66 (1H, 
m), 3.86–3.98 (1H, m), 4.97 (1H, dd, J=10, 2 Hz). A mixture 
of furanose (7): 1H-NMR δ: 1.19, 1.25 (each 3H, d, J=6 Hz), 
1.98, 2.30 (each 1H, ddd, J=15, 4, 3 Hz and ddd, J=14, 4, 
2 Hz), 2.18, 2.30 (each 1H, ddd, J=14, 7, 2 Hz and ddd, J=14, 
4, 2 Hz), 3.26, 3.49 (each 3H, s), 4.04, 4.13 (each 1H, dd, J=4, 
2 Hz and ddd, J=8, 5, 4 Hz), 5.44, 5.56 (each 1H, d, J=5 Hz 
and dd, J=6, 2.8 Hz).

Conversion of (3R,4R,5S)-23 to (3S,4R,5S)-22  To a 
solution of a mixture of (−)-(3R,4R,5S)-23 (3.1 : 1 mixture of 
α- and β-epimers) (0.035 g, 0.14 mmol) in MeOH (2 mL) was 
added Amberlyst A-26 (hydroxide form) (0.1 g) and the reac-
tion mixture was stirred for 2 h at 35°C. The reaction mixture 
was filtered and the filtrate was condensed to give a crude 
oil, which was chromatographed on silica gel (10 g, n-hexane–
AcOEt= 2 : 1) to give a 1.7 : 1 mixture of α- and β-epimers of 
(3S,4R,5S)-22 (0.019 g, 55%) as a colorless oil and starting 

(3R,4R,5S)-23 (0.007 g, 21%) as a colorless oil. 1H-NMR data 
of both compounds were identical with those of the previous 
(3S,4R,5S)-22 and (3R,4R,5S)-23, respectively.
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