

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 3071-3072

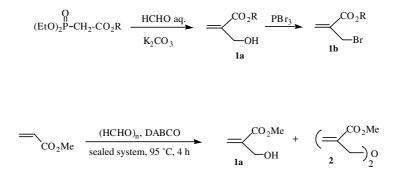
Tetrahedron Letters

An efficient synthesis of alkyl α-(hydroxymethyl)acrylates induced by DABCO in an aqueous medium

Taoufik Turki,^a Jean Villiéras^b and Hassen Amri^{a,*}

^aLaboratoire de Chimie Organique & Organométallique, Faculté des Sciences, Campus Universitaire, 2092 Tunis, Tunisia ^bLaboratoire de Synthèse Organique, UMR-CNRS 6513, Faculté des Sciences et des Techniques, BP 92208-2, rue de la Houssinière 44322 Nantes Cedex 3, France

> Received 25 January 2005; revised 23 February 2005; accepted 1 March 2005 Available online 14 March 2005


Abstract—Alkyl α -(hydroxymethyl)acrylates are prepared in high yields on a synthetic scale by hydroxymethylation of the corresponding acrylates using 30% aqueous formaldehyde in THF or DME as solvent and DABCO as the catalyst. © 2005 Elsevier Ltd. All rights reserved.

Since its first preparation on a large scale via the Wittig– Horner reaction, alkyl α -(hydroxymethyl)acrylate $\mathbf{1a}^{1a-c}$ has proved to be a key intermediate for the preparation of alkyl α -(bromomethyl)acrylate $\mathbf{1b}^{1d}$ (Scheme 1), a precursor of α -methylene- γ -butyrolactones² and lactams³ via organozinc chemistry.

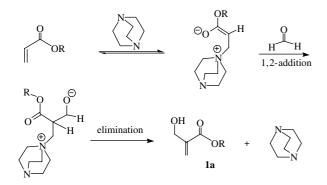
The Baylis–Hillman reaction using DABCO as a catalyst for the α -hydroxyalkylation of acrylates,⁴ acrylonitrile⁵ and vinyl ketones⁶ would have been a shorter route to **1a** from formaldehyde but it seems that it has to be performed in an aprotic medium. Compound **1a** can also be made in 30% yield from paraformadehyde, methyl acrylate and DABCO in a sealed system at

95 °C for 4 h. However, this reaction gives rise to a mixture of **1a** and the difunctional methacrylate ether 2^7 (60%) (Scheme 2).

Our interest in **1a** and also in the Baylis–Hillman reaction⁸ led us to undertake the synthesis using formaldehyde as a 30% aqueous solution. Triethylamine and DABCO were examined as catalysts (25 mmol %), but only the latter was consistent with mild reaction conditions. The report that water as solvent accelerated the DABCO-catalyzed coupling of aromatic aldehydes with activated alkenes^{9,10} prompted us to look at the effect of water on the Baylis–Hillman coupling of formaldehyde and some alkyl acrylates. Surprisingly, we found that

Scheme 2.

Scheme 1.


Keywords: Wittig–Horner reaction; Baylis–Hillman; Triethyl phosphonoacetate; Acrylates; Hydroxymethylation. * Corresponding author. Tel.: +216 71 872 600; fax: +216 71 885 008; e-mail: hassen.amri@fst.rnu.tn

^{0040-4039/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.03.005

Entry	R	Solvent	Time (h)	Yield (%) ^a
1	C ₂ H ₅	1,4-Dioxane	12	74
2	CH ₃	1,4-Dioxane	10	81
3	C_2H_5	DME	16	60
4	CH ₃	DME	16	57
5	C_2H_5	MeOH	16	71
6	$^{\prime}C_{4}H_{9}$	DME	16	50
7	C_2H_5	THF	12	70
8	CH_3	THF	16	62
9	$^{\prime}C_{4}H_{9}$	THF	20	72
10	C_2H_5	PEG 400	12	50

 Table 1. DABCO-catalyzed coupling of acrylates with (30%) aqueous formaldehyde

^a Isolated yields. Products were characterized by ¹H NMR and mass spectrometry.

Scheme 3.

the best yields of **1a** were obtained when the reaction takes place in a two-phase liquid–liquid system in the presence of an ethereal solvent (DME, THF, 1,4-dioxane) or in methanol.^{1b} Generally the reaction was achieved overnight at the reflux temperature of the organic solvent and gave rise to α -(hydroxymethyl)acrylates (R = Me, Et, 'Bu) as pure, distilled products. It could be performed on a preparative scale (2 mol). As listed in Table 1, the best yield (81%, R = Me) we obtained was in a binary medium consisting of 1,4-dioxane and water. However, the toxicity of this solvent made us prefer DME and especially THF (70% on 2-M run for R = Et). Polyethylene glycol PEG 400¹¹ can also be used as the solvent in place of 1,4-dioxane (Scheme 3).

We must mention that side reactions occurring via *trans*esterification by the methanol or arising from methacrylate ethers and acetals resulting from the reaction of two molecules of **1a** with monomeric and oligomeric formaldehyde,¹² were avoided when 30% aqueous formaldehyde solution was prepared by acidic depolymerization of paraformaldehyde (10 mol), in water at reflux in the presence of 25 mL 1 N H₃PO₄ for 2 h. These side reactions were always observed when **1a** was prepared using commercially available formaldehyde solutions, which contain up to 10% methanol as stabilizer. In conclusion, this communication reports an efficient and practical methodology for the synthesis of alkyl α -(hydroxymethyl)acrylates of type **1a** using DABCO as the catalyst in an aqueous medium.

References and notes

- (a) Villiéras, J.; Rambaud, M. Org. Synth. 1988, 66, 220–224;
 (b) Fikentscher, R.; Hahn, E.; Kud, A.; Oftring, A. German Patent, DE 3,444,098, 1986; Chem. Abstr. 1986, 107, 7781s; U.S. Patent 4,654,432, 1987;
 (c) Strauss, C. R.; Galbraith, M. N.; Faux, A. F. PCT Int. Appl. 9118861; Chem. Abstr. 1992, 116, 115538v;
 (d) Villiéras, J.; Rambaud, M. Synthesis 1982, 924–926.
- (a) Masuyama, Y.; Nimura, Y.; Kurusu, Y. Tetrahedron Lett. 1991, 32, 225–228; (b) Knochel, P.; Normant, J. F. Tetrahedron Lett. 1984, 25, 1475–1478; (c) Hosomi, A.; Hashimoto, H.; Sakurai, H. Tetrahedron Lett. 1980, 21, 951–954.
- (a) El Alami, N.; Belaud, C.; Villiéras, J. *Tetrahedron Lett.* 1987, 28, 59–60; (b) El Alami, N.; Belaud, C.; Villiéras, J. *Synth. Commun.* 1988, 18, 2073–2081.
- 4. (a) Baylis, A. B.; Hillman, M. E. D. German Patent 2,155,113, 1972; *Chem. Abstr.* 1972, 77, 34174q; (b) Drewes, S. E.; Roos, G. H. P. *Tetrahedron* 1988, 44, 4653–4670; (c) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. *Chem. Rev.* 2003, 103, 811–892.
- 5. Basavaiah, D.; Gowriswari, V. V. L. Tetrahedron Lett. 1986, 27, 2031–2032.
- (a) Amri, H.; Villiéras, J. *Tetrahedron Lett.* 1986, 27, 4307–4308; (b) Basavaiah, D.; Bharathi, T. K.; Gowriswari, V. V. L. *Synth. Commun.* 1987, 17, 1893–1896.
- Drewes, S. E.; Loizou, G.; Roos, G. H. P. Synth. Commun. 1987, 17, 291–298.
- 8. Yu, C.; Liu, B.; Hu, L. J. Org. Chem. 2001, 66, 5413–5418, and references cited therein.
- Augé, J.; Lubin, N.; Lubineau, A. Tetrahedron Lett. 1994, 58, 7947–7948.
- Cai, J.; Zhou, Z.; Zhao, G.; Tang, Ch. Org. Lett. 2002, 4, 4723–4725.
- Chandrasekhar, S.; Narsihmulu, Ch.; Saritha, B.; Shameem Sultana, S. *Tetrahedron Lett.* 2004, 45, 5865–5867.
- Mathias, L. J.; Kusefoglu, S. H. Macromolecules 1987, 20, 2041–2044.