

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 62 (2006) 11592-11598

Alternative synthesis of cystothiazole A

Hiroyuki Akita,* Noriyuki Sutou, Takamitsu Sasaki and Keisuke Kato

School of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan

Received 23 August 2006; revised 15 September 2006; accepted 19 September 2006 Available online 16 October 2006

Abstract—Palladium-catalyzed methoxycarbonylation of (–)-(2R,3S)-1-*tert*-butyldimethylsiloxy-3-methyl-2-methoxypenta-4-yne **9** derived from (2R,3S)-epoxy butanoate **5** gave the acetylenic ester **10**, which was treated with MeOH in the presence of Bu₃P to afford selectively (Z)- β -methoxy acrylate congener **11** in 86% yield. Treatment of (Z)-**11** with 99.8% enrichment of CDCl₃ followed by consecutive desilylation and oxidation afforded the left-half aldehyde (+)-**2**. The overall yield (10 steps from **5**; 23%) of (+)-**2** via the present route was improved in comparison to that (10 steps from **5**; 10%) of the previously reported route. By applying the modified Julia's coupling method, selectivity (E/Z=14:1) of the (E)-form (cystothiazole A **1**) against the (Z)-form was improved in comparison to the Wittig method (E/Z=4:1 to 6.9:1).

© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Antifungal substances, myxothiazole A¹ and cystothiazole A $\mathbf{1}$,² were isolated from different strains of myxobacterium Myxococcus fulvus and Cystobacter fuscus, respectively. These antibiotics possessing a bis-thiazole skeleton as well as a β -methoxy acrylate moiety and cystothiazole A 1 have indicated potent antifungal activity against the phytopathogenic fungus, Phytophthora capsici (2 µg/disk), and have shown activity against a broad range of additional fungi with no effect on bacterial growth.² Furthermore, cystothiazole A 1 was examined for in vitro cytotoxicity using human colon carcinoma HCT-116 and human leukemia K562 cells. The IC₅₀ values of cystothiazole A **1** were 110-130 ng/ml, which were significantly higher than those of myxothiazole A. The fungicidal activity of these β -methoxy acrylate (MOA) inhibitors has been shown to be due to their ability to inhibit mitochondrial respiration by blocking electron transfer between cytochrome b and cytochrome c.³ The absolute structure of cystothiazole A 1 was established by a combination of spectroscopic analysis and chemical degradation of the natural product.² The left-half structure of cystothiazole A 1 has been reported to be responsible for antifungal activity.⁴ In future, for the purpose of structurebiological activity relationship study of cystothiazole A congeners, efficient synthesis of the left-half aldehyde 2 is considered to be highly important.

The first enantiocontrolled synthesis of cystothiazole A 1 was achieved based on the preparation of a bis-thiazole core for the application of the asymmetric Evans aldol

methodology for the development of the C(4)/C(5) vicinal stereochemistry.⁵ After our synthesis of cystothiazoles A $1^{6a,b}$ and B^{6c} was reported, syntheses of cystothiazoles A $1,^{4,7-9}$ B, 9 C, 5,7 and E^{10} were reported. In this paper, we describe a new chiral synthesis of cystothiazole A 1 for the purpose of improvement of the overall yield and the (*E*)-selectivity of the C(6)/C(7) double bond. Our retrosynthetic strategy of cystothiazole A 1 is illustrated in Scheme 1. Retrosynthetically, the synthesis of 1 can be achieved by the modified Julia's coupling¹¹ of the left-half aldehyde 2 is shown in Scheme 2.

By applying the previously reported procedure,^{6b} the reaction of (2R,3S)-epoxy butanoate **5**¹² and lithium silyl-acetylide in the presence of Et₂AlCl gave 6 in 71% yield. Methylation of 6 followed by consecutive reduction and silvlation afforded the silvl ether 9 possessing the terminal acetylene group in 52% overall yield from 6. By applying Tsuji's procedure,¹³ the acetylenic compound 9 was converted to acetylenecarboxylate 10 in 87% yield under atmospheric pressure (balloon) of carbon monoxide at room temperature using 5 mol % of PdCl₂ and a stoichiometric amount of CuCl₂ in MeOH. By applying the reported procedures,¹⁴ conjugate addition of MeOH to acetylenecarboxylate 10 in the presence of a catalytic amount of Bu₃P afforded the corresponding (Z)- β -methoxy- α , β -unsaturated ester 11 in 86% yield. The (Z)-geometry of 11 was confirmed by the NOE enhancement for the olefinic proton and the methine proton (8.6%). Isomerization of (Z)-11 to (E)-12 was carried out by the following procedure. When a solution of (Z)-11 in CDCl₃ (chloroform-d+1% v/v TMS (D, 99.8%)+silver foil) from Cambridge Isotope Laboratories, Inc.) was stood for 3 days at room temperature, (E)-12 was

^{*} Corresponding author. Tel.: +81 474 72 1805; e-mail: akita@phar.toho-u. ac.jp

Scheme 1.

exclusively obtained. The crude (E)-12 was treated with $Et_3N \cdot (HF)_3$ in CH_2Cl_2 to give the primary alcohol (+)-13 $([\alpha]_{D} + 91.4 (c \ 0.64, CHCl_{3}))$ in 85% overall yield from (Z)-11, which was identical with the reported (+)-13 ($[\alpha]_D$) +76.1 (c 0.7, CHCl₃)).^{6b} Another CDCl₃ (99.8% atom % D from Aldrich) was also effective for this selective isomerization. On the other hand, the distillated CHCl₃, CH₂Cl₂, (CF₃SO₃)Yb/CH₂Cl₂, and silica gel/MeOH were inactive for this selective isomerization. Treatment of (Z)-11 with pyridinium p-toluenesulfonate (PPTS)/MeOH/PhH or (CF₃SO₃)Sc/ CH₂Cl₂ or InCl₃/CH₂Cl₂ gave a complex mixture including a mixture of (Z)-12 and (E)-12. The same type of isomerization as conversion of (Z)-11 to (E)-12 in 99.8% CDCl₃ was observed in our previous case.¹⁵ In the case of β -methoxy acrylate, it was reported that a trace amount of acidic impurities often was sufficient to bring about rapid equilibration toward the (E)-form from the (Z)-form at ordinary temperatures.¹⁶ The thus-obtained (+)-13 was subjected to Dess-Martin periodinane oxidation to provide the desired aldehyde (+)-2 ($[\alpha]_{D}$ +104.7 (c 0.55, CHCl₃)) in 89% yield. Then, the synthesis of the right-half sulfone 3 or 4 is carried out as shown in Scheme 3.

Treatment of isopropylamide **14** with P_4S_{10} gave an isopropylthioamide **15**, which was reacted with α -bromopyruvate to afford a mono-thiazole ester **16** in 82% overall yield from **14**. Treatment of **16** with NH₃/MeOH followed by thioamidation with P_4S_{10} yielded a thioamide **18** in 67% overall yield from **16**. The reaction of **18** with α -bromopyruvate afforded a bithiazole ester 19 in 94% yield. LiBH₄ reduction (20, 91% yield) of 19 followed by treatment with 2-mercaptobenzothiazole (BTSH)/Ph₃P/diethylazodicarboxylate (DEAD) provided a sulfide 21 in 90% yield. The sulfide 21 was subjected to oxidation with 30% H₂O₂ in the presence of $Mo_7O_{24}(NH_4)_6 \cdot 4H_2O$ to give the corresponding sulfone 3 in 88% yield. Moreover, an alcohol 20 was treated with 1-phenyl-1H-tetrazole-5-thiol (PTSH)/Ph₃P/diethylazodicarboxylate (DEAD) to provide a sulfide 22 in 96% yield. The sulfide 22 was subjected to oxidation with 30% H_2O_2 in the presence of $Mo_7O_{24}(NH_4)_6 \cdot 4H_2O$ to give the corresponding sulfone 4 in 91% yield. Then, the modified Julia's coupling of the aldehyde 2 with sulfones (3 or 4) was carried out. The reaction of 2 and 3 in the presence of lithium bis(trimethylsilyl)amide in THF gave a mixture (E/Z=14:1) of cystothiazole A 1 and (Z)-cystothiazole A 23 in 64% yield. A part of this mixture was again subjected to chromatography to provide (E)-1, whose spectral data (¹H and ¹³C NMR) were identical with those of the reported data.^{6b} The reaction of 2 and 4 in the presence of lithium bis(trimethylsilyl)amide in THF gave a mixture (E/Z=4:1)of cystothiazole A 1 and (Z)-cystothiazole A 23 in 66%vield.

In conclusion, palladium-catalyzed methoxycarbonylation of (-)-(2R,3S)-1-*tert*-butyldimethylsiloxy-3-methyl-2-methoxypenta-4-yne **9** derived from (2R,3S)-epoxy butanoate **5** gave the acetylenic ester **10**, which was treated with MeOH in the presence of Bu₃P to afford selectively

(d) ^tBuMe₂SiCl / imidazole / DMF; (e) PdCl₂ (5 mol %) / CuCl₂ / NaOAc / CO (balloon) / CH₂Cl₂;

(f) $Bu_3P/MeOH$; (g) $CDCl_3$ (D; 99.8%); (h) $Et_3N \cdot (HF)_3 / CH_2Cl_2$; (i) Dess-Martin periodinane

Scheme 3.

(*Z*)-β-methoxy acrylate congener **11** in 86% yield. Treatment of (*Z*)-**11** with 99.8% enrichment of CDCl₃ followed by consecutive desilylation and oxidation gave the left-half aldehyde (+)-**2**. The overall yield (10 steps from **5**, 23%) of (+)-**2** via the present route was improved in comparison to that (10 steps from **5**, 10%) of the previously reported route.^{6a,b} By applying the modified Julia's coupling method, selectivity (*E*/*Z*=14:1) of the (*E*)-form (cystothiazole A **1**) against the (*Z*)-form was improved in comparison to the Wittig method (*E*/*Z*=4:1^{6b} to 6.9:1⁸).

2. Experimental

2.1. General

All melting points were measured on a Yanaco MP-3S micro melting point apparatus and are uncorrected. ¹H and ¹³C NMR spectra were recorded on JEOL AL 400 spectrometer in CDCl₃. Carbon substitution degrees were established by DEPT pulse sequence. High-resolution mass spectra (HRMS) and the fast atom bombardment mass spectra (FABMS) were obtained with a JEOL JMS 600H spectrometer. IR spectra were recorded with a JASCO FT/ IR-300 spectrometer. Optical rotations were measured with a JASCO DIP-370 digital polarimeter. All evaporations were performed under reduced pressure. For column chromatography, silica gel (Kieselgel 60) was employed.

n-Butyllithium (*n*-BuLi, 1.6 M in hexane, 24.5 ml, 39.2 mmol) was added to a stirred solution of trimethylsilylacetylene (3.8 g, 38.7 mmol) in toluene (50 ml) at -40 °C under an argon atmosphere and the mixture was stirred for

1 h at 0 °C. A solution of (2R,3S)-5 (3.0 g, 25.8 mmol) in toluene (10 ml) was added to the above reaction mixture and the whole mixture was stirred for 3 h at 5–10 °C. The reaction mixture was diluted with H₂O (20 ml) at 0 °C and the generated white precipitate was filtered off with the aid of Celite. The precipitate was washed with AcOEt and the washing and filtrate were combined. The extracted organic layer was dried over MgSO₄ and evaporated to give an oily product, which was chromatographed on silica gel (60 g, n-hexane-AcOEt 30:1) to afford methyl (2R,3S)-2hydroxy-3-methyl-5-trimethylsilyl-4-pentynoate 6 (3.91 g, 71% yield) as a colorless oil. Compound (-)-6: $[\alpha]_D^{25}$ -24.1 (c 1.07, CHCl₃); IR (neat): 3482, 2168, 1741 cm⁻¹; ¹H NMR: δ 0.15 (9H, s), 1.21 (3H, d, J=7.2 Hz), 2.86-2.93 (1H, m), 3.81 (3H, s), 4.21 (1H, d, J=4.4 Hz); ¹³C NMR: δ -0.07, 15.8, 32.3, 52.4, 73.5, 86.9, 106.1, 173.1; HRMS (FAB) calcd for $C_{10}H_{19}O_3Si$ (M⁺+1): 215.1104. Found: m/z: 215.1106.

A mixture of 6 (2.105 g, 9.8 mmol), methyl iodide (18 g, 127 mmol), and Ag₂O (3.2 g, 13.8 mmol) in DMF (6 ml) was stirred for 48 h at room temperature. The reaction mixture was diluted with AcOEt (30 ml) and filtered off with the aid of Celite. The filtrate was diluted with H2O and extracted with *n*-hexane. The organic layer was dried over $MgSO_4$. Concentration of the organic layer gave a crude residue, which was chromatographed on silica gel (50 g, n-hexane-AcOEt 60:1) to provide methyl (2R,3S)-2-methoxy-3-methyl-5-trimethylsilyl-4-pentynoate 7 (1.819 g, 81% yield) as a colorless oil. Compound (–)-7: $[\alpha]_D^{23}$ –0.32 (c 1.225, CHCl₃); IR (neat): 1752, 2170 cm⁻¹; ¹H NMR: δ 0.14 (9H, s), 1.23 (3H, d, J=6.8 Hz), 2.89 (1H, dq, J=6.4, 6.8 Hz), 3.43 (3H, s), 3.71 (1H, d, J=6.4 Hz), 3.77 (3H, s); ¹³C NMR: δ -0.02, 16.4, 30.5, 51.8, 58.9, 84.0, 86.6, 106.3, 171.4; HRMS (FAB) calcd for $C_{11}H_{21}O_3Si (M^++1)$: 229.1260. Found: 229.1289.

To a solution of (2R,3S)-7 (1.66 g, 7.3 mmol) in THF (20 ml) was added 1 M tetrabutylammonium fluoride (TBAF) in THF solution (3.7 ml, 3.7 mmol) at 0 °C and the whole mixture was stirred for 10 min at 0 °C. The reaction mixture was diluted with H₂O and extracted with AcOEt. The organic layer was dried over MgSO4 and evaporated to give a crude residue, which was used for the next reaction without further purification. To a solution of the above 2-methoxy ester in THF (20 ml) was added LiBH₄ (0.641 g, 29.4 mmol) at 0 °C and the whole mixture was stirred for 60 min at room temperature. The reaction mixture was diluted with MeOH (2 ml), H₂O (100 ml), and Et₂O (100 ml), and the whole mixture was stirred for 12 h at the same temperature. The generated precipitate was filtered off with the aid of Celite to afford the filtrate. The filtrate was extracted with Et₂O. The organic layer was dried over MgSO₄. Evaporation of the filtrate gave a crude residue, which was chromatographed on silica gel (20 g, n-hexane-AcOEt 5:1) to provide (-)-8 as a colorless oil (0.66 g, 71%). Compound (-)-8: $[\alpha]_{D}^{27}$ -27.6 (c 1.05, CHCl₃); IR (neat): 3429, 3296, 2113 cm⁻ ¹H NMR: δ 1.25 (3H, d, J=6.8 Hz), 2.11 (1H, d, J=2.4 Hz), 2.38 (1H, br s), 2.76 (1H, ddq, J=2.4, 6.8, 6.8 Hz), 3.16 (1H, ddd, J=3.2, 5.6, 6.8 Hz), 3.80 (2H, dq, J=12, 5.6 Hz); ¹³C NMR: δ 17.1, 27.3, 58.4, 61.9, 70.3, 84.5, 85.5; HRMS (FAB) calcd for $C_7H_{13}O_2$ (M⁺+1): 129.0916. Found: 129.0919.

A solution of (-)-8 (0.452 g, 3.5 mmol), imidazole (0.492 g, 7.1 mmol), and tert-butyldimethylsilyl chloride (TBDMSCl, 0.797 g, 5.3 mmol) in DMF (2 ml) was stirred for 1 h at room temperature. The reaction mixture was diluted with brine and extracted with AcOEt/n-hexane (1:1). The organic layer was dried over MgSO₄ and evaporated to give a crude 9, which was chromatographed on silica gel (30 g, *n*-hexane/ AcOEt 30:1) to afford 9 (0.801 g, 93%) as a colorless oil. Compound (–)-9: $[\alpha]_{D}^{25}$ –4.74 (*c* 1.06, CHCl₃); IR (neat): 2115 cm⁻¹; ¹H NMR: δ 0.06 (6H, s), 0.89 (9H, s), 1.21 (3H, d, J=7.2 Hz), 2.05 (1H, d, J=2.4 Hz), 2.68 (1H, ddq, J=2.4, 7.2, 6.4 Hz), 3.16 (1H, ddq, J=4.4, 5.6, 6.4 Hz), 3.71 (1H, dd, J=5.6, 10.8 Hz), 3.82 (1H, dd, J=4.4, 10.8 Hz); ¹³C NMR: δ -5.46, -5.41, 16.4, 18.3, 25.9 (3C), 27.4, 59.0, 63.3, 69.4, 84.6, 86.5; HRMS (FAB) calcd for C₁₃H₂₇O₂Si (M⁺+1): 243.1781. Found: 243.1785.

2.3. (–)-Methyl (4*S*,5*R*)-6-*tert*-butyldimethylsiloxy-4-methyl-5-methoxy-2-hexynoate (10)

A 100-ml two-necked round-bottomed flask, containing a magnetic stirring bar, PdCl₂ (47 mg, 0.27 mmol), anhydrous CuCl₂ (1.79 g, 13.2 mmol), and anhydrous NaOAc (1.09 g, 13.3 mmol) in MeOH (25 ml), was fitted with a rubber septum and three-way stopcock connected to a balloon filled with carbon monoxide. The apparatus was purged with carbon monoxide by pumping-filling via the threeway stopcock. A solution of (-)-9 (1.289 g, 5.33 mmol) in MeOH (3.5 ml) was added to the above stirred mixture via a syringe at 0 °C. After being stirred for 4 h, the reaction mixture was diluted with AcOEt (100 ml)/H₂O (100 ml). The organic layer was dried over MgSO₄. Evaporation of the organic solvent gave a crude residue, which was chromatographed on silica gel (30 g, n-hexane/AcOEt 50:1) to provide (–)-10 as a homogeneous oil (1.399 g, 87%). $[\alpha]_D^{24}$ -15.1 (c 0.86, CHCl₃); IR (neat): 2236, 1717 cm⁻¹; ¹H NMR: δ 0.06 (6H, s), 0.89 (9H, s), 1.25 (3H, d, J=7.2 Hz), 2.86 (1H, dq, J=7.2, 6.8 Hz), 3.23–3.27 (1H, m), 3.47 (3H, s), 3.68–3.77 (2H, m), 3.74 (3H, s); ¹³C NMR: δ –5.52, -5.47, 15.0, 18.2, 25.8 (3C), 27.5, 52.5, 59.0, 62.7, 73.7, 83.6, 91.3, 154.1; HRMS (FAB) calcd for C₁₅H₂₉O₄Si (M⁺+1): 301.1836. Found: 301.1837.

2.4. (---Methyl (4*R*,5*R*)-6-*tert*-butyldimethylsiloxy-3,5-dimethoxy-4-methyl-2(*Z*)-hexenoate (11)

A mixture of (-)-**10** (1.25 g, 4.2 mmol), Bu₃P (0.254 g, 1.25 mmol), and MeOH (0.335 g, 10.5 mmol) in CH₂Cl₂ (25 ml) was stirred for 4 h at room temperature. The reaction mixture was evaporated to give a crude residue, which was chromatographed on silica gel (30 g, *n*-hexane/AcOEt 50:1) to afford (-)-**11** (1.90 g, 86%) as a colorless oil. Compound (-)-**11**: $[\alpha]_D^{24}$ - 15.6 (*c* 0.96, CHCl₃); IR (neat): 1717, 1630 cm⁻¹; ¹H NMR: δ 0.05 (6H, s), 0.89 (9H, s), 1.11 (3H, d, *J*=7.2 Hz), 2.59 (1H, dq, *J*=6.8, 6.8 Hz), 3.30 (1H, dd, *J*=5.6, 6.8 Hz), 3.41 (3H, s), 3.61 (2H, d, *J*=5.6 Hz), 3.66 (3H, s), 3.91 (3H, s), 5.07 (1H, s); ¹³C NMR: δ -5.45, -5.38, 13.4, 18.3, 25.9 (3C), 40.5, 50.9, 59.3, 60.2, 62.9, 83.1, 95.8, 165.9, 174.7; HRMS (FAB) calcd for C₁₆H₃₃O₅Si (M⁺+1): 333.2097. Found: 332.2120.

2.5. (+)-Methyl (4*R*,5*R*)-6-hydroxy-3,5-dimethoxy-4-methyl-2(*E*)-hexenoate (13)

A solution of (–)-**11** (0.103 g, 0.45 mmol) in CDCl₃ (2 ml; D, 99.8% including 1% v/v TMS, silver foil, available from Cambridge Isotope Laboratories Inc.) was stood for 2 weeks at room temperature. Evaporation of the solvent gave **12** as a colorless oil, which was used for the next reaction without further purification. Compound **12**: ¹H NMR: δ 0.03 (6H, s), 0.87 (9H, s), 1.15 (3H, d, *J*=7.2 Hz), 3.33 (1H, dq, *J*=3.0, 7.2 Hz), 3.46 (3H, s), 3.54 (1H, dd, *J*=7.2, 11.2 Hz), 3.61 (3H, s), 3.61–3.65 (1H, m), 3.65 (3H, s), 3.97–4.04 (1H, m), 4.96 (1H, s).

A mixture of **12** and $E_{1_3}N \cdot (HF)_3$ (0.6 g, 3.7 mmol) in CH_2Cl_2 (4 ml) was stirred for 12 h at room temperature. The reaction mixture was diluted with CH_2Cl_2 and washed with 7% aqueous NaHCO₃. The organic layer was dried over MgSO₄. Evaporation of the organic solvent gave a crude residue, which was chromatographed on silica gel (5 g, *n*-hexane/AcOEt 3:1) to afford (+)-**13** (0.06 g, 89% from (-)-**11**) as a colorless oil. Compound (+)-**13**: $[\alpha]_{D^3}^{23}$ +91.4 (*c* 0.64, CHCl₃); IR (KBr): 3450, 1711, 1623, 1150 cm⁻¹; ¹H NMR: δ 1.19 (3H, d, *J*=6.8 Hz), 3.24–3.32 (1H, m), 3.44–3.48 (1H, m), 3.45 (3H, s), 3.63 (3H, s), 3.67–3.73 (1H, m), 3.69 (3H, s), 4.07–4.15 (1H, m), 5.05 (1H, s); ¹³C NMR: δ 14.5, 36.0, 51.2, 55.6, 58.1, 61.4, 83.6, 91.4, 168.6, 176.6; HRMS (FAB) calcd for $C_{10}H_{17}O_5$ (M⁺+1): 217.1076. Found: 217.1079.

2.6. (+)-Methyl (4*R*,5*R*)-3,5-dimethoxy-4-methyl-2(*E*)-hexenoate (2)

A mixture of (+)-14 (0.142 g, 0.65 mmol) and Dess–Martin reagent (0.708 g, 1.67 mmol) in CH_2Cl_2 (6 ml) was stirred for 2 h at room temperature. The reaction mixture was diluted with ether. The organic layer was washed with 7% aqueous NaHCO₃ and dried over MgSO₄. Evaporation of

the organic solvent gave a crude residue, which was chromatographed on silica gel (5 g, *n*-hexane/AcOEt 9:1) to provide (+)-2 as a colorless oil (0.125 g, 89%). Compound (+)-2: $[\alpha]_D^{23}$ +104.7 (*c* 0.55, CHCl₃); IR (KBr): 1712, 1628, 1441, 1149, 1095 cm⁻¹; ¹H NMR: δ 1.20 (3H, d, *J*=7.2 Hz), 3.43 (3H, s), 3.56 (1H, dd, *J*=2.4, 6.8 Hz), 3.64 (3H, s), 3.68 (3H, s), 4.48 (1H, dq, *J*=6.8, 7.2 Hz), 5.07 (1H, s), 9.59 (1H, q, *J*=2.4 Hz); ¹³C NMR: δ 13.9, 36.5, 51.0, 55.7, 58.6, 87.4, 91.9, 167.6, 174.4, 202.1; HRMS (FAB) calcd for C₁₀H₁₇O₅ (M⁺+1): 217.1076. Found: 217.1079.

2.7. Ethyl 2-isopropylthiazole-4-carboxylate (16)

To a solution of phosphorus pentasulfide (P_4S_{10} ; 5.1 g, 11.47 mmol) in ether (40 ml) was added isobutylamide 14 (10 g, 114.7 mmol) and the whole mixture was stirred for 2 h at room temperature. The reaction mixture was diluted with brine and extracted with ether. The organic layer was dried over MgSO₄ and evaporated to give a crude 15. A mixture of the crude 15 and ethyl α -bromopyruvate (22.39 g, 114.5 mmol) in EtOH (100 ml) was stirred at reflux for 15 min. The reaction mixture was evaporated, diluted with AcOEt, and washed with 7% aqueous NaHCO₃. The organic layer was dried over MgSO4 and evaporated to give a crude oil, which was chromatographed on silica gel (200 g, n-hexane/AcOEt 20:1) to afford 16 as a colorless compound (18.92 g, 82% overall yield from 14). Compound 16: IR (neat): 1726 cm⁻¹; ¹H NMR: δ 1.40 (3H, t, J=7.2 Hz), 1.42 (6H, t, J=7.0 Hz), 3.43 (1H, sept, J=7.0 Hz), 4.42 (2H, q, J=7.2 Hz), 8.06 (1H, s); ¹³C NMR: δ 14.4, 23.3 (C2), 33.6, 61.4, 126.4, 146.6, 161.6, 179.0; MS (FAB) m/z: 200 (M⁺+1).

2.8. 2-Isopropylthiazole-4-thioamide (18)

The thiazole ester 16 (20.01 g, 100.1 mmol) was treated with saturated NH₃ in MeOH (10 ml) in a sealed tube and the whole mixture was left to stand for 3 days at room temperature. After cooling, the reaction mixture was concentrated to afford a crude amide 17. To a solution of crude 17 in benzene (300 ml) was added phosphorus pentasulfide (P₄S₁₀; 36.5 g, 82.1 mmol) and the whole mixture was stirred for 2 h at reflux. The reaction mixture was diluted with H₂O and extracted with AcOEt. The organic layer was washed with brine and dried over MgSO₄. The organic layer was evaporated to give a crude residue, which was chromatographed on silica gel (300 g, n-hexane/AcOEt 10:1) to afford 18 as a pale yellow compound (12.53 g, 67% from 16). Recrystallization of 18 from *n*-hexane afforded 18 as pale yellow needles. Compound **18**: mp 83–85 °C; IR (KBr): 3290, 3155, 1634 cm⁻¹; ¹H NMR: δ 1.40 (6H, d, J=6.9 Hz), 3.28 (1H, sept, J= 6.9 Hz), 7.79 (1H, br s), 8.32 (1H, s), 8.70 (1H, br s); ¹³C NMR: δ 22.9, 33.3, 85.1, 126.4, 152.5, 177.7, 190.9. Anal. Calcd for C₇H₁₀N₂S₂: C, 45.13; H, 5.41; N, 15.04%. Found: C, 45.13; H, 5.36; N, 15.01. FABMS *m*/*z*: 187 (M⁺+1).

2.9. Ethyl 2'-isopropyl[2,4']bithiazolyl-4-carboxylate (19)

A solution of **19** (0.99 g, 5.3 mmol) and ethyl bromopyruvate (1.14 g, 5.8 mmol) in absolute EtOH (30 ml) was stirred for 1 h at reflux. The reaction mixture was diluted with 7% aqueous NaHCO₃ and extracted with Et₂O. The organic

layer was washed with brine and dried over MgSO₄. The organic layer was evaporated to give a crude residue, which was chromatographed on silica gel (30 g, *n*-hexane/AcOEt 30:1) to afford **19** (1.41 g, 94%). Recrystallization of **19** from *n*-hexane provided **19** as colorless needles. Compound **19**: mp 76–77 °C; IR (KBr): 1729 cm⁻¹; ¹H NMR: δ 1.43 (3H, d, *J*=7.1 Hz), 1.44 (6H, d, *J*=6.9 Hz), 3.36 (1H, sept, *J*=6.9 Hz), 4.44 (2H, q, *J*=7.1 Hz), 8.02 (1H, s), 8.16 (1H, s); ¹³C NMR: δ 14.4, 23.1, 33.4, 61.5, 116.1, 127.4, 147.5, 147.6, 161.3, 163.5, 178.4. Anal. Calcd for C₁₂H₁₄N₂O₂S₂: C, 51.02; H, 5.00; N, 9.92%. Found: C, 50.89; H, 5.02; N, 9.96. FABMS *m/z*: 283 (M⁺+1).

2.10. 2'-Isopropyl[2,4']bithiazolyl-4-methyl alcohol (20)

A mixture of **19** (1.787 g, 6.3 mmol) and LiBH₄ (0.69 g, 31.6 mmol) in THF (20 ml) was stirred for 2 h at room temperature. The reaction mixture was diluted with H₂O (10 ml) and the whole was stirred for 5 h at the same temperature. The reaction mixture was extracted with AcOEt and washed with brine, and dried over MgSO₄. The organic layer was evaporated to give a crude residue, which was chromatographed on silica gel (10 g, n-hexane/AcOEt 5:1) to afford 20 (1.506 g, 91%). Recrystallization of 20 from *n*-hexane provided 20 as colorless needles. Compound 20: mp 56-58 °C; IR (KBr): 3247, 1536, 1447 cm⁻¹; ¹H NMR: δ 1.44 (6H, d, J=7.2 Hz), 3.25-3.40 (1H, br s), 3.37 (1H, sept, J=7.2 Hz), 4.81 (2H, s), 7.19 (1H, t, J=0.8 Hz), 7.84 (1H, s); ¹³C NMR: δ 23.1, 23.1, 33.4, 60.9, 115.0, 115.2, 148.4, 157.2, 163.7, 178.8. Anal. Calcd for C₁₀H₁₂N₂OS₂: C, 49.97; H, 5.03; N, 11.66%. Found: C, 50.27; H, 5.19; N, 11.43. FABMS m/z: 241 (M⁺+1).

2.11. 2'-Isopropyl[2,4']bithiazolyl-4-methylenethio-2-benzothiazole (21) and 2'-isopropyl[2,4']bithiazolyl-4-methylenesulfonyl-2-benzothiazole (3)

To a mixture of **20** (0.1 g, 0.42 mmol), triphenylphosphine (0.218 g, 0.83 mmol), and diethylazocarboxylate (0.27 g, 0.62 mmol) in THF (5 ml) was added 2-mercaptobenzothiazole (0.14 g, 0.84 mmol) under argon atmosphere and the whole mixture was stirred for 60 min at room temperature. The reaction mixture was diluted with 2 M aqueous NaOH and extracted with Et₂O. The organic layer was washed with brine and dried over MgSO₄. The organic layer was evaporated to give a crude residue, which was chromatographed on silica gel (20 g, n-hexane/AcOEt 30:1) to afford 22 (0.146 g, 90%). Recrystallization of 21 from *n*-hexane provided 21 as colorless needles. Compound 21: mp 74-75 °C; IR (KBr): 3119, 2962, 1430, 997 cm⁻¹; ¹H NMR: δ 1.42 (6H, d, J=7.0 Hz), 3.36 (1H, sept, J=7.0 Hz), 4.76 (2H, s), 7.27-7.31 (1H, m), 7.33 (1H, s), 7.40-7.44 (1H, m), 7.73–7.75 (1H, m), 7.82 (1H, s), 7.89–7.91 (1H, m); ¹³C NMR: δ 23.1, 23.1, 33.0, 33.3, 115.0, 117.5, 121.0, 121.6, 124.3, 126.0, 135.4, 148.4, 152.1, 153.1, 163.2, 166.0, 178.7. Anal. Calcd for C17H15N3S4: C, 52.41; H, 3.88; N, 10.79%. Found: C, 52.44; H, 3.96; N, 10.33. FABMS *m*/*z*: 390 (M⁺+1).

To a solution of **21** (0.094 g, 0.24 mmol) in EtOH (2 ml) were added $Mo_7O_{24}(NH_4)_6$ ·4H₂O (0.03 g, 0.024 mmol) and 30% H₂O₂ (0.5 ml) at 0 °C, and the whole mixture was stirred for 60 min at room temperature. The reaction mixture

was diluted with brine and extracted with AcOEt. The organic layer was dried over MgSO₄. The organic layer was evaporated to give a residue, which was chromatographed on silica gel (15 g, *n*-hexane/AcOEt 3:1) to afford **3** (0.089 g, 88%). Recrystallization of **3** from *n*-hexane/AcOEt provided **3** as colorless needles. Compound **3**: mp 129–130 °C; IR (KBr): 1332, 1150 cm⁻¹; ¹H NMR: δ 1.38 (6H, d, J=6.8 Hz), 3.31 (1H, sept, J=6.8 Hz), 5.15 (2H, s), 7.19 (1H, s), 7.68 (1H, s), 7.67–7.71 (1H, m), 7.74–7.78 (1H, m), 8.21–8.23 (1H, m), 8.29–8.31 (1H, m); ¹³C NMR (acetone- d_6): δ 23.1, 23.1, 33.8, 57.4, 115.7, 122.9, 123.8, 126.1, 128.7, 128.9, 138.2, 144.7, 148.9, 153.8, 163.6, 167.1, 179.4. Anal. Calcd for C₁₇H₁₅N₃O₂S₄: C, 48.43; H, 3.59; N, 9.97%. Found: C, 48.30; H, 3.61; N, 9.80. FABMS *m/z*: 422 (M⁺+1).

2.12. 2'-Isopropyl[2,4']bithiazolyl-4-methylenethio-5-(1-phenyl-1*H*)-tetrazole (22) and 2'-isopropyl[2,4']bithiazolyl-4-methylenesulfonyl-5-(1-phenyl-1*H*)tetrazole (4)

To a mixture of 20 (0.1 g, 0.42 mmol), triphenylphosphine (0.218 g, 0.83 mmol), and diethylazocarboxylate (0.27 g, 0.62 mmol) in THF (5 ml) was added 1-phenyl-1H-tetrazole-5-thiol (0.148 g, 0.83 mmol) under argon atmosphere and the whole mixture was stirred for 60 min at room temperature. The reaction mixture was diluted with 2 M aqueous NaOH and extracted with Et₂O. The organic layer was washed with brine and dried over MgSO₄. The organic layer was evaporated to give a crude residue, which was chromatographed on silica gel (20 g, n-hexane/AcOEt 6:1) to afford 22 (0.16 g, 96%). Recrystallization of 22 from *n*-hexane provided 22 as colorless needles. Compound 22: mp 102-104 °C; IR (KBr): 3114, 2957, 1498, 1393 cm⁻¹; ¹H NMR: δ 1.43 (6H, d, J=6.8 Hz), 3.36 (1H, sept, J=6.8 Hz), 4.77 (2H, s), 7.43 (1H, s), 7.51–7.55 (5H, m), 7.79 (1H, s); ¹³C NMR: δ 23.1, 23.1, 33.0, 33.3, 115.1, 118.4, 123.9, 123.9, 129.8, 129.8, 130.1, 133.6, 148.3, 150.9, 153.8, 163.5, 178.8. Anal. Calcd for C₁₇H₁₆N₆S₃: C, 50.98; H, 4.03; N, 20.98%. Found: C, 51.00; H, 4.00; N, 20.89. FABMS m/z: 401 (M⁺+1).

To a solution of 22 (0.34 g, 0.85 mmol) in EtOH (1 ml) were added Mo₇O₂₄(NH₄)₆·4H₂O (0.105 g, 0.085 mmol) and 30% H₂O₂ (1 ml) at 0 °C, and the whole mixture was stirred for 60 min at room temperature. The reaction mixture was diluted with brine and extracted with AcOEt. The organic layer was dried over MgSO₄. The organic layer was evaporated to give a crude residue, which was chromatographed on silica gel (20 g, n-hexane/AcOEt 8:1) to afford 4 (0.333 g, 91%). Recrystallization of 4 from n-hexane/AcOEt provided **4** as colorless needles. Compound **4**: mp 121–122 °C; IR (KBr): 1338, 1160 cm⁻¹; ¹H NMR: δ 1.43 (6H, d, J=6.8 Hz), 3.35 (1H, sept, J=6.8 Hz), 5.02 (2H, s), 7.44 (1H, s), 7.50–7.60 (5H, m), 7.66 (1H, s); ¹³C NMR: δ 23.1, 23.1, 33.3, 58.1, 115.7, 122.4, 125.6, 125.6, 129.5, 129.5, 131.5, 132.9, 141.3, 147.7, 153.2, 164.2, 179.1. Anal. Calcd for C₁₇H₁₆N₆O₂S₃: C, 47.21; H, 3.73; N, 19.43%. Found: C, 47.24; H, 3.77; N, 19.17. FABMS m/z: 433 (M++1).

2.13. Modified Julia's coupling of (+)-2 and 3 (synthesis of cystothiazole A (*E*)-1)

To a solution of 3 (0.17 g, 0.40 mmol) in THF (3 ml) was added lithium bis(trimethylsilyl)amide (1 M solution in

THF, 0.4 ml, 0.4 mmol) at 0 °C under argon atmosphere and the whole mixture was stirred for 20 min at the same temperature. A solution of (+)-2 (0.073 g, 0.34 mmol) in THF (2 ml) was added to the above reaction mixture at 0 °C and the whole mixture was stirred for 20 min at the same temperature. The reaction mixture was diluted with H₂O and extracted with AcOEt. The organic layer was dried over MgSO₄ and evaporated to afford a crude product, which was chromatographed on silica gel (12 g, *n*-hexane/AcOEt 20:1) to give a 14:1 mixture (0.091 g, 64%) of (*E*)-1 and (*Z*)-cystothiazole 23. A part of this mixture was again subjected to chromatography on silica gel (5 g, *n*-hexane/AcOEt 20:1) to afford (*E*)-1 (0.005 g). ¹H and ¹³C NMR data of the present (*E*)-1 were identical with those of the reported data.^{2,5}

2.14. Modified Julia's coupling of (+)-2 and 4 (synthesis of cystothiazole A (*E*)-1)

To a solution of **4** (0.216 g, 0.50 mmol) in THF (5 ml) was added lithium bis(trimethylsilyl)amide (1 M solution in THF, 0.5 ml, 0.5 mmol) at 0 °C under argon atmosphere and the whole mixture was stirred for 20 min at the same temperature. A solution of (+)-**2** (0.09 g, 0.42 mmol) in THF (2 ml) was added to the above reaction mixture at 0 °C and the whole mixture was stirred for 20 min at the same temperature. The reaction mixture was diluted with H₂O and extracted with AcOEt. The organic layer was dried over MgSO₄ and evaporated to afford a crude product, which was chromatographed on silica gel (15 g, *n*-hexane/AcOEt 20:1) to give a 4:1 mixture (0.116 g, 66%) of (*E*)-**1** and (*Z*)-cystothiazole **23**.

References and notes

- (a) Gerth, K.; Irschik, H.; Reichenbach, H.; Trowitzsch, W. J. Antibiot. **1980**, 33, 1474–1479; (b) Trowitzsch, W.; Reifenstahl, G.; Wray, V.; Gerth, K. J. Antibiot. **1980**, 33, 1480–1490; (c) Trowitzsch, W.; Höfle, G.; Sheldrick, W. S. Tetrahedron Lett. **1981**, 22, 3829–3832.
- Ojika, M.; Suzuki, Y.; Tsukamoto, A.; Sakagami, Y.; Fudou, R.; Yoshimura, T.; Yamanaka, S. J. Antibiot. 1998, 51, 275– 281.
- Thierbach, G.; Reichenbach, H. Biochim. Biophys. Acta 1981, 638, 282–289.
- 4. Ojika, M.; Watanabe, T.; Qi, J.; Tanino, T.; Sakagami, Y. *Tetrahedron* **2004**, *60*, 187–194.
- Williams, D. R.; Patnaik, S.; Clark, M. C. J. Org. Chem. 2001, 66, 8463–8469.
- 6. (a) Kato, K.; Nishimura, A.; Yamamoto, Y.; Akita, H. *Tetrahedron Lett.* 2002, *43*, 643–645; (b) Kato, K.; Sasaki, T.; Takayama, H.; Akita, H. *Tetrahedron* 2003, *59*, 2679–2685; (c) Sasaki, T.; Kato, K.; Akita, H. *Chem. Pharm. Bull.* 2004, *52*, 770–771.
- 7. Bach, T.; Heuser, S. Chem.-Eur. J. 2002, 8, 5585-5592.
- 8. DeRoy, P. L.; Charette, A. B. Org. Lett. 2003, 5, 4163-4165.
- 9. Shao, J.; Panek, J. S. Org. Lett. 2004, 6, 3083-3085.
- Bach, T.; Heuser, S. Angew. Chem., Int. Ed. 2001, 40, 3184– 3185.
- Blakemore, P. R. J. Chem. Soc., Perkin Trans. 1 2002, 2563– 2585.

- (a) Akita, H.; Kawaguchi, T.; Enoki, Y.; Oishi, T. *Chem. Pharm. Bull.* **1990**, *38*, 323–328; (b) Akita, H.; Todoroki, R.; Endo, H.; Ikari, Y.; Oishi, T. *Synthesis* **1993**, 513–516; (c) Kato, K.; Ono, M.; Akita, H. *Tetrahedron: Asymmetry* **1997**, *8*, 2295–2298. Now, *n*-butyl (2*R*,3*S*)-epoxy butyrate corresponding to (2*R*,3*S*)-**5** is commercially available from Osaka Yuki Kagaku Kogyo Co., Ltd (Japan). Japan Kokai Tokkyo Koho JP 3095539.
- 13. Tsuji, J.; Takahashi, M.; Takahashi, T. *Tetrahedron Lett.* **1980**, *21*, 849–850.
- 14. Inanaga, J.; Baba, Y.; Hanamoto, T. Chem. Lett. 1993, 241–244.
- 15. Kato, K.; Nishimura, A.; Yamamoto, Y.; Akita, H. *Tetrahedron Lett.* **2001**, *42*, 4203–4205.
- Rhoads, S. J.; Chattopadhyay, J. K.; Waali, E. E. J. Org. Chem. 1970, 35, 3352–3358.