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The macrocyclization of linear D-galacto-2-heptulopyranose-containing oligoketosides has been carried
out by intramolecular glycosidation and ring-closing metathesis. The aglycon fragment of the cyclic
neglycoconjugates thus formed was an alkylidene or a polyether chain. One of the oligoketoside–crown
ethers showed a moderate asymmetric induction in the Cram model phenyl acetate–acrylate addition.

� 2009 Elsevier Ltd. All rights reserved.
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Both natural and synthetic macrocyclic glycoconjugates com-
bining structurally organized carbohydrate moieties and lipophilic
subunits have been the targets of numerous synthetic efforts be-
cause these compounds offer a great deal of opportunities as chiral
amphiphilic receptors in biological studies and in asymmetric syn-
thetic methodologies. Quite notable are the natural product macro-
cyclic resin glycosides (glycolipids) such as tricolorin A and G,
woodrosin, and sophorolipid lactone. The synthesis of these com-
pounds has been carried out in Fürstner laboratory via ring-closing
metathesis as the key macrocyclization step of dialkene or dialkyne
functionalized oligosaccharide fragments.1 Moreover, Heathcock
and co-workers reported2 the synthesis of tricolorin F via classical
macrolactonization of a heterotrisaccharide-hexadecanoic acid li-
pid.3 Biological activities have been described for these lipopoly-
saccharides including general cytotoxicity against several cancer
cell lines and plant toxicity.1,4 Another abundant class of macrocy-
clic glycoconjugates is constituted of synthetic carbohydrate–
crown ether hybrids.5 These compounds belong to the vast family
of chiral crown ether derivatives6 which rekindled great interest in
the last decades for their potential as catalysts in asymmetric reac-
tions and models of enzymatic systems. Macrocycles displaying
oligoketoside fragments are quite uncommon as the only known
compounds are cyclic oligomers of fructofuranose, the so-called
cyclofructins7 to emphasize their analogy to cyclodextrins. Cyclo-
fructins have been prepared by enzymatic degradation of the fruc-
tose polymer inulin. Hence, we would like to report here on the
first synthesis of macrocyclic glycoconjugates whose glycosidic
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moiety is made up of D-galacto-2-heptulopyranose units while
the tether is constituted of a polymethylene or polyether chain
(Fig. 1).

A few years ago we reported8 on an iterative glycosylation pro-
tocol affording a set of linear a-(2,1)-D-galacto-2-heptulopyranose-
containing oligoketosides 1 up to the pentameric stage (Scheme 1).
These alcohols were suitably equipped with an anomeric O-pente-
nyl group with the aim to transform them into cyclic products via
intramolecular glycosylation. Indeed this reaction occurred to a
good extent with the linear disaccharide 1a (n = 0) and trisaccha-
ride 1b (n = 1) but failed with the higher oligomers 1c (n = 2) and
1d (n = 3) which instead decomposed under the glycosidation con-
ditions. We suspected that oligomers 1c and 1d adopted a spatial
arrangement that disfavored the intramolecular process. Hence
we thought that this drawback could be avoided by elongation of
the alcohol side chain. As shown in Scheme 1, a polyether chain
was introduced because the intramolecular glycosidation carried
RO
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Figure 1. General structure of macrocyclic glycoconjugates prepared.
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NIS, TMSOTf, CH2Cl2, 0 °C

NaH, DMF, r.t.n

3a   R = Bn  (48%)
4a   R = Me  (46%)

3b   R = Bn  (43%)
4b   R = Me  (53%)

3c   R = Bn  (18%)
4c   R = Me  (50%)

1. Pd(OH)2, H2
2. CH3I, NaH

1. Pd(OH)2, H2
2. CH3I, NaH

1. Pd(OH)2, H2
2. CH3I, NaH

(60-86%) (45-50%)

2a  n = 0 (30%)
2b  n = 1 (39%)
2c  n = 2 (35%)
2d  n = 3 (30%)

Scheme 1.

Table 1
Michael addition of methyl phenylacetate to methyl acrylate in the presence
of t-BuOM and crown ethers 3a–c and 4a–c

Host Metal ion Isolated yield (%) ee (%) (R or S)

3a Na(+) 60 55 (R)
3a K(+) 70 5 (R)
3b Na(+) 65 40 (R)
3b K(+) 86 <5 (S)
3c Na(+) 85 5 (S)
3c K(+) 90 5 (R)
4a Na(+) 86 15 (S)
4a K(+) 94 65 (S)
4b Na(+) 60 30 (S)
4b K(+) 85 45 (S)
4c Na(+) 72 30 (S)
4c K(+) 78 40 (S)
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out afterward will form a macrocyclic oligoketoside–crown ether
hybrid. This simple operation was carried out by treatment of
the linear oligoketosides 1a–d with bis(2-chloroethyl) ether and
then coupling the resulting alkyl chlorides with ethylene glycol.9

The new alcohols10 2a–d were then subjected11 to the standard
glycosylation conditions of O-pentenyl-armed carbohydrates, that
is, activation with N-iodosuccinimide-TMSOTf in CH2Cl2 at 0 �C.
The macrocyclization occurred readily with the alcohols 2a–c to
give the corresponding carbohydrate-based crown ethers10 3a–c
although in variable yields. The yields decreased substantially by
increasing the number of the heptuloside units in the oligoketoside
moiety. Therefore, no cyclic product was obtained from pentamer
2d while this oligomer decomposed under the glycosidation
conditions. Macrocycles 3a–c featuring perbenzylated carbohy-
drate fragments were readily transformed via debenzylation (H2,
Pd(OH)2) and alkylation (NaH, MeI) into the corresponding
O-methyl derivatives10 4a–c. This new element of diversity can
broaden the scope of these compounds as asymmetric molecular
receptors. Indeed macrocycles 3 and 4 were tested as chiral hosts
in the model Michael addition of methyl phenylacetate to methyl
acrylate in the presence of t-BuOM (M = Na+ and K+) according to
the classical Cram and Sogah procedure.12 The observed ee values
of the formed Michael adduct were in general low or moderate
using the tri- and tetraketoside-containing crown ethers 3b, 4b
and 3c, 4c, respectively, while higher ee’s (55% and 65%) were ob-
tained using the diketoside-based macrocycles 3a and 4a (Table 1).
Enantioselectivities of the same order of magnitude as those ob-
served here were registered in Michael additions and in other
asymmetric reactions using a variety of chiral crown ethers includ-
ing carbohydrate-based derivatives.13
We envisaged a second way to obtain macrocyclic glycoconju-
gates from oligoketosides 1 by the introduction of a second O-pen-
tenyl appendage at the non-reducing end and then performing a
ring-closing metathesis (RCM). Ring-closing alkene or alkyne
metathesis has been extensively exploited as a key process toward
macrocycle formation14 including the above-mentioned macrocy-
clic glycolipids1 and other carbohydrate containing macrocycles.15

Hence the linear O-alkenyl alcohols 1b–c were transformed into
the bis-O-pentenyl derivatives10 5b–d by coupling with pentenyl
bromide. These dialkenes were subjected16 to RCM using the sec-
ond-generation ruthenium carbene Grubbs catalyst as shown in
Scheme 2. The yields of the macrocycle alkenes 6b–d (E/Z mix-
tures) appeared to decrease substantially with the increasing of
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Scheme 2.
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the number of carbohydrate units in the linear ketoside. Neverthe-
less even the macrocycle 6d featuring a pentaketoside segment
was obtained in satisfactory yield (43%). The double bond of com-
pounds 6b–d was then reduced17 using diimide, generated in situ
from tosylhydrazide and sodium acetate,18 to give the correspond-
ing cyclic neoglycoconjugates10 7b–d. All these macrocycles fea-
tured a lipophilic moiety constituted of an eight carbon atom
alkyl chain. Then, the O-benzyl groups of compounds 7b–d were
removed by hydrogenolysis in the presence of Pd(OH)2 and the free
hydroxy groups esterified (Ac2O, Py) to give the corresponding
O-acetyl derivatives10 8b–d. Unlike the crown ether derivatives
3a–c and 4a–c, the macrocycles 7b–d and 8b–d did not serve as
chiral hosts in the model Michael addition because they failed to
recognize sodium and potassium cations as proved by 1H NMR
complexation experiments.8

In conclusion, the synthetic efforts invested in this program cul-
minated in the development of two synthetic routes leading to
new classes of macrocyclic neoglycoconjugates. The use of these
products as chiral receptors has been so far only scarcely investi-
gated. Hence addressing this issue now becomes of interest.
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