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To identify cell-active sirtuin inhibitors containing N-thioacetyl lysine, we synthesized compound 1,
which was designed based on the structure of the reported N-ethoxycarbonylacetyl lysine-based sirtuin
inhibitor NCS-12k. Compound 1 selectively inhibited SIRT1 in enzyme assays. Compound 1 also caused a
dose-dependent increase in p53 acetylation in human colon cancer HCT116 cells, indicating the inhibi-
tion of SIRT1 in these cells.

� 2009 Elsevier Ltd. All rights reserved.
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Reversible protein acetylation is an important posttranslational
modification that regulates the function of histones and many non-
histone proteins.1–3 Sirtuins are enzymes that catalyze the deacet-
ylation of acetylated lysine residues of proteins using NAD+ as a
cofactor, and are involved in a diversity of cellular functions, such
as genome maintenance, longevity, and metabolism.4–6 Humans
have seven distinct sirtuin gene products (SIRT1–7). Among these,
SIRT1 and SIRT2 are reportedly associated with certain disease
states such as cancer and neurodegenerative disorders.7–9 There-
fore, SIRT inhibitors are of interest not only as tools for elucidating
the detailed biological functions of the enzyme, but also as poten-
tial therapeutic agents.10,11

To date, several classes of sirtuin inhibitors have been identified
by us and other groups.12–16 Among them, thioacetyl lysine-con-
taining peptides (Fig. 1) have been reported as mechanism-based
inhibitors of sirtuins.17–19 Mechanism-based enzyme inhibitors
are relatively inert until they are processed by the target enzyme,
which unmasks a chemically reactive warhead that leads to the
covalent modification of residues or cofactors in the active site.
This class of enzyme inhibitor has the advantage of a high specific-
ity. In the case of thioacetyl sirtuin inhibitors, the sulfur of the thi-
oamide nucleophilically attacks NAD+ at the active site of sirtuins
to enable a stable conjugation with ADP-ribose, leading to the inhi-
bition of enzyme activity.18 Although thioacetyl lysine-containing
peptides show potent inhibitory activities in enzyme assays, these
peptides are difficult to use in cellular studies because of the poor
membrane permeability resulting from their peptide structure.
All rights reserved.
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This consideration led us to design a non-peptide sirtuin inhibitor
containing N-thioacetyl lysine. Herein, we report the SIRT-inhibi-
tory activity, inhibitory mechanism, and cellular activity of a
non-peptide thioacetyl lysine analogue.

Recently, we reported the N-ethoxycarbonylacetyl lysine ana-
logue NCS-12k (Fig. 1) as another mechanism-based inhibitor of
sirtuin.15 The enol form of NCS-12k nucleophilically attacks NAD+

in the active site of SIRTs to enable the creation of a stable NCS-
12k-ADP-ribose conjugate, which inhibits SIRTs. Based on these
findings, we designed a novel N-thioacetyl lysine analogue 1
(Fig. 1) in which the anilino group and the benzyloxycarbonyl
group are attached to the carbonyl and amino groups of lysine,
respectively. These substituents are recognized by amino acid res-
idues at the entrance to the N-acetylated lysine binding channel of
HO
NCS-12k

HO
3

1

Figure 1. Structures of thioacetyl lysine peptides, NCS-12 k and compound 1.
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Scheme 2. Proposed mechanism of SIRT inhibition by compound 1.

Figure 2. Plots of product formation versus time in the absence (s) and presence of
100 (N) and 300 (d) lM of compound 1. AFU stands for arbitrary fluorescence unit.
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SIRTs, similar to NCS-12k, leading to the potent inhibition of SIR-
Ts.15 In addition, the attachments of these non-peptide small
groups could overcome the membrane permeability problem of
peptides.

We synthesized compound 1 using the route outlined in
Scheme 1. 2-Benzyloxycarbonylamino-6-tert-butoxycarbonylami-
nohexanoic acid 2 was allowed to react with aniline in the pres-
ence of EDCI and HOBt to yield the corresponding anilide 3. The
removal of the Boc group of anilide 3 produced amine 4. Amine 4
was then reacted with ethyldithioacetate in the presence of
Na2CO3 in MeOH to yield the desired compound 1.20

Compound 1 was initially tested in an in vitro SIRT inhibition
assay using human recombinant SIRT1, SIRT2, and SIRT3.21 As
shown in Table 1, compound 1 inhibited SIRT1 with an IC50 of
2.7 lM, and exhibited selectivity for SIRT1 over SIRT2 and SIRT3
(IC50 for SIRT2 = 23 lM; IC50 for SIRT3 >100 lM); this finding con-
trasts that for nicotinamide,22 a known non-selective sirtuin
inhibitor.

To examine the mechanism of SIRT1 inhibition by compound 1,
we initially determined whether inhibition by compound 1 was
time-dependent. The time course of product formation was moni-
tored in the absence and presence of compound 1. As shown in Fig-
ure 2, compound 1 was found to be a time-dependent inhibitor of
SIRT1, exhibiting nonlinear progress curves and reaching a plateau
value. These data suggest that compound 1 is an irreversible
inhibitor.

To gain further insight into the mechanism of SIRT1 inhibition
by compound 1, a mass spectroscopic analysis of a mixture of
SIRT1 incubated with compound 1 was performed.23 If compound
1 reacts with NAD+ as expected, compound 1-ADP-ribose conju-
gate 5 should be generated (Scheme 2). As depicted in Figure 3,
while the peak of NAD+ was observed at m/z 662.6, a significant
peak at m/z 953.8 was also observed. This peak corresponds to
the predicted molecular weight of compound 1-ADP-ribose conju-
gate 5. The peak was dependent on the presence of SIRT1 and com-
pound 1; that is, it was not detected in the absence of SIRT1 or
compound 1 (data not shown). These results indicate that adduct
5 was generated as a result of the SIRT1-catalyzed reaction of com-
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Scheme 1. Reagents and conditions: (a) aniline, 1-ethyl-3-(3-dimethylaminopro-
pyl)carbodiimide (EDCI), 1-hydroxybenzotriazole hydrate (HOBt�H2O), DMF, rt,
94%; (b) HCl, AcOEt, rt, 99%; (c) ethyldithioacetate, Na2CO3, H2O, EtOH, rt, 85%.

Table 1
In vitro SIRT1-, SIRT2- and SIRT3-inhibitory activities of compound 1 and
nicotinamidea

Compound IC50 (lM) Selectivity

SIRT1 SIRT2 SIRT3 SIRT2/SIRT1 SIRT3/SIRT1

1 2.7 ± 0.11 23 ± 3.1 >100 8.5 >37
Nicotinamide 100 ± 18 11 ± 1.7 14 ± 2.3 0.11 0.14

a Values are the means of at least three experiments.
pound 1 with NAD+. The data from the mass spectroscopic analysis
supported the idea that compound 1 reacts with NAD+ in the active
site of SIRT1, yielding compound 1-ADP-ribose, which causes SIRT1
inhibition (Scheme 2).

Unlike peptide inhibitors, compound 1 is a small-molecule SIRT
inhibitor that might be active in cellular assays. To test whether
this is the case, we performed a cellular assay using western blot
analysis. Since SIRT1 is known to catalyze the deacetylation of
p53 in cells with DNA damage,24 the acetylation level of p53 in hu-
man colon cancer HCT116 cells after etoposide-induced DNA dam-
age was analyzed.25 As can be seen in Figure 4, the level of
acetylated p53 was elevated depending on the dosage of com-
pound 1. These results suggest that compound 1 inhibits SIRT1 in
cells and can be used as a tool for probing the biological role of
SIRT1.

In summary, we have designed and synthesized a non-peptide
N-thioacetyl lysine analogue 1, which acts as a sirtuin inhibitor.
Compound 1 showed a potent and selective SIRT1-inhibitory activ-
ity. A kinetic analysis and mass spectroscopic analysis suggested
that the inhibitory mechanism involves the SIRT1-catalyzed syn-
thesis of compound 1-ADP-ribose conjugate 5 from thioacetyl ly-
sine analogue 1 and NAD+. Compound 1 was confirmed to inhibit
SIRT1 in a cellular study.

Thus, we have identified a novel lead structure, compound 1,
from which it should be possible to develop potent and isoform-
selective sirtuin inhibitors by modifying the anilino and benzyl-
oxycarbonyl groups. This should be helpful in the development
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Figure 3. Mass spectrometric detection of compound 1-ADP-ribose conjugate 5.
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Figure 4. Western blot detection of acetylated p53 levels in HCT116 cells after 8 h
of incubation with 20 lM of etoposide and 10 or 100 lM of compound 1.
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of therapeutic agents for various diseases, as well as tools for
studying the biological roles of sirtuins.
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