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a b s t r a c t

A water soluble red fluorescent dye (TD-mPEG750) has been prepared by treatment of 2-(3,5,5-
trimethylcyclohex-2-en-1-ylidene)malononitrile with 4-(diethylamino)-2-mPEG benzaldehyde (mPE-
G-OH, average MW ¼ 750). TD-mPEG750 exhibits red emission at lem ¼ 664 nm in water, a small
fluorescence quantum yield (ff ¼ 0.01) and a large Stoke's shift (Dl ¼ 145 nm) are obtained. Using HeLa
cells as prototype, the application of TD-mPEG750 to living cells imaging has been investigated. It is found
that TD-mPEG750 can be clearly expressed in mitochondria with high contrast in HeLa cells imaging.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The use of water-soluble fluorophore dyes has become a sig-
nificant area of research in biomedical diagnosis and biological
image [1e8]. Fluorescent dyes with red emission (lem � 650 nm)
are highly desired in biological imaging due to their particular
advantages such as large penetration depth, less light scattering
and minimized tissue auto-fluorescence background [9e12].
Common fluorophore dyes such as fluorescein, rhodamine, and
quinine sulfate exhibit short emission wavelength (lem � 600 nm)
[13e15], which limited their application in biological imaging.
Recently, a number of noted red fluorophore dyes including BODIPY
[16e20], cyanine dyes [21e24] and others [25e27] have been
developed, but one main problem is encountered with them: small
Stoke's shift (Dl � 70 nm).

Development of water-soluble red fluorophore dyes with large
Stoke's shift is essential for biological applications [28e31]. Ad-
vances in fluorescent dyes with large Stoke's shift not only reduce
the self-quenching resulted from themolecular self-absorption due
x: þ86 10 6487 9375.
to the overlap between absorption and emission spectral of dyes
but also can be used in multiplex monitor since monitoring mul-
tiple physiological parameters require the loading of several
distinct fluorescent probes in the intracellular and extracellular
environments [32], in which fluorophores that are excitable at the
same fixedwavelengthwithwell-separated emissions are required.

Dicyanoisophorone derivatives have currently attracted
considerable attention because of red emission and large Stoke's
shift [33e36]. Herein, a water-soluble fluorescent dye TD-mPEG750
based on dicyanoisophorone system (Scheme 1) has been designed
and synthesized. The fluorophore TD is easy prepared and shows
good photo-stability, the introduction of methyoxypolyethylene
glycol (mPEG750) to TD is to improve the solubility of TD in water
and to decrease cytotoxicity. Poly(ethylene glycol) (PEG) have been
extensively studied for their potential biomedical applications as
scaffolds in tissue engineering [37,38] and as drug delivery systems
[39,40] due to their biocompatibility, nontoxicity, and biodegrad-
ability [41,42]. In this paper, the properties of TD-mPEG750 and its
application to cells imaging are examined, some merits are ob-
tained, they include:

➣ Facile preparation.
➣ Good solubility in water.
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Scheme 1. Chemical structure of TD-mPEG750.
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➣ Deep red fluorescence.
➣ Large stoke's shift.
2. Experimental

2.1. General

1H and 13C NMR spectra are recorded at 400 and 100 MHz,
respectively, with TMS as an internal reference. MS spectra are
recorded with MALDI-MS spectrometer. UV absorption spectra and
fluorescence spectra are measured with an absorption spectro-
photometer (Hitachi U-3010) and a fluorescence spectrophotom-
eter (F-2500), respectively. All experiments are carried out with
commercially available reagents and solvents, and used without
further purification, unless otherwise noted.

2.2. Experiment for cell culture and fluorescence images

For the fluorescence imaging in live cells, HeLa cells are cultured
in culture media Dulbecco's modified Eagle's medium (DMEM/F12
1:1 (HyClone) with 10% Fetal Bovine Serum (FBS) and 1% Penicillin-
Streptomycin) at 37 �C under a humidified atmosphere containing
5% CO2 for 24 h. The cells were seeded on a Ø 35 mm glass-
bottomed dish (NEST) for live-cell imaging by confocal laser scan-
ning microscopy (CLSM). The HeLa cells were treated with 1 mM of
TD-mPEG750 in 2 mL of serum free medium for 2 h and imaged by
CLSM without removing the molecule in the cell medium. Confocal
fluorescence imaging was performed with Nikon multiphoton
microscopy (A1R MP) with a 60 � oil-immersion objective lens
(NA ¼ 1.40) and living cell work station. The cellular images were
taken under a CLSM by using the excitation channel at 561 nm.

2.3. Experiment for toxicity test

Toxicity test of HeLa cells incubated with TD-mPEG750 is carried
out as follows: (a) HeLa cells were incubated with 1 mM of TD-
mPEG750 for 2 h, after washed up 3 times with phosphate buffered
saline (PBS), 1 mL of fresh PBS was added. (b) To the incubated HeLa
cells in PBSwas added propidium iodide (PI) probe, after incubation
for 10 min, the HeLa cells with TD-mPEG750 and PI probe were
washed up with PBS for three times, 500 mL of fresh PBS was then
added. (c) The sample was observed by Nikon A1R confocal fluo-
rescence microscope with excitation wavelength of 561 nm, and
the range of collected fluorescence is 570e620 nm. (d) The number
of dead cells (red) and the whole number of cells were counted
from the obtained images. Around 200 cells were counted, and the
ratio of living cells (viability, %) was calculated. The viability of the
cells without incubation of TD-mPEG750 was also checked by
PIunder under the same experimental condition. The viability (%) of
stained cells is calculated by relation to that of unstained cells in
which the viability of unstained cells is set to 100%.

2.4. Synthesis of TD-mPEG750

The synthetic route for TD-mPEG750 is outlined in Scheme 2,
and the detailed procedures are as follows: (a) To a solution of
isophorone (3.8 g, 27.6 mmol) and malononitrile (1.82 g,
27.6 mmol) in dry ethanol (150 mL) was added piperidine (23 mg,
0.276 mmol). The solution was stirred at 60 �C till starting material
disappeared (detected by TLC plate). After cooling to room tem-
perature, the solution was slowly poured into water (200 mL) and
the precipitated solid was filtered. Recrystallization from heptane
afforded 2-(3,5,5-trimethylcyclohex-2-enylidene) malononitrile as
a brown solid. Yield: 4.5 g (90%). M.p. 73e75 �C. 1H NMR (CDCl3):
d (ppm) 6.60 (s, 1H), 2.53 (s, 2H), 2.14 (s, 2H), 2.01 (s, 3H), 1.32 (s,
6H). 13C NMR (CDCl3): d (ppm) 170.3, 161, 120.2, 113.1, 76.4, 45.6,
42.3, 32.4, 27.5, 25.1. (b) To the solution of methoxypolyethylene
glycol (mPEG750-OH) (7.5 g, 10 mmol) in CHCl3 (30 mL) was added
thionyl chloride (2.5 g, 21 mmol) and pyridine (1.6 g, 20 mmol), the
solution was refluxed till no starting material was detected (TLC
detection). After cooled down to room temperature, the solution
was poured into water (100 mL) and extracted with CHCl3
(30 mL� 3). The combined organic solutionwas dried over Na2SO4,
after evaporation of the solvent, the productmPEG750-Cl (oil, 6.5 g,
85% yield) was obtained for next step without purification. (c) To a
solution of 4-(diethylamino)-2-hydroxybenzaldehyde (0.96 g,
5 mmol) in DMF (10 ml) was added mPEG750-Cl (3.8 g, 5 mmol),
K2CO3 (0.7 g, 5 mmol) and KI (0.08 g, 0.5 mmol). The mixture so-
lution was heated at 100 �C till no starting material was detected
(TLC detection). After evaporation of DMF under pressure, 20 ml of
H2O was added to the mixture. The mixture was extracted with
DCM (20 mL � 3), the combined organic solution was dried over
Na2SO4, after evaporation of the solvent, DA-mPEG750 (oil, 2.26 g,
50% yield) was obtained. 1H NMR (400 MHz, CDCl3) d (ppm) 10.09
(s, CHO), 7.65 (d, J ¼ 8.8 Hz, AreH), 6.85e6.81 (m, AreH), 6.22 (d,
J¼ 8.8 Hz, AreH), 3.81e3.45 (m large, PEG backbone), 3.37e3.32 (q,
NeCH2CH3), 3.31 (s, eOeCH3), 1.14 (t, NeCH2CH3). (d) Under argon,
2-(3,5,5-trimethylcyclohex-2-enylidene) malononitrile (0.46 g,
2.5 mmol) and DA-mPEG750 (2.26 g, 2.5 mmol) were dissolved in
dry acetonitrile (10 mL). Piperidine (2.1 mg, 0.025 mmol) was
added and the solution was stirred at 40 �C till starting material
disappeared (detected by TLC plate). After evaporation of acetoni-
trile under pressure, 20 ml of H2O was added to the mixture. The
mixture was extracted with DCM (20 mL � 3), the combined
organic solution was dried over Na2SO4, after evaporation of DCM,
the target compound TD-mPEG750 (oil, 2.7 g, 50% yield) was ob-
tained. 1H NMR (400MHz, CDCl3) d (ppm) 7.34 (d, J¼ 8.8 Hz, AreH),
7.32 (d, J ¼ 16.0 Hz, CH]CH), 7.02 (d, J ¼ 5.2 Hz, AreH), 6.86e6.81
(m, AreH), 6.69 (s, AreH), 6.24 (d, J ¼ 8.8 Hz, AreH), 6.06 (d,
J ¼ 2.0 Hz, CH]C), 3.61e3.56 (m large, PEG backbone), 3.37e3.32
(q, CH2CH3), (3.31 (s, eOeCH3), 2.51 (s, COeCH2e), 2.16 (s, eCH2e),
1.32 (s, CH3eCeCH3), 1.14 (t, NeCH2CH3). 13C NMR (100 MHz,
CDCl3: d ¼ 158.3, 155.6, 151.4, 136.7, 134.3, 131.8, 129.0, 128.5, 124.1,
115.3, 113.3, 112.0, 78.3, 78.8, 70.51 (br PEG), 65.4, 57.4, 41.2, 40.3,
37.6, 31.7, 28.1, 14.4. IR (KBr) n (cm�1) ¼ 3122, 1640, 1589, 1470,
1455, 1240, 1112 (br).

3. Results and discussion

3.1. Synthesis of TD-mPEG750

TD-mPEG750 is obtained from isophorone, malononitrile and
the corresponding aromatic aldehydes by a two-step condensation



Scheme 2. Synthesis of TD-mPEG750. Reagents and conditions: (a) piperidine cat., dry EtOH, 60 �C, 90%; (b) pyridine, dry CHCl3, reflux, 85%; (c) KI cat., K2CO3, dry DMF, 100 �C, 50%;
(d) piperidine cat., dry CH3CN, 40 �C, 50%.
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reaction. DA-mPEG750 is obtained starting from methoxypoly-
ethylene glycol (mPEG750-OH), which was chlorinated with SOCl2
in CHCl3 with pyridine as acid absorbing agent, followed by
etherification with 4-diethylamino-2-hydroxybenzaldehyde in
DMF using K2CO3 as base and KI (10% mol) as catalyst, respectively.
Treatment DA-mPEG750 with 2-(3,5,5-trimethylcyclohex-2-en-1-
ylidene) malononitrile, which is obtained by the condensation of
isophorone with malononitrile in the catalyst of piperidine (1%
mol), in CH3CN provided target compound TD-mPEG750 in 50%
yield. The chemical reagents and the reaction conditions are illus-
trated in Scheme 2, and the details of procedure for the preparation
are described in Experimental Section.
Table 1
Optical data of TD-mPEG750 in different solvents (10 mM) at 20 �C.

Solvent lmax (nm) 3max (M�1cm�1) lem(nm) Ff Dl (nm)

Toluene 517 2.4 � 104 597 0.04 80
DCM 531 2.6 � 104 633 0.035 102
CH3CN 527 2.7 � 104 647 0.03 120
DMSO 555 2.8 � 104 662 0.06 107
H2O 530 2.2 � 104 665 0.01 135
3.2. Optical properties of TD-mPEG750 in solution

Absorbance and fluorescence of TD-mPEG750 (10 mM) in
different solvents are measured at room temperature and photo-
physical data are reported in Table 1. TD-mPEG750 is composed
with a DepeA structure, which may exhibit intramolecular charge
transfer characteristics. To confirm the intramolecular charge
transfer of TD-mPEG750, the linear optical properties of TD-
mPEG750 in dilute solutions (10 mM) are measured and their pho-
tophysical data are reported in Table 1. In dimethyl sulfoxide
(DMSO) solution (Fig.1), TD-mPEG750 showed twomain absorption
bands at 325 nm and 555 nm, respectively, 325 nmmay be deduced
to a localized aromatic p / p* transition, and 555 nm to intra-
molecular charge transfer transition. Consistent with the predicted
trend, the maximal absorption of TD-mPEG750 exhibits sol-
vatochromic effect with different solvents, as shown in Table 1, the
maximal absorption of TD-mPEG750 was blue-shifted from 555 nm



Fig. 1. Absorption spectral of TD-mPEG750 in different solvents (10 mM).

Scheme 3. Chemical structure of TD.
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to 517 nm when the solvent was changed from DMSO (large po-
larity) to toluene (small polarity), which suggests a significant
intramolecular charge transfer in solvent with large polarity.

Upon excitation the solution of TD-mPEG750 (10 mM) in DMSO
solution with 560 nm light, a red fluorescence with the maximum
emission wavelength at 662 nm is detected (Fig. 2), by using
rubrene (ff¼ 0.27, inMeOH) as reference [43], a small fluorescence
quantum yield (ff ¼ 0.06) is obtained. Further investigation finds
that TD-mPEG750 exhibits a positive solvatochromism: the emis-
sion wavelength is red-shifted with increase of the polarity of
solvents. As shown in Table 1, the emission wavelength of TD-
mPEG750 is red-shifted from 597 nm to 662 nmwhen the solvent is
changed from toluene to DMSO. These positive solvatochromism
properties are the characteristic of induced charge transfer in
dipolar molecules. Besides, the fact that TD-mPEG750 presents
more red-shifted in emission than that in absorption suggests
there is stronger induced charge transfer in the excited state than
in the ground state, which results in a large Stoke's shift
(Dl � 100 nm) in polar solvents. Fluorescence quantum yields of
TD-mPEG750 in other solvents (Table 1) exhibit that the quantum
yield increases with the increase of solvent viscosity
(DMSO > toluene > DCM > acetonitrile) due to the restriction of
vibronic deactivations in the excited state [44], which is in agree-
ment with previous observations in this type of molecules [45].
Fig. 2. Fluorescence spectral of TD-mPEG750 in different solvents (10 mM).
lex ¼ 530 nm.
TD-mPEG750 shows very weak emission in solution, which
probably inherits from its parent compound TD (Scheme 3), it is
found that TD also exhibits very weak emission in solution, and
very small fluorescence quantum yield (ff ¼ 0.05) is obtained in
DMSO solution [46]. The weak emission of this type of molecules is
probably results from twisted intramolecular charge transfer (TICT)
due to strong intramolecular charge transfer in excited state [47].

DepeA conjugated ICT compounds are often highly polarized
and generally suffer an aggregation-induced emission quenching.
Since amphiphilic nature of TD-mPEG750, it is necessary to under-
stand whether TD-mPEG750 is molecular dissolved or aggregated
state in water. Size and size distribution of TD-mPEG750 in H2O
(10 mM) were examined by dynamic light scattering (DLS) using
DLS spectrometer (DynaPro NanoStar, Wyatt Technology) with a
laser beam at a wavelength of 659 nm. The particle size measure-
ments were performed at a scattering angle of 90� in a cell of 1.4 cm
path length at room temperature (25 �C). DLS analyst confirmed
that TD-mPEG750 formed aggregation in H2O, as shown in Fig. 3,
the particle size is about 32 nmwith 70% number. The aggregation
of TD-mPEG750 probably resulted in the decrease of emission in
H2O.

3.3. Living cells fluorescence imaging

TD-mPEG750 applied for fluorescence imaging was explored.
HeLa cells were incubated with TD-mPEG750 (1.0 mM) for 2 h, and
the images of the live cells were taken by using a confocal laser
scanning microscope (Fig. 4). The fluorescence images indicated
that TD-mPEG750 was clearly expressed in HeLa cells. It is worth
noting that a distinctly enhanced fluorescence was observed when
TD-mPEG750 combined with HeLa cells, as a consequences, HeLa
Fig. 3. Particle size and size distribution of TD-mPEG750 in H2O (10 mM).



Fig. 4. Confocal laser scanning microscopic images of HeLa cells incubated with TD-mPEG750 (1.0 mM) (left).
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cells incubated with TD-mPEG750 could be directly used for
microscopic images without washing up by phosphate buffered
saline (PBS). As presented in Fig. 4, no significant background
interference was detected when the incubated HeLa cells was used
for microscopic images without washing up.

To determine the cellular localization of TD-mPEG750, the co-
localization experiment with Mito-Tracker Green (Invitrogen) was
preformed. HeLa cells were incubatedwith 1 mMof TD-mPEG750 for
2 h, followed by incubation with 25 nM of Mito-Tracker Green for
20 min. Both 488 nm and 561 nm excitation wavelength were
employed for Mito-Tracker Green and TD-mPEG750, respectively,
and the fluorescence was recorded at channel (500e550 nm) and
(570e620 nm), respectively. As presented in Fig. 5, the image with
the probe is in good agreement with that of the commerical Mitro-
Tracker Green, and the overlaid confocal fluorescence images of
Fig. 5. Confocal laser scanning microscopic images of HeLa cells incubate

Fig. 6. Discriminating imaging against background fluorescence in HeLa cells (left: fluoresce
imaging, right: merged fluorescence).
both TD-mPEG750 and Mito-Tracker Green demonstrated that TD-
mPEG750 was expressed in mitochondria.

Discrimination against background fluorescence of HeLa cells
was also conducted. Both fluorescence imaging from incubated
HeLa cells with TD-mPEG750 and from background fluorescence
imaging were obtained by using a confocal laser scanning mi-
croscope. As is demonstrated in Fig. 6, with excitation at 561 nm
and recorded at channel (570�620 nm), both HeLa cells with
and without incubation with TD-mPEG750 showed fluorescence
signal, the auto-fluorescence of HeLa cells (middle) showed,
however, much weaker than that of incubated HeLa cells (left),
and a high contrast in fluorescence imaging was obtained
(right). As shown in Fig. 6, the auto-fluorescence signal was
hardly identified after the HeLa cells were incubated with TD-
mPEG750.
d with TD-mPEG750 (1.0 mM) (middle) and Mito-Tracker Green (left).

nce imaging with incubation of TD-mPEG750 for 2 h, middle: background fluorescence



Fig. 7. The viability of HeLa cells with incubation of TD-mPEG750 (1.0 mM) for different
time (error bar represents standard deviation).
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3.4. Toxicity test of TD-mPEG750

Toxicity is an important factor to evaluate the application pos-
sibility of fluorescence dyes. To test the cytotoxicity of TD-mPEG750,
propidium iodide (PI, Invitrogen, P3566), which is widely used in
the toxicity study for identifying dead cells in a population, was
employed as the probe for the detection of dead cells of HeLa. The
HeLa cells incubated with TD-mPEG750 and PI probe were excited
by 561 nm, and observed by Nikon A1R confocal fluorescence mi-
croscope with the fluorescence recorded at channel (670e720 nm)
and (570e620 nm), respectively. The number of dead cells and the
whole number of cells were counted from the obtained images, and
the viability (%) (the ratio of living cells) was calculated by the
comparison of the number of living cells with that of the dead cells.
The result indicated that TD-mPEG750 showed moderate toxicity to
HeLa cells, as shown in Fig. 7, more than 95% of viability was ob-
tained when the HeLa cells were incubated with TD-mPEG750
within 2 h, but with the extension of time, the viability was
decreased significantly, and less than 5% of viability was obtained
when the HeLa cells were incubated with TD-mPEG750 more than
10 h.

4. Conclusions

In summary, a new water-soluble fluorescence dye based on
dicyanoisophorone derivative has been developed and its applica-
tion to living cells imaging has been demonstrated. The fluores-
cence dye has some distinct advantages including easy preparation,
near-infrared emission (lem � 650 nm) and large Stoke's shift
(Dl � 140 nm), which is of benefit to biological fluorescence
imaging.
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